271 lines
8.9 KiB
C++
271 lines
8.9 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Physics/Body/Body.h>
|
|
#include <Jolt/Physics/StateRecorder.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
/// Constrains rotation around all axis so that only translation is allowed
|
|
///
|
|
/// Based on: "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.5.1
|
|
///
|
|
/// Constraint equation (eq 129):
|
|
///
|
|
/// \f[C = \begin{bmatrix}\Delta\theta_x, \Delta\theta_y, \Delta\theta_z\end{bmatrix}\f]
|
|
///
|
|
/// Jacobian (eq 131):
|
|
///
|
|
/// \f[J = \begin{bmatrix}0 & -E & 0 & E\end{bmatrix}\f]
|
|
///
|
|
/// Used terms (here and below, everything in world space):\n
|
|
/// delta_theta_* = difference in rotation between initial rotation of bodies 1 and 2.\n
|
|
/// x1, x2 = center of mass for the bodies.\n
|
|
/// v = [v1, w1, v2, w2].\n
|
|
/// v1, v2 = linear velocity of body 1 and 2.\n
|
|
/// w1, w2 = angular velocity of body 1 and 2.\n
|
|
/// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
|
|
/// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
|
|
/// b = velocity bias.\n
|
|
/// \f$\beta\f$ = baumgarte constant.\n
|
|
/// E = identity matrix.\n
|
|
class RotationEulerConstraintPart
|
|
{
|
|
private:
|
|
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
|
|
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inLambda) const
|
|
{
|
|
// Apply impulse if delta is not zero
|
|
if (inLambda != Vec3::sZero())
|
|
{
|
|
// Calculate velocity change due to constraint
|
|
//
|
|
// Impulse:
|
|
// P = J^T lambda
|
|
//
|
|
// Euler velocity integration:
|
|
// v' = v + M^-1 P
|
|
if (ioBody1.IsDynamic())
|
|
ioBody1.GetMotionProperties()->SubAngularVelocityStep(mInvI1.Multiply3x3(inLambda));
|
|
if (ioBody2.IsDynamic())
|
|
ioBody2.GetMotionProperties()->AddAngularVelocityStep(mInvI2.Multiply3x3(inLambda));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
/// Return inverse of initial rotation from body 1 to body 2 in body 1 space
|
|
static Quat sGetInvInitialOrientation(const Body &inBody1, const Body &inBody2)
|
|
{
|
|
// q20 = q10 r0
|
|
// <=> r0 = q10^-1 q20
|
|
// <=> r0^-1 = q20^-1 q10
|
|
//
|
|
// where:
|
|
//
|
|
// q20 = initial orientation of body 2
|
|
// q10 = initial orientation of body 1
|
|
// r0 = initial rotation from body 1 to body 2
|
|
return inBody2.GetRotation().Conjugated() * inBody1.GetRotation();
|
|
}
|
|
|
|
/// @brief Return inverse of initial rotation from body 1 to body 2 in body 1 space
|
|
/// @param inAxisX1 Reference axis X for body 1
|
|
/// @param inAxisY1 Reference axis Y for body 1
|
|
/// @param inAxisX2 Reference axis X for body 2
|
|
/// @param inAxisY2 Reference axis Y for body 2
|
|
static Quat sGetInvInitialOrientationXY(Vec3Arg inAxisX1, Vec3Arg inAxisY1, Vec3Arg inAxisX2, Vec3Arg inAxisY2)
|
|
{
|
|
// Store inverse of initial rotation from body 1 to body 2 in body 1 space:
|
|
//
|
|
// q20 = q10 r0
|
|
// <=> r0 = q10^-1 q20
|
|
// <=> r0^-1 = q20^-1 q10
|
|
//
|
|
// where:
|
|
//
|
|
// q10, q20 = world space initial orientation of body 1 and 2
|
|
// r0 = initial rotation from body 1 to body 2 in local space of body 1
|
|
//
|
|
// We can also write this in terms of the constraint matrices:
|
|
//
|
|
// q20 c2 = q10 c1
|
|
// <=> q20 = q10 c1 c2^-1
|
|
// => r0 = c1 c2^-1
|
|
// <=> r0^-1 = c2 c1^-1
|
|
//
|
|
// where:
|
|
//
|
|
// c1, c2 = matrix that takes us from body 1 and 2 COM to constraint space 1 and 2
|
|
if (inAxisX1 == inAxisX2 && inAxisY1 == inAxisY2)
|
|
{
|
|
// Axis are the same -> identity transform
|
|
return Quat::sIdentity();
|
|
}
|
|
else
|
|
{
|
|
Mat44 constraint1(Vec4(inAxisX1, 0), Vec4(inAxisY1, 0), Vec4(inAxisX1.Cross(inAxisY1), 0), Vec4(0, 0, 0, 1));
|
|
Mat44 constraint2(Vec4(inAxisX2, 0), Vec4(inAxisY2, 0), Vec4(inAxisX2.Cross(inAxisY2), 0), Vec4(0, 0, 0, 1));
|
|
return constraint2.GetQuaternion() * constraint1.GetQuaternion().Conjugated();
|
|
}
|
|
}
|
|
|
|
/// @brief Return inverse of initial rotation from body 1 to body 2 in body 1 space
|
|
/// @param inAxisX1 Reference axis X for body 1
|
|
/// @param inAxisZ1 Reference axis Z for body 1
|
|
/// @param inAxisX2 Reference axis X for body 2
|
|
/// @param inAxisZ2 Reference axis Z for body 2
|
|
static Quat sGetInvInitialOrientationXZ(Vec3Arg inAxisX1, Vec3Arg inAxisZ1, Vec3Arg inAxisX2, Vec3Arg inAxisZ2)
|
|
{
|
|
// See comment at sGetInvInitialOrientationXY
|
|
if (inAxisX1 == inAxisX2 && inAxisZ1 == inAxisZ2)
|
|
{
|
|
return Quat::sIdentity();
|
|
}
|
|
else
|
|
{
|
|
Mat44 constraint1(Vec4(inAxisX1, 0), Vec4(inAxisZ1.Cross(inAxisX1), 0), Vec4(inAxisZ1, 0), Vec4(0, 0, 0, 1));
|
|
Mat44 constraint2(Vec4(inAxisX2, 0), Vec4(inAxisZ2.Cross(inAxisX2), 0), Vec4(inAxisZ2, 0), Vec4(0, 0, 0, 1));
|
|
return constraint2.GetQuaternion() * constraint1.GetQuaternion().Conjugated();
|
|
}
|
|
}
|
|
|
|
/// Calculate properties used during the functions below
|
|
inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, const Body &inBody2, Mat44Arg inRotation2)
|
|
{
|
|
// Calculate properties used during constraint solving
|
|
mInvI1 = inBody1.IsDynamic()? inBody1.GetMotionProperties()->GetInverseInertiaForRotation(inRotation1) : Mat44::sZero();
|
|
mInvI2 = inBody2.IsDynamic()? inBody2.GetMotionProperties()->GetInverseInertiaForRotation(inRotation2) : Mat44::sZero();
|
|
|
|
// Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
|
|
if (!mEffectiveMass.SetInversed3x3(mInvI1 + mInvI2))
|
|
Deactivate();
|
|
}
|
|
|
|
/// Deactivate this constraint
|
|
inline void Deactivate()
|
|
{
|
|
mEffectiveMass = Mat44::sZero();
|
|
mTotalLambda = Vec3::sZero();
|
|
}
|
|
|
|
/// Check if constraint is active
|
|
inline bool IsActive() const
|
|
{
|
|
return mEffectiveMass(3, 3) != 0.0f;
|
|
}
|
|
|
|
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
|
|
inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
|
|
{
|
|
mTotalLambda *= inWarmStartImpulseRatio;
|
|
ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
|
|
}
|
|
|
|
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
|
|
inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2)
|
|
{
|
|
// Calculate lagrange multiplier:
|
|
//
|
|
// lambda = -K^-1 (J v + b)
|
|
Vec3 lambda = mEffectiveMass.Multiply3x3(ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity());
|
|
mTotalLambda += lambda;
|
|
return ApplyVelocityStep(ioBody1, ioBody2, lambda);
|
|
}
|
|
|
|
/// Iteratively update the position constraint. Makes sure C(...) = 0.
|
|
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, QuatArg inInvInitialOrientation, float inBaumgarte) const
|
|
{
|
|
// Calculate difference in rotation
|
|
//
|
|
// The rotation should be:
|
|
//
|
|
// q2 = q1 r0
|
|
//
|
|
// But because of drift the actual rotation is
|
|
//
|
|
// q2 = diff q1 r0
|
|
// <=> diff = q2 r0^-1 q1^-1
|
|
//
|
|
// Where:
|
|
// q1 = current rotation of body 1
|
|
// q2 = current rotation of body 2
|
|
// diff = error that needs to be reduced to zero
|
|
Quat diff = ioBody2.GetRotation() * inInvInitialOrientation * ioBody1.GetRotation().Conjugated();
|
|
|
|
// A quaternion can be seen as:
|
|
//
|
|
// q = [sin(theta / 2) * v, cos(theta/2)]
|
|
//
|
|
// Where:
|
|
// v = rotation vector
|
|
// theta = rotation angle
|
|
//
|
|
// If we assume theta is small (error is small) then sin(x) = x so an approximation of the error angles is:
|
|
Vec3 error = 2.0f * diff.EnsureWPositive().GetXYZ();
|
|
if (error != Vec3::sZero())
|
|
{
|
|
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
|
|
//
|
|
// lambda = -K^-1 * beta / dt * C
|
|
//
|
|
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
|
|
Vec3 lambda = -inBaumgarte * mEffectiveMass * error;
|
|
|
|
// Directly integrate velocity change for one time step
|
|
//
|
|
// Euler velocity integration:
|
|
// dv = M^-1 P
|
|
//
|
|
// Impulse:
|
|
// P = J^T lambda
|
|
//
|
|
// Euler position integration:
|
|
// x' = x + dv * dt
|
|
//
|
|
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
|
|
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
|
|
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
|
|
// integrate + a position integrate and then discard the velocity change.
|
|
if (ioBody1.IsDynamic())
|
|
ioBody1.SubRotationStep(mInvI1.Multiply3x3(lambda));
|
|
if (ioBody2.IsDynamic())
|
|
ioBody2.AddRotationStep(mInvI2.Multiply3x3(lambda));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return lagrange multiplier
|
|
Vec3 GetTotalLambda() const
|
|
{
|
|
return mTotalLambda;
|
|
}
|
|
|
|
/// Save state of this constraint part
|
|
void SaveState(StateRecorder &inStream) const
|
|
{
|
|
inStream.Write(mTotalLambda);
|
|
}
|
|
|
|
/// Restore state of this constraint part
|
|
void RestoreState(StateRecorder &inStream)
|
|
{
|
|
inStream.Read(mTotalLambda);
|
|
}
|
|
|
|
private:
|
|
Mat44 mInvI1;
|
|
Mat44 mInvI2;
|
|
Mat44 mEffectiveMass;
|
|
Vec3 mTotalLambda { Vec3::sZero() };
|
|
};
|
|
|
|
JPH_NAMESPACE_END
|