godot-module-template/engine/thirdparty/jolt_physics/Jolt/Math/Vec4.h
2025-04-12 18:40:44 +02:00

287 lines
9.8 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Math/Float4.h>
#include <Jolt/Math/Swizzle.h>
#include <Jolt/Math/MathTypes.h>
JPH_NAMESPACE_BEGIN
class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) Vec4
{
public:
JPH_OVERRIDE_NEW_DELETE
// Underlying vector type
#if defined(JPH_USE_SSE)
using Type = __m128;
#elif defined(JPH_USE_NEON)
using Type = float32x4_t;
#else
using Type = struct { float mData[4]; };
#endif
/// Constructor
Vec4() = default; ///< Intentionally not initialized for performance reasons
Vec4(const Vec4 &inRHS) = default;
Vec4 & operator = (const Vec4 &inRHS) = default;
explicit JPH_INLINE Vec4(Vec3Arg inRHS); ///< WARNING: W component undefined!
JPH_INLINE Vec4(Vec3Arg inRHS, float inW);
JPH_INLINE Vec4(Type inRHS) : mValue(inRHS) { }
/// Create a vector from 4 components
JPH_INLINE Vec4(float inX, float inY, float inZ, float inW);
/// Vector with all zeros
static JPH_INLINE Vec4 sZero();
/// Vector with all ones
static JPH_INLINE Vec4 sOne();
/// Vector with all NaN's
static JPH_INLINE Vec4 sNaN();
/// Replicate inV across all components
static JPH_INLINE Vec4 sReplicate(float inV);
/// Load 4 floats from memory
static JPH_INLINE Vec4 sLoadFloat4(const Float4 *inV);
/// Load 4 floats from memory, 16 bytes aligned
static JPH_INLINE Vec4 sLoadFloat4Aligned(const Float4 *inV);
/// Gather 4 floats from memory at inBase + inOffsets[i] * Scale
template <const int Scale>
static JPH_INLINE Vec4 sGatherFloat4(const float *inBase, UVec4Arg inOffsets);
/// Return the minimum value of each of the components
static JPH_INLINE Vec4 sMin(Vec4Arg inV1, Vec4Arg inV2);
/// Return the maximum of each of the components
static JPH_INLINE Vec4 sMax(Vec4Arg inV1, Vec4Arg inV2);
/// Equals (component wise)
static JPH_INLINE UVec4 sEquals(Vec4Arg inV1, Vec4Arg inV2);
/// Less than (component wise)
static JPH_INLINE UVec4 sLess(Vec4Arg inV1, Vec4Arg inV2);
/// Less than or equal (component wise)
static JPH_INLINE UVec4 sLessOrEqual(Vec4Arg inV1, Vec4Arg inV2);
/// Greater than (component wise)
static JPH_INLINE UVec4 sGreater(Vec4Arg inV1, Vec4Arg inV2);
/// Greater than or equal (component wise)
static JPH_INLINE UVec4 sGreaterOrEqual(Vec4Arg inV1, Vec4Arg inV2);
/// Calculates inMul1 * inMul2 + inAdd
static JPH_INLINE Vec4 sFusedMultiplyAdd(Vec4Arg inMul1, Vec4Arg inMul2, Vec4Arg inAdd);
/// Component wise select, returns inNotSet when highest bit of inControl = 0 and inSet when highest bit of inControl = 1
static JPH_INLINE Vec4 sSelect(Vec4Arg inNotSet, Vec4Arg inSet, UVec4Arg inControl);
/// Logical or (component wise)
static JPH_INLINE Vec4 sOr(Vec4Arg inV1, Vec4Arg inV2);
/// Logical xor (component wise)
static JPH_INLINE Vec4 sXor(Vec4Arg inV1, Vec4Arg inV2);
/// Logical and (component wise)
static JPH_INLINE Vec4 sAnd(Vec4Arg inV1, Vec4Arg inV2);
/// Sort the four elements of ioValue and sort ioIndex at the same time.
/// Based on a sorting network: http://en.wikipedia.org/wiki/Sorting_network
static JPH_INLINE void sSort4(Vec4 &ioValue, UVec4 &ioIndex);
/// Reverse sort the four elements of ioValue (highest first) and sort ioIndex at the same time.
/// Based on a sorting network: http://en.wikipedia.org/wiki/Sorting_network
static JPH_INLINE void sSort4Reverse(Vec4 &ioValue, UVec4 &ioIndex);
/// Get individual components
#if defined(JPH_USE_SSE)
JPH_INLINE float GetX() const { return _mm_cvtss_f32(mValue); }
JPH_INLINE float GetY() const { return mF32[1]; }
JPH_INLINE float GetZ() const { return mF32[2]; }
JPH_INLINE float GetW() const { return mF32[3]; }
#elif defined(JPH_USE_NEON)
JPH_INLINE float GetX() const { return vgetq_lane_f32(mValue, 0); }
JPH_INLINE float GetY() const { return vgetq_lane_f32(mValue, 1); }
JPH_INLINE float GetZ() const { return vgetq_lane_f32(mValue, 2); }
JPH_INLINE float GetW() const { return vgetq_lane_f32(mValue, 3); }
#else
JPH_INLINE float GetX() const { return mF32[0]; }
JPH_INLINE float GetY() const { return mF32[1]; }
JPH_INLINE float GetZ() const { return mF32[2]; }
JPH_INLINE float GetW() const { return mF32[3]; }
#endif
/// Set individual components
JPH_INLINE void SetX(float inX) { mF32[0] = inX; }
JPH_INLINE void SetY(float inY) { mF32[1] = inY; }
JPH_INLINE void SetZ(float inZ) { mF32[2] = inZ; }
JPH_INLINE void SetW(float inW) { mF32[3] = inW; }
/// Set all components
JPH_INLINE void Set(float inX, float inY, float inZ, float inW) { *this = Vec4(inX, inY, inZ, inW); }
/// Get float component by index
JPH_INLINE float operator [] (uint inCoordinate) const { JPH_ASSERT(inCoordinate < 4); return mF32[inCoordinate]; }
JPH_INLINE float & operator [] (uint inCoordinate) { JPH_ASSERT(inCoordinate < 4); return mF32[inCoordinate]; }
/// Comparison
JPH_INLINE bool operator == (Vec4Arg inV2) const;
JPH_INLINE bool operator != (Vec4Arg inV2) const { return !(*this == inV2); }
/// Test if two vectors are close
JPH_INLINE bool IsClose(Vec4Arg inV2, float inMaxDistSq = 1.0e-12f) const;
/// Test if vector is normalized
JPH_INLINE bool IsNormalized(float inTolerance = 1.0e-6f) const;
/// Test if vector contains NaN elements
JPH_INLINE bool IsNaN() const;
/// Multiply two float vectors (component wise)
JPH_INLINE Vec4 operator * (Vec4Arg inV2) const;
/// Multiply vector with float
JPH_INLINE Vec4 operator * (float inV2) const;
/// Multiply vector with float
friend JPH_INLINE Vec4 operator * (float inV1, Vec4Arg inV2);
/// Divide vector by float
JPH_INLINE Vec4 operator / (float inV2) const;
/// Multiply vector with float
JPH_INLINE Vec4 & operator *= (float inV2);
/// Multiply vector with vector
JPH_INLINE Vec4 & operator *= (Vec4Arg inV2);
/// Divide vector by float
JPH_INLINE Vec4 & operator /= (float inV2);
/// Add two float vectors (component wise)
JPH_INLINE Vec4 operator + (Vec4Arg inV2) const;
/// Add two float vectors (component wise)
JPH_INLINE Vec4 & operator += (Vec4Arg inV2);
/// Negate
JPH_INLINE Vec4 operator - () const;
/// Subtract two float vectors (component wise)
JPH_INLINE Vec4 operator - (Vec4Arg inV2) const;
/// Subtract two float vectors (component wise)
JPH_INLINE Vec4 & operator -= (Vec4Arg inV2);
/// Divide (component wise)
JPH_INLINE Vec4 operator / (Vec4Arg inV2) const;
/// Swizzle the elements in inV
template<uint32 SwizzleX, uint32 SwizzleY, uint32 SwizzleZ, uint32 SwizzleW>
JPH_INLINE Vec4 Swizzle() const;
/// Replicate the X component to all components
JPH_INLINE Vec4 SplatX() const;
/// Replicate the Y component to all components
JPH_INLINE Vec4 SplatY() const;
/// Replicate the Z component to all components
JPH_INLINE Vec4 SplatZ() const;
/// Replicate the W component to all components
JPH_INLINE Vec4 SplatW() const;
/// Return the absolute value of each of the components
JPH_INLINE Vec4 Abs() const;
/// Reciprocal vector (1 / value) for each of the components
JPH_INLINE Vec4 Reciprocal() const;
/// Dot product, returns the dot product in X, Y and Z components
JPH_INLINE Vec4 DotV(Vec4Arg inV2) const;
/// Dot product
JPH_INLINE float Dot(Vec4Arg inV2) const;
/// Squared length of vector
JPH_INLINE float LengthSq() const;
/// Length of vector
JPH_INLINE float Length() const;
/// Normalize vector
JPH_INLINE Vec4 Normalized() const;
/// Store 4 floats to memory
JPH_INLINE void StoreFloat4(Float4 *outV) const;
/// Convert each component from a float to an int
JPH_INLINE UVec4 ToInt() const;
/// Reinterpret Vec4 as a UVec4 (doesn't change the bits)
JPH_INLINE UVec4 ReinterpretAsInt() const;
/// Store if X is negative in bit 0, Y in bit 1, Z in bit 2 and W in bit 3
JPH_INLINE int GetSignBits() const;
/// Get the minimum of X, Y, Z and W
JPH_INLINE float ReduceMin() const;
/// Get the maximum of X, Y, Z and W
JPH_INLINE float ReduceMax() const;
/// Component wise square root
JPH_INLINE Vec4 Sqrt() const;
/// Get vector that contains the sign of each element (returns 1.0f if positive, -1.0f if negative)
JPH_INLINE Vec4 GetSign() const;
/// Calculate the sine and cosine for each element of this vector (input in radians)
inline void SinCos(Vec4 &outSin, Vec4 &outCos) const;
/// Calculate the tangent for each element of this vector (input in radians)
inline Vec4 Tan() const;
/// Calculate the arc sine for each element of this vector (returns value in the range [-PI / 2, PI / 2])
/// Note that all input values will be clamped to the range [-1, 1] and this function will not return NaNs like std::asin
inline Vec4 ASin() const;
/// Calculate the arc cosine for each element of this vector (returns value in the range [0, PI])
/// Note that all input values will be clamped to the range [-1, 1] and this function will not return NaNs like std::acos
inline Vec4 ACos() const;
/// Calculate the arc tangent for each element of this vector (returns value in the range [-PI / 2, PI / 2])
inline Vec4 ATan() const;
/// Calculate the arc tangent of y / x using the signs of the arguments to determine the correct quadrant (returns value in the range [-PI, PI])
inline static Vec4 sATan2(Vec4Arg inY, Vec4Arg inX);
/// To String
friend ostream & operator << (ostream &inStream, Vec4Arg inV)
{
inStream << inV.mF32[0] << ", " << inV.mF32[1] << ", " << inV.mF32[2] << ", " << inV.mF32[3];
return inStream;
}
union
{
Type mValue;
float mF32[4];
};
};
static_assert(std::is_trivial<Vec4>(), "Is supposed to be a trivial type!");
JPH_NAMESPACE_END
#include "Vec4.inl"