// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #include #include JPH_NAMESPACE_BEGIN void SkeletonMapper::Initialize(const Skeleton *inSkeleton1, const Mat44 *inNeutralPose1, const Skeleton *inSkeleton2, const Mat44 *inNeutralPose2, const CanMapJoint &inCanMapJoint) { JPH_ASSERT(mMappings.empty() && mChains.empty() && mUnmapped.empty()); // Should not be initialized yet // Count joints int n1 = inSkeleton1->GetJointCount(); int n2 = inSkeleton2->GetJointCount(); JPH_ASSERT(n1 <= n2, "Skeleton 1 should be the low detail skeleton!"); // Keep track of mapped joints (initialize to false) Array mapped1(n1, false); Array mapped2(n2, false); // Find joints that can be mapped directly for (int j1 = 0; j1 < n1; ++j1) for (int j2 = 0; j2 < n2; ++j2) if (inCanMapJoint(inSkeleton1, j1, inSkeleton2, j2)) { // Calculate the transform that takes this joint from skeleton 1 to 2 Mat44 joint_1_to_2 = inNeutralPose1[j1].Inversed() * inNeutralPose2[j2]; // Ensure bottom right element is 1 (numerical imprecision in the inverse can make this not so) joint_1_to_2(3, 3) = 1.0f; mMappings.emplace_back(j1, j2, joint_1_to_2); mapped1[j1] = true; mapped2[j2] = true; break; } Array cur_chain; // Taken out of the loop to minimize amount of allocations // Find joint chains for (int m1 = 0; m1 < (int)mMappings.size(); ++m1) { Array chain2; int chain2_m = -1; for (int m2 = m1 + 1; m2 < (int)mMappings.size(); ++m2) { // Find the chain from back from m2 to m1 int start = mMappings[m1].mJointIdx2; int end = mMappings[m2].mJointIdx2; int cur = end; cur_chain.clear(); // Should preserve memory do { cur_chain.push_back(cur); cur = inSkeleton2->GetJoint(cur).mParentJointIndex; } while (cur >= 0 && cur != start && !mapped2[cur]); cur_chain.push_back(start); if (cur == start // This should be the correct chain && cur_chain.size() > 2 // It should have joints between the mapped joints && cur_chain.size() > chain2.size()) // And it should be the longest so far { chain2.swap(cur_chain); chain2_m = m2; } } if (!chain2.empty()) { // Get the chain for 1 Array chain1; int start = mMappings[m1].mJointIdx1; int cur = mMappings[chain2_m].mJointIdx1; do { chain1.push_back(cur); cur = inSkeleton1->GetJoint(cur).mParentJointIndex; } while (cur >= 0 && cur != start && !mapped1[cur]); chain1.push_back(start); // If the chain exists in 1 too if (cur == start) { // Reverse the chains std::reverse(chain1.begin(), chain1.end()); std::reverse(chain2.begin(), chain2.end()); // Mark elements mapped for (int j1 : chain1) mapped1[j1] = true; for (int j2 : chain2) mapped2[j2] = true; // Insert the chain mChains.emplace_back(std::move(chain1), std::move(chain2)); } } } // Collect unmapped joints from 2 for (int j2 = 0; j2 < n2; ++j2) if (!mapped2[j2]) mUnmapped.emplace_back(j2, inSkeleton2->GetJoint(j2).mParentJointIndex); } void SkeletonMapper::LockTranslations(const Skeleton *inSkeleton2, const bool *inLockedTranslations, const Mat44 *inNeutralPose2) { JPH_ASSERT(inSkeleton2->AreJointsCorrectlyOrdered()); int n = inSkeleton2->GetJointCount(); // Copy locked joints to array but don't actually include the first joint (this is physics driven) for (int i = 0; i < n; ++i) if (inLockedTranslations[i]) { Locked l; l.mJointIdx = i; l.mParentJointIdx = inSkeleton2->GetJoint(i).mParentJointIndex; if (l.mParentJointIdx >= 0) l.mTranslation = inNeutralPose2[l.mParentJointIdx].Inversed() * inNeutralPose2[i].GetTranslation(); else l.mTranslation = inNeutralPose2[i].GetTranslation(); mLockedTranslations.push_back(l); } } void SkeletonMapper::LockAllTranslations(const Skeleton *inSkeleton2, const Mat44 *inNeutralPose2) { JPH_ASSERT(!mMappings.empty(), "Call Initialize first!"); JPH_ASSERT(inSkeleton2->AreJointsCorrectlyOrdered()); // The first mapping is the top most one (remember that joints should be ordered so that parents go before children). // Because we created the mappings from the lowest joint first, this should contain the first mappable joint. int root_idx = mMappings[0].mJointIdx2; // Create temp array to hold locked joints int n = inSkeleton2->GetJointCount(); bool *locked_translations = (bool *)JPH_STACK_ALLOC(n * sizeof(bool)); memset(locked_translations, 0, n * sizeof(bool)); // Mark root as locked locked_translations[root_idx] = true; // Loop over all joints and propagate the locked flag to all children for (int i = root_idx + 1; i < n; ++i) { int parent_idx = inSkeleton2->GetJoint(i).mParentJointIndex; if (parent_idx >= 0) locked_translations[i] = locked_translations[parent_idx]; } // Unmark root because we don't actually want to include this (this determines the position of the entire ragdoll) locked_translations[root_idx] = false; // Call the generic function LockTranslations(inSkeleton2, locked_translations, inNeutralPose2); } void SkeletonMapper::Map(const Mat44 *inPose1ModelSpace, const Mat44 *inPose2LocalSpace, Mat44 *outPose2ModelSpace) const { // Apply direct mappings for (const Mapping &m : mMappings) outPose2ModelSpace[m.mJointIdx2] = inPose1ModelSpace[m.mJointIdx1] * m.mJoint1To2; // Apply chain mappings for (const Chain &c : mChains) { // Calculate end of chain given local space transforms of the joints of the chain Mat44 &chain_start = outPose2ModelSpace[c.mJointIndices2.front()]; Mat44 chain_end = chain_start; for (int j = 1; j < (int)c.mJointIndices2.size(); ++j) chain_end = chain_end * inPose2LocalSpace[c.mJointIndices2[j]]; // Calculate the direction in world space for skeleton 1 and skeleton 2 and the rotation between them Vec3 actual = chain_end.GetTranslation() - chain_start.GetTranslation(); Vec3 desired = inPose1ModelSpace[c.mJointIndices1.back()].GetTranslation() - inPose1ModelSpace[c.mJointIndices1.front()].GetTranslation(); Quat rotation = Quat::sFromTo(actual, desired); // Rotate the start of the chain chain_start.SetRotation(Mat44::sRotation(rotation) * chain_start.GetRotation()); // Update all joints but the first and the last joint using their local space transforms for (int j = 1; j < (int)c.mJointIndices2.size() - 1; ++j) { int parent = c.mJointIndices2[j - 1]; int child = c.mJointIndices2[j]; outPose2ModelSpace[child] = outPose2ModelSpace[parent] * inPose2LocalSpace[child]; } } // All unmapped joints take the local pose and convert it to model space for (const Unmapped &u : mUnmapped) if (u.mParentJointIdx >= 0) { JPH_ASSERT(u.mParentJointIdx < u.mJointIdx, "Joints must be ordered: parents first"); outPose2ModelSpace[u.mJointIdx] = outPose2ModelSpace[u.mParentJointIdx] * inPose2LocalSpace[u.mJointIdx]; } else outPose2ModelSpace[u.mJointIdx] = inPose2LocalSpace[u.mJointIdx]; // Update all locked joint translations for (const Locked &l : mLockedTranslations) outPose2ModelSpace[l.mJointIdx].SetTranslation(outPose2ModelSpace[l.mParentJointIdx] * l.mTranslation); } void SkeletonMapper::MapReverse(const Mat44 *inPose2ModelSpace, Mat44 *outPose1ModelSpace) const { // Normally each joint in skeleton 1 should be present in the mapping, so we only need to apply the direct mappings for (const Mapping &m : mMappings) outPose1ModelSpace[m.mJointIdx1] = inPose2ModelSpace[m.mJointIdx2] * m.mJoint2To1; } int SkeletonMapper::GetMappedJointIdx(int inJoint1Idx) const { for (const Mapping &m : mMappings) if (m.mJointIdx1 == inJoint1Idx) return m.mJointIdx2; return -1; } bool SkeletonMapper::IsJointTranslationLocked(int inJoint2Idx) const { for (const Locked &l : mLockedTranslations) if (l.mJointIdx == inJoint2Idx) return true; return false; } JPH_NAMESPACE_END