godot-module-template/engine/thirdparty/jolt_physics/Jolt/Skeleton/SkeletonMapper.cpp

238 lines
7.9 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Skeleton/SkeletonMapper.h>
JPH_NAMESPACE_BEGIN
void SkeletonMapper::Initialize(const Skeleton *inSkeleton1, const Mat44 *inNeutralPose1, const Skeleton *inSkeleton2, const Mat44 *inNeutralPose2, const CanMapJoint &inCanMapJoint)
{
JPH_ASSERT(mMappings.empty() && mChains.empty() && mUnmapped.empty()); // Should not be initialized yet
// Count joints
int n1 = inSkeleton1->GetJointCount();
int n2 = inSkeleton2->GetJointCount();
JPH_ASSERT(n1 <= n2, "Skeleton 1 should be the low detail skeleton!");
// Keep track of mapped joints (initialize to false)
Array<bool> mapped1(n1, false);
Array<bool> mapped2(n2, false);
// Find joints that can be mapped directly
for (int j1 = 0; j1 < n1; ++j1)
for (int j2 = 0; j2 < n2; ++j2)
if (inCanMapJoint(inSkeleton1, j1, inSkeleton2, j2))
{
// Calculate the transform that takes this joint from skeleton 1 to 2
Mat44 joint_1_to_2 = inNeutralPose1[j1].Inversed() * inNeutralPose2[j2];
// Ensure bottom right element is 1 (numerical imprecision in the inverse can make this not so)
joint_1_to_2(3, 3) = 1.0f;
mMappings.emplace_back(j1, j2, joint_1_to_2);
mapped1[j1] = true;
mapped2[j2] = true;
break;
}
Array<int> cur_chain; // Taken out of the loop to minimize amount of allocations
// Find joint chains
for (int m1 = 0; m1 < (int)mMappings.size(); ++m1)
{
Array<int> chain2;
int chain2_m = -1;
for (int m2 = m1 + 1; m2 < (int)mMappings.size(); ++m2)
{
// Find the chain from back from m2 to m1
int start = mMappings[m1].mJointIdx2;
int end = mMappings[m2].mJointIdx2;
int cur = end;
cur_chain.clear(); // Should preserve memory
do
{
cur_chain.push_back(cur);
cur = inSkeleton2->GetJoint(cur).mParentJointIndex;
}
while (cur >= 0 && cur != start && !mapped2[cur]);
cur_chain.push_back(start);
if (cur == start // This should be the correct chain
&& cur_chain.size() > 2 // It should have joints between the mapped joints
&& cur_chain.size() > chain2.size()) // And it should be the longest so far
{
chain2.swap(cur_chain);
chain2_m = m2;
}
}
if (!chain2.empty())
{
// Get the chain for 1
Array<int> chain1;
int start = mMappings[m1].mJointIdx1;
int cur = mMappings[chain2_m].mJointIdx1;
do
{
chain1.push_back(cur);
cur = inSkeleton1->GetJoint(cur).mParentJointIndex;
}
while (cur >= 0 && cur != start && !mapped1[cur]);
chain1.push_back(start);
// If the chain exists in 1 too
if (cur == start)
{
// Reverse the chains
std::reverse(chain1.begin(), chain1.end());
std::reverse(chain2.begin(), chain2.end());
// Mark elements mapped
for (int j1 : chain1)
mapped1[j1] = true;
for (int j2 : chain2)
mapped2[j2] = true;
// Insert the chain
mChains.emplace_back(std::move(chain1), std::move(chain2));
}
}
}
// Collect unmapped joints from 2
for (int j2 = 0; j2 < n2; ++j2)
if (!mapped2[j2])
mUnmapped.emplace_back(j2, inSkeleton2->GetJoint(j2).mParentJointIndex);
}
void SkeletonMapper::LockTranslations(const Skeleton *inSkeleton2, const bool *inLockedTranslations, const Mat44 *inNeutralPose2)
{
JPH_ASSERT(inSkeleton2->AreJointsCorrectlyOrdered());
int n = inSkeleton2->GetJointCount();
// Copy locked joints to array but don't actually include the first joint (this is physics driven)
for (int i = 0; i < n; ++i)
if (inLockedTranslations[i])
{
Locked l;
l.mJointIdx = i;
l.mParentJointIdx = inSkeleton2->GetJoint(i).mParentJointIndex;
if (l.mParentJointIdx >= 0)
l.mTranslation = inNeutralPose2[l.mParentJointIdx].Inversed() * inNeutralPose2[i].GetTranslation();
else
l.mTranslation = inNeutralPose2[i].GetTranslation();
mLockedTranslations.push_back(l);
}
}
void SkeletonMapper::LockAllTranslations(const Skeleton *inSkeleton2, const Mat44 *inNeutralPose2)
{
JPH_ASSERT(!mMappings.empty(), "Call Initialize first!");
JPH_ASSERT(inSkeleton2->AreJointsCorrectlyOrdered());
// The first mapping is the top most one (remember that joints should be ordered so that parents go before children).
// Because we created the mappings from the lowest joint first, this should contain the first mappable joint.
int root_idx = mMappings[0].mJointIdx2;
// Create temp array to hold locked joints
int n = inSkeleton2->GetJointCount();
bool *locked_translations = (bool *)JPH_STACK_ALLOC(n * sizeof(bool));
memset(locked_translations, 0, n * sizeof(bool));
// Mark root as locked
locked_translations[root_idx] = true;
// Loop over all joints and propagate the locked flag to all children
for (int i = root_idx + 1; i < n; ++i)
{
int parent_idx = inSkeleton2->GetJoint(i).mParentJointIndex;
if (parent_idx >= 0)
locked_translations[i] = locked_translations[parent_idx];
}
// Unmark root because we don't actually want to include this (this determines the position of the entire ragdoll)
locked_translations[root_idx] = false;
// Call the generic function
LockTranslations(inSkeleton2, locked_translations, inNeutralPose2);
}
void SkeletonMapper::Map(const Mat44 *inPose1ModelSpace, const Mat44 *inPose2LocalSpace, Mat44 *outPose2ModelSpace) const
{
// Apply direct mappings
for (const Mapping &m : mMappings)
outPose2ModelSpace[m.mJointIdx2] = inPose1ModelSpace[m.mJointIdx1] * m.mJoint1To2;
// Apply chain mappings
for (const Chain &c : mChains)
{
// Calculate end of chain given local space transforms of the joints of the chain
Mat44 &chain_start = outPose2ModelSpace[c.mJointIndices2.front()];
Mat44 chain_end = chain_start;
for (int j = 1; j < (int)c.mJointIndices2.size(); ++j)
chain_end = chain_end * inPose2LocalSpace[c.mJointIndices2[j]];
// Calculate the direction in world space for skeleton 1 and skeleton 2 and the rotation between them
Vec3 actual = chain_end.GetTranslation() - chain_start.GetTranslation();
Vec3 desired = inPose1ModelSpace[c.mJointIndices1.back()].GetTranslation() - inPose1ModelSpace[c.mJointIndices1.front()].GetTranslation();
Quat rotation = Quat::sFromTo(actual, desired);
// Rotate the start of the chain
chain_start.SetRotation(Mat44::sRotation(rotation) * chain_start.GetRotation());
// Update all joints but the first and the last joint using their local space transforms
for (int j = 1; j < (int)c.mJointIndices2.size() - 1; ++j)
{
int parent = c.mJointIndices2[j - 1];
int child = c.mJointIndices2[j];
outPose2ModelSpace[child] = outPose2ModelSpace[parent] * inPose2LocalSpace[child];
}
}
// All unmapped joints take the local pose and convert it to model space
for (const Unmapped &u : mUnmapped)
if (u.mParentJointIdx >= 0)
{
JPH_ASSERT(u.mParentJointIdx < u.mJointIdx, "Joints must be ordered: parents first");
outPose2ModelSpace[u.mJointIdx] = outPose2ModelSpace[u.mParentJointIdx] * inPose2LocalSpace[u.mJointIdx];
}
else
outPose2ModelSpace[u.mJointIdx] = inPose2LocalSpace[u.mJointIdx];
// Update all locked joint translations
for (const Locked &l : mLockedTranslations)
outPose2ModelSpace[l.mJointIdx].SetTranslation(outPose2ModelSpace[l.mParentJointIdx] * l.mTranslation);
}
void SkeletonMapper::MapReverse(const Mat44 *inPose2ModelSpace, Mat44 *outPose1ModelSpace) const
{
// Normally each joint in skeleton 1 should be present in the mapping, so we only need to apply the direct mappings
for (const Mapping &m : mMappings)
outPose1ModelSpace[m.mJointIdx1] = inPose2ModelSpace[m.mJointIdx2] * m.mJoint2To1;
}
int SkeletonMapper::GetMappedJointIdx(int inJoint1Idx) const
{
for (const Mapping &m : mMappings)
if (m.mJointIdx1 == inJoint1Idx)
return m.mJointIdx2;
return -1;
}
bool SkeletonMapper::IsJointTranslationLocked(int inJoint2Idx) const
{
for (const Locked &l : mLockedTranslations)
if (l.mJointIdx == inJoint2Idx)
return true;
return false;
}
JPH_NAMESPACE_END