// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once JPH_NAMESPACE_BEGIN #ifndef JPH_PLATFORM_DOXYGEN // Somehow Doxygen gets confused and thinks the parameters to CalculateSpringProperties belong to this macro JPH_MSVC_SUPPRESS_WARNING(4723) // potential divide by 0 - caused by line: outEffectiveMass = 1.0f / inInvEffectiveMass, note that JPH_NAMESPACE_BEGIN already pushes the warning state #endif // !JPH_PLATFORM_DOXYGEN /// Class used in other constraint parts to calculate the required bias factor in the lagrange multiplier for creating springs class SpringPart { private: JPH_INLINE void CalculateSpringPropertiesHelper(float inDeltaTime, float inInvEffectiveMass, float inBias, float inC, float inStiffness, float inDamping, float &outEffectiveMass) { // Soft constraints as per: Soft Constraints: Reinventing The Spring - Erin Catto - GDC 2011 // Note that the calculation of beta and gamma below are based on the solution of an implicit Euler integration scheme // This scheme is unconditionally stable but has built in damping, so even when you set the damping ratio to 0 there will still // be damping. See page 16 and 32. // Calculate softness (gamma in the slides) // See page 34 and note that the gamma needs to be divided by delta time since we're working with impulses rather than forces: // softness = 1 / (dt * (c + dt * k)) // Note that the spring stiffness is k and the spring damping is c mSoftness = 1.0f / (inDeltaTime * (inDamping + inDeltaTime * inStiffness)); // Calculate bias factor (baumgarte stabilization): // beta = dt * k / (c + dt * k) = dt * k^2 * softness // b = beta / dt * C = dt * k * softness * C mBias = inBias + inDeltaTime * inStiffness * mSoftness * inC; // Update the effective mass, see post by Erin Catto: http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=1354 // // Newton's Law: // M * (v2 - v1) = J^T * lambda // // Velocity constraint with softness and Baumgarte: // J * v2 + softness * lambda + b = 0 // // where b = beta * C / dt // // We know everything except v2 and lambda. // // First solve Newton's law for v2 in terms of lambda: // // v2 = v1 + M^-1 * J^T * lambda // // Substitute this expression into the velocity constraint: // // J * (v1 + M^-1 * J^T * lambda) + softness * lambda + b = 0 // // Now collect coefficients of lambda: // // (J * M^-1 * J^T + softness) * lambda = - J * v1 - b // // Now we define: // // K = J * M^-1 * J^T + softness // // So our new effective mass is K^-1 outEffectiveMass = 1.0f / (inInvEffectiveMass + mSoftness); } public: /// Turn off the spring and set a bias only /// /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b inline void CalculateSpringPropertiesWithBias(float inBias) { mSoftness = 0.0f; mBias = inBias; } /// Calculate spring properties based on frequency and damping ratio /// /// @param inDeltaTime Time step /// @param inInvEffectiveMass Inverse effective mass K /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b /// @param inC Value of the constraint equation (C). Set to zero if you don't want to drive the constraint to zero with a spring. /// @param inFrequency Oscillation frequency (Hz). Set to zero if you don't want to drive the constraint to zero with a spring. /// @param inDamping Damping factor (0 = no damping, 1 = critical damping). Set to zero if you don't want to drive the constraint to zero with a spring. /// @param outEffectiveMass On return, this contains the new effective mass K^-1 inline void CalculateSpringPropertiesWithFrequencyAndDamping(float inDeltaTime, float inInvEffectiveMass, float inBias, float inC, float inFrequency, float inDamping, float &outEffectiveMass) { outEffectiveMass = 1.0f / inInvEffectiveMass; if (inFrequency > 0.0f) { // Calculate angular frequency float omega = 2.0f * JPH_PI * inFrequency; // Calculate spring stiffness k and damping constant c (page 45) float k = outEffectiveMass * Square(omega); float c = 2.0f * outEffectiveMass * inDamping * omega; CalculateSpringPropertiesHelper(inDeltaTime, inInvEffectiveMass, inBias, inC, k, c, outEffectiveMass); } else { CalculateSpringPropertiesWithBias(inBias); } } /// Calculate spring properties with spring Stiffness (k) and damping (c), this is based on the spring equation: F = -k * x - c * v /// /// @param inDeltaTime Time step /// @param inInvEffectiveMass Inverse effective mass K /// @param inBias Bias term (b) for the constraint impulse: lambda = J v + b /// @param inC Value of the constraint equation (C). Set to zero if you don't want to drive the constraint to zero with a spring. /// @param inStiffness Spring stiffness k. Set to zero if you don't want to drive the constraint to zero with a spring. /// @param inDamping Spring damping coefficient c. Set to zero if you don't want to drive the constraint to zero with a spring. /// @param outEffectiveMass On return, this contains the new effective mass K^-1 inline void CalculateSpringPropertiesWithStiffnessAndDamping(float inDeltaTime, float inInvEffectiveMass, float inBias, float inC, float inStiffness, float inDamping, float &outEffectiveMass) { if (inStiffness > 0.0f) { CalculateSpringPropertiesHelper(inDeltaTime, inInvEffectiveMass, inBias, inC, inStiffness, inDamping, outEffectiveMass); } else { outEffectiveMass = 1.0f / inInvEffectiveMass; CalculateSpringPropertiesWithBias(inBias); } } /// Returns if this spring is active inline bool IsActive() const { return mSoftness != 0.0f; } /// Get total bias b, including supplied bias and bias for spring: lambda = J v + b inline float GetBias(float inTotalLambda) const { // Remainder of post by Erin Catto: http://www.bulletphysics.org/Bullet/phpBB3/viewtopic.php?f=4&t=1354 // // Each iteration we are not computing the whole impulse, we are computing an increment to the impulse and we are updating the velocity. // Also, as we solve each constraint we get a perfect v2, but then some other constraint will come along and mess it up. // So we want to patch up the constraint while acknowledging the accumulated impulse and the damaged velocity. // To help with that we use P for the accumulated impulse and lambda as the update. Mathematically we have: // // M * (v2new - v2damaged) = J^T * lambda // J * v2new + softness * (total_lambda + lambda) + b = 0 // // If we solve this we get: // // v2new = v2damaged + M^-1 * J^T * lambda // J * (v2damaged + M^-1 * J^T * lambda) + softness * total_lambda + softness * lambda + b = 0 // // (J * M^-1 * J^T + softness) * lambda = -(J * v2damaged + softness * total_lambda + b) // // So our lagrange multiplier becomes: // // lambda = -K^-1 (J v + softness * total_lambda + b) // // So we return the bias: softness * total_lambda + b return mSoftness * inTotalLambda + mBias; } private: float mBias = 0.0f; float mSoftness = 0.0f; }; JPH_NAMESPACE_END