// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include JPH_NAMESPACE_BEGIN /// Constrains rotation around all axis so that only translation is allowed /// /// Based on: "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.5.1 /// /// Constraint equation (eq 129): /// /// \f[C = \begin{bmatrix}\Delta\theta_x, \Delta\theta_y, \Delta\theta_z\end{bmatrix}\f] /// /// Jacobian (eq 131): /// /// \f[J = \begin{bmatrix}0 & -E & 0 & E\end{bmatrix}\f] /// /// Used terms (here and below, everything in world space):\n /// delta_theta_* = difference in rotation between initial rotation of bodies 1 and 2.\n /// x1, x2 = center of mass for the bodies.\n /// v = [v1, w1, v2, w2].\n /// v1, v2 = linear velocity of body 1 and 2.\n /// w1, w2 = angular velocity of body 1 and 2.\n /// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n /// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n /// b = velocity bias.\n /// \f$\beta\f$ = baumgarte constant.\n /// E = identity matrix.\n class RotationEulerConstraintPart { private: /// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inLambda) const { // Apply impulse if delta is not zero if (inLambda != Vec3::sZero()) { // Calculate velocity change due to constraint // // Impulse: // P = J^T lambda // // Euler velocity integration: // v' = v + M^-1 P if (ioBody1.IsDynamic()) ioBody1.GetMotionProperties()->SubAngularVelocityStep(mInvI1.Multiply3x3(inLambda)); if (ioBody2.IsDynamic()) ioBody2.GetMotionProperties()->AddAngularVelocityStep(mInvI2.Multiply3x3(inLambda)); return true; } return false; } public: /// Return inverse of initial rotation from body 1 to body 2 in body 1 space static Quat sGetInvInitialOrientation(const Body &inBody1, const Body &inBody2) { // q20 = q10 r0 // <=> r0 = q10^-1 q20 // <=> r0^-1 = q20^-1 q10 // // where: // // q20 = initial orientation of body 2 // q10 = initial orientation of body 1 // r0 = initial rotation from body 1 to body 2 return inBody2.GetRotation().Conjugated() * inBody1.GetRotation(); } /// @brief Return inverse of initial rotation from body 1 to body 2 in body 1 space /// @param inAxisX1 Reference axis X for body 1 /// @param inAxisY1 Reference axis Y for body 1 /// @param inAxisX2 Reference axis X for body 2 /// @param inAxisY2 Reference axis Y for body 2 static Quat sGetInvInitialOrientationXY(Vec3Arg inAxisX1, Vec3Arg inAxisY1, Vec3Arg inAxisX2, Vec3Arg inAxisY2) { // Store inverse of initial rotation from body 1 to body 2 in body 1 space: // // q20 = q10 r0 // <=> r0 = q10^-1 q20 // <=> r0^-1 = q20^-1 q10 // // where: // // q10, q20 = world space initial orientation of body 1 and 2 // r0 = initial rotation from body 1 to body 2 in local space of body 1 // // We can also write this in terms of the constraint matrices: // // q20 c2 = q10 c1 // <=> q20 = q10 c1 c2^-1 // => r0 = c1 c2^-1 // <=> r0^-1 = c2 c1^-1 // // where: // // c1, c2 = matrix that takes us from body 1 and 2 COM to constraint space 1 and 2 if (inAxisX1 == inAxisX2 && inAxisY1 == inAxisY2) { // Axis are the same -> identity transform return Quat::sIdentity(); } else { Mat44 constraint1(Vec4(inAxisX1, 0), Vec4(inAxisY1, 0), Vec4(inAxisX1.Cross(inAxisY1), 0), Vec4(0, 0, 0, 1)); Mat44 constraint2(Vec4(inAxisX2, 0), Vec4(inAxisY2, 0), Vec4(inAxisX2.Cross(inAxisY2), 0), Vec4(0, 0, 0, 1)); return constraint2.GetQuaternion() * constraint1.GetQuaternion().Conjugated(); } } /// @brief Return inverse of initial rotation from body 1 to body 2 in body 1 space /// @param inAxisX1 Reference axis X for body 1 /// @param inAxisZ1 Reference axis Z for body 1 /// @param inAxisX2 Reference axis X for body 2 /// @param inAxisZ2 Reference axis Z for body 2 static Quat sGetInvInitialOrientationXZ(Vec3Arg inAxisX1, Vec3Arg inAxisZ1, Vec3Arg inAxisX2, Vec3Arg inAxisZ2) { // See comment at sGetInvInitialOrientationXY if (inAxisX1 == inAxisX2 && inAxisZ1 == inAxisZ2) { return Quat::sIdentity(); } else { Mat44 constraint1(Vec4(inAxisX1, 0), Vec4(inAxisZ1.Cross(inAxisX1), 0), Vec4(inAxisZ1, 0), Vec4(0, 0, 0, 1)); Mat44 constraint2(Vec4(inAxisX2, 0), Vec4(inAxisZ2.Cross(inAxisX2), 0), Vec4(inAxisZ2, 0), Vec4(0, 0, 0, 1)); return constraint2.GetQuaternion() * constraint1.GetQuaternion().Conjugated(); } } /// Calculate properties used during the functions below inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, const Body &inBody2, Mat44Arg inRotation2) { // Calculate properties used during constraint solving mInvI1 = inBody1.IsDynamic()? inBody1.GetMotionProperties()->GetInverseInertiaForRotation(inRotation1) : Mat44::sZero(); mInvI2 = inBody2.IsDynamic()? inBody2.GetMotionProperties()->GetInverseInertiaForRotation(inRotation2) : Mat44::sZero(); // Calculate effective mass: K^-1 = (J M^-1 J^T)^-1 if (!mEffectiveMass.SetInversed3x3(mInvI1 + mInvI2)) Deactivate(); } /// Deactivate this constraint inline void Deactivate() { mEffectiveMass = Mat44::sZero(); mTotalLambda = Vec3::sZero(); } /// Check if constraint is active inline bool IsActive() const { return mEffectiveMass(3, 3) != 0.0f; } /// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio) { mTotalLambda *= inWarmStartImpulseRatio; ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda); } /// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation. inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2) { // Calculate lagrange multiplier: // // lambda = -K^-1 (J v + b) Vec3 lambda = mEffectiveMass.Multiply3x3(ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity()); mTotalLambda += lambda; return ApplyVelocityStep(ioBody1, ioBody2, lambda); } /// Iteratively update the position constraint. Makes sure C(...) = 0. inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, QuatArg inInvInitialOrientation, float inBaumgarte) const { // Calculate difference in rotation // // The rotation should be: // // q2 = q1 r0 // // But because of drift the actual rotation is // // q2 = diff q1 r0 // <=> diff = q2 r0^-1 q1^-1 // // Where: // q1 = current rotation of body 1 // q2 = current rotation of body 2 // diff = error that needs to be reduced to zero Quat diff = ioBody2.GetRotation() * inInvInitialOrientation * ioBody1.GetRotation().Conjugated(); // A quaternion can be seen as: // // q = [sin(theta / 2) * v, cos(theta/2)] // // Where: // v = rotation vector // theta = rotation angle // // If we assume theta is small (error is small) then sin(x) = x so an approximation of the error angles is: Vec3 error = 2.0f * diff.EnsureWPositive().GetXYZ(); if (error != Vec3::sZero()) { // Calculate lagrange multiplier (lambda) for Baumgarte stabilization: // // lambda = -K^-1 * beta / dt * C // // We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out Vec3 lambda = -inBaumgarte * mEffectiveMass * error; // Directly integrate velocity change for one time step // // Euler velocity integration: // dv = M^-1 P // // Impulse: // P = J^T lambda // // Euler position integration: // x' = x + dv * dt // // Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and // Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte // stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity // integrate + a position integrate and then discard the velocity change. if (ioBody1.IsDynamic()) ioBody1.SubRotationStep(mInvI1.Multiply3x3(lambda)); if (ioBody2.IsDynamic()) ioBody2.AddRotationStep(mInvI2.Multiply3x3(lambda)); return true; } return false; } /// Return lagrange multiplier Vec3 GetTotalLambda() const { return mTotalLambda; } /// Save state of this constraint part void SaveState(StateRecorder &inStream) const { inStream.Write(mTotalLambda); } /// Restore state of this constraint part void RestoreState(StateRecorder &inStream) { inStream.Read(mTotalLambda); } private: Mat44 mInvI1; Mat44 mInvI2; Mat44 mEffectiveMass; Vec3 mTotalLambda { Vec3::sZero() }; }; JPH_NAMESPACE_END