godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/ConstraintPart/SpringPart.h

170 lines
7 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
JPH_NAMESPACE_BEGIN
#ifndef JPH_PLATFORM_DOXYGEN // Somehow Doxygen gets confused and thinks the parameters to CalculateSpringProperties belong to this macro
JPH_MSVC_SUPPRESS_WARNING(4723) // potential divide by 0 - caused by line: outEffectiveMass = 1.0f / inInvEffectiveMass, note that JPH_NAMESPACE_BEGIN already pushes the warning state
#endif // !JPH_PLATFORM_DOXYGEN
/// Class used in other constraint parts to calculate the required bias factor in the lagrange multiplier for creating springs
class SpringPart
{
private:
JPH_INLINE void CalculateSpringPropertiesHelper(float inDeltaTime, float inInvEffectiveMass, float inBias, float inC, float inStiffness, float inDamping, float &outEffectiveMass)
{
// Soft constraints as per: Soft Constraints: Reinventing The Spring - Erin Catto - GDC 2011
// Note that the calculation of beta and gamma below are based on the solution of an implicit Euler integration scheme
// This scheme is unconditionally stable but has built in damping, so even when you set the damping ratio to 0 there will still
// be damping. See page 16 and 32.
// Calculate softness (gamma in the slides)
// See page 34 and note that the gamma needs to be divided by delta time since we're working with impulses rather than forces:
// softness = 1 / (dt * (c + dt * k))
// Note that the spring stiffness is k and the spring damping is c
mSoftness = 1.0f / (inDeltaTime * (inDamping + inDeltaTime * inStiffness));
// Calculate bias factor (baumgarte stabilization):
// beta = dt * k / (c + dt * k) = dt * k^2 * softness
// b = beta / dt * C = dt * k * softness * C
mBias = inBias + inDeltaTime * inStiffness * mSoftness * inC;
// Update the effective mass, see post by Erin Catto: http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=1354
//
// Newton's Law:
// M * (v2 - v1) = J^T * lambda
//
// Velocity constraint with softness and Baumgarte:
// J * v2 + softness * lambda + b = 0
//
// where b = beta * C / dt
//
// We know everything except v2 and lambda.
//
// First solve Newton's law for v2 in terms of lambda:
//
// v2 = v1 + M^-1 * J^T * lambda
//
// Substitute this expression into the velocity constraint:
//
// J * (v1 + M^-1 * J^T * lambda) + softness * lambda + b = 0
//
// Now collect coefficients of lambda:
//
// (J * M^-1 * J^T + softness) * lambda = - J * v1 - b
//
// Now we define:
//
// K = J * M^-1 * J^T + softness
//
// So our new effective mass is K^-1
outEffectiveMass = 1.0f / (inInvEffectiveMass + mSoftness);
}
public:
/// Turn off the spring and set a bias only
///
/// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
inline void CalculateSpringPropertiesWithBias(float inBias)
{
mSoftness = 0.0f;
mBias = inBias;
}
/// Calculate spring properties based on frequency and damping ratio
///
/// @param inDeltaTime Time step
/// @param inInvEffectiveMass Inverse effective mass K
/// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
/// @param inC Value of the constraint equation (C). Set to zero if you don't want to drive the constraint to zero with a spring.
/// @param inFrequency Oscillation frequency (Hz). Set to zero if you don't want to drive the constraint to zero with a spring.
/// @param inDamping Damping factor (0 = no damping, 1 = critical damping). Set to zero if you don't want to drive the constraint to zero with a spring.
/// @param outEffectiveMass On return, this contains the new effective mass K^-1
inline void CalculateSpringPropertiesWithFrequencyAndDamping(float inDeltaTime, float inInvEffectiveMass, float inBias, float inC, float inFrequency, float inDamping, float &outEffectiveMass)
{
outEffectiveMass = 1.0f / inInvEffectiveMass;
if (inFrequency > 0.0f)
{
// Calculate angular frequency
float omega = 2.0f * JPH_PI * inFrequency;
// Calculate spring stiffness k and damping constant c (page 45)
float k = outEffectiveMass * Square(omega);
float c = 2.0f * outEffectiveMass * inDamping * omega;
CalculateSpringPropertiesHelper(inDeltaTime, inInvEffectiveMass, inBias, inC, k, c, outEffectiveMass);
}
else
{
CalculateSpringPropertiesWithBias(inBias);
}
}
/// Calculate spring properties with spring Stiffness (k) and damping (c), this is based on the spring equation: F = -k * x - c * v
///
/// @param inDeltaTime Time step
/// @param inInvEffectiveMass Inverse effective mass K
/// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b
/// @param inC Value of the constraint equation (C). Set to zero if you don't want to drive the constraint to zero with a spring.
/// @param inStiffness Spring stiffness k. Set to zero if you don't want to drive the constraint to zero with a spring.
/// @param inDamping Spring damping coefficient c. Set to zero if you don't want to drive the constraint to zero with a spring.
/// @param outEffectiveMass On return, this contains the new effective mass K^-1
inline void CalculateSpringPropertiesWithStiffnessAndDamping(float inDeltaTime, float inInvEffectiveMass, float inBias, float inC, float inStiffness, float inDamping, float &outEffectiveMass)
{
if (inStiffness > 0.0f)
{
CalculateSpringPropertiesHelper(inDeltaTime, inInvEffectiveMass, inBias, inC, inStiffness, inDamping, outEffectiveMass);
}
else
{
outEffectiveMass = 1.0f / inInvEffectiveMass;
CalculateSpringPropertiesWithBias(inBias);
}
}
/// Returns if this spring is active
inline bool IsActive() const
{
return mSoftness != 0.0f;
}
/// Get total bias b, including supplied bias and bias for spring: lambda = J v + b
inline float GetBias(float inTotalLambda) const
{
// Remainder of post by Erin Catto: http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=1354
//
// Each iteration we are not computing the whole impulse, we are computing an increment to the impulse and we are updating the velocity.
// Also, as we solve each constraint we get a perfect v2, but then some other constraint will come along and mess it up.
// So we want to patch up the constraint while acknowledging the accumulated impulse and the damaged velocity.
// To help with that we use P for the accumulated impulse and lambda as the update. Mathematically we have:
//
// M * (v2new - v2damaged) = J^T * lambda
// J * v2new + softness * (total_lambda + lambda) + b = 0
//
// If we solve this we get:
//
// v2new = v2damaged + M^-1 * J^T * lambda
// J * (v2damaged + M^-1 * J^T * lambda) + softness * total_lambda + softness * lambda + b = 0
//
// (J * M^-1 * J^T + softness) * lambda = -(J * v2damaged + softness * total_lambda + b)
//
// So our lagrange multiplier becomes:
//
// lambda = -K^-1 (J v + softness * total_lambda + b)
//
// So we return the bias: softness * total_lambda + b
return mSoftness * inTotalLambda + mBias;
}
private:
float mBias = 0.0f;
float mSoftness = 0.0f;
};
JPH_NAMESPACE_END