// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include #include JPH_NAMESPACE_BEGIN class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) Vec4 { public: JPH_OVERRIDE_NEW_DELETE // Underlying vector type #if defined(JPH_USE_SSE) using Type = __m128; #elif defined(JPH_USE_NEON) using Type = float32x4_t; #else using Type = struct { float mData[4]; }; #endif /// Constructor Vec4() = default; ///< Intentionally not initialized for performance reasons Vec4(const Vec4 &inRHS) = default; Vec4 & operator = (const Vec4 &inRHS) = default; explicit JPH_INLINE Vec4(Vec3Arg inRHS); ///< WARNING: W component undefined! JPH_INLINE Vec4(Vec3Arg inRHS, float inW); JPH_INLINE Vec4(Type inRHS) : mValue(inRHS) { } /// Create a vector from 4 components JPH_INLINE Vec4(float inX, float inY, float inZ, float inW); /// Vector with all zeros static JPH_INLINE Vec4 sZero(); /// Vector with all ones static JPH_INLINE Vec4 sOne(); /// Vector with all NaN's static JPH_INLINE Vec4 sNaN(); /// Replicate inV across all components static JPH_INLINE Vec4 sReplicate(float inV); /// Load 4 floats from memory static JPH_INLINE Vec4 sLoadFloat4(const Float4 *inV); /// Load 4 floats from memory, 16 bytes aligned static JPH_INLINE Vec4 sLoadFloat4Aligned(const Float4 *inV); /// Gather 4 floats from memory at inBase + inOffsets[i] * Scale template static JPH_INLINE Vec4 sGatherFloat4(const float *inBase, UVec4Arg inOffsets); /// Return the minimum value of each of the components static JPH_INLINE Vec4 sMin(Vec4Arg inV1, Vec4Arg inV2); /// Return the maximum of each of the components static JPH_INLINE Vec4 sMax(Vec4Arg inV1, Vec4Arg inV2); /// Equals (component wise) static JPH_INLINE UVec4 sEquals(Vec4Arg inV1, Vec4Arg inV2); /// Less than (component wise) static JPH_INLINE UVec4 sLess(Vec4Arg inV1, Vec4Arg inV2); /// Less than or equal (component wise) static JPH_INLINE UVec4 sLessOrEqual(Vec4Arg inV1, Vec4Arg inV2); /// Greater than (component wise) static JPH_INLINE UVec4 sGreater(Vec4Arg inV1, Vec4Arg inV2); /// Greater than or equal (component wise) static JPH_INLINE UVec4 sGreaterOrEqual(Vec4Arg inV1, Vec4Arg inV2); /// Calculates inMul1 * inMul2 + inAdd static JPH_INLINE Vec4 sFusedMultiplyAdd(Vec4Arg inMul1, Vec4Arg inMul2, Vec4Arg inAdd); /// Component wise select, returns inNotSet when highest bit of inControl = 0 and inSet when highest bit of inControl = 1 static JPH_INLINE Vec4 sSelect(Vec4Arg inNotSet, Vec4Arg inSet, UVec4Arg inControl); /// Logical or (component wise) static JPH_INLINE Vec4 sOr(Vec4Arg inV1, Vec4Arg inV2); /// Logical xor (component wise) static JPH_INLINE Vec4 sXor(Vec4Arg inV1, Vec4Arg inV2); /// Logical and (component wise) static JPH_INLINE Vec4 sAnd(Vec4Arg inV1, Vec4Arg inV2); /// Sort the four elements of ioValue and sort ioIndex at the same time. /// Based on a sorting network: http://en.wikipedia.org/wiki/Sorting_network static JPH_INLINE void sSort4(Vec4 &ioValue, UVec4 &ioIndex); /// Reverse sort the four elements of ioValue (highest first) and sort ioIndex at the same time. /// Based on a sorting network: http://en.wikipedia.org/wiki/Sorting_network static JPH_INLINE void sSort4Reverse(Vec4 &ioValue, UVec4 &ioIndex); /// Get individual components #if defined(JPH_USE_SSE) JPH_INLINE float GetX() const { return _mm_cvtss_f32(mValue); } JPH_INLINE float GetY() const { return mF32[1]; } JPH_INLINE float GetZ() const { return mF32[2]; } JPH_INLINE float GetW() const { return mF32[3]; } #elif defined(JPH_USE_NEON) JPH_INLINE float GetX() const { return vgetq_lane_f32(mValue, 0); } JPH_INLINE float GetY() const { return vgetq_lane_f32(mValue, 1); } JPH_INLINE float GetZ() const { return vgetq_lane_f32(mValue, 2); } JPH_INLINE float GetW() const { return vgetq_lane_f32(mValue, 3); } #else JPH_INLINE float GetX() const { return mF32[0]; } JPH_INLINE float GetY() const { return mF32[1]; } JPH_INLINE float GetZ() const { return mF32[2]; } JPH_INLINE float GetW() const { return mF32[3]; } #endif /// Set individual components JPH_INLINE void SetX(float inX) { mF32[0] = inX; } JPH_INLINE void SetY(float inY) { mF32[1] = inY; } JPH_INLINE void SetZ(float inZ) { mF32[2] = inZ; } JPH_INLINE void SetW(float inW) { mF32[3] = inW; } /// Set all components JPH_INLINE void Set(float inX, float inY, float inZ, float inW) { *this = Vec4(inX, inY, inZ, inW); } /// Get float component by index JPH_INLINE float operator [] (uint inCoordinate) const { JPH_ASSERT(inCoordinate < 4); return mF32[inCoordinate]; } JPH_INLINE float & operator [] (uint inCoordinate) { JPH_ASSERT(inCoordinate < 4); return mF32[inCoordinate]; } /// Comparison JPH_INLINE bool operator == (Vec4Arg inV2) const; JPH_INLINE bool operator != (Vec4Arg inV2) const { return !(*this == inV2); } /// Test if two vectors are close JPH_INLINE bool IsClose(Vec4Arg inV2, float inMaxDistSq = 1.0e-12f) const; /// Test if vector is normalized JPH_INLINE bool IsNormalized(float inTolerance = 1.0e-6f) const; /// Test if vector contains NaN elements JPH_INLINE bool IsNaN() const; /// Multiply two float vectors (component wise) JPH_INLINE Vec4 operator * (Vec4Arg inV2) const; /// Multiply vector with float JPH_INLINE Vec4 operator * (float inV2) const; /// Multiply vector with float friend JPH_INLINE Vec4 operator * (float inV1, Vec4Arg inV2); /// Divide vector by float JPH_INLINE Vec4 operator / (float inV2) const; /// Multiply vector with float JPH_INLINE Vec4 & operator *= (float inV2); /// Multiply vector with vector JPH_INLINE Vec4 & operator *= (Vec4Arg inV2); /// Divide vector by float JPH_INLINE Vec4 & operator /= (float inV2); /// Add two float vectors (component wise) JPH_INLINE Vec4 operator + (Vec4Arg inV2) const; /// Add two float vectors (component wise) JPH_INLINE Vec4 & operator += (Vec4Arg inV2); /// Negate JPH_INLINE Vec4 operator - () const; /// Subtract two float vectors (component wise) JPH_INLINE Vec4 operator - (Vec4Arg inV2) const; /// Subtract two float vectors (component wise) JPH_INLINE Vec4 & operator -= (Vec4Arg inV2); /// Divide (component wise) JPH_INLINE Vec4 operator / (Vec4Arg inV2) const; /// Swizzle the elements in inV template JPH_INLINE Vec4 Swizzle() const; /// Replicate the X component to all components JPH_INLINE Vec4 SplatX() const; /// Replicate the Y component to all components JPH_INLINE Vec4 SplatY() const; /// Replicate the Z component to all components JPH_INLINE Vec4 SplatZ() const; /// Replicate the W component to all components JPH_INLINE Vec4 SplatW() const; /// Return the absolute value of each of the components JPH_INLINE Vec4 Abs() const; /// Reciprocal vector (1 / value) for each of the components JPH_INLINE Vec4 Reciprocal() const; /// Dot product, returns the dot product in X, Y and Z components JPH_INLINE Vec4 DotV(Vec4Arg inV2) const; /// Dot product JPH_INLINE float Dot(Vec4Arg inV2) const; /// Squared length of vector JPH_INLINE float LengthSq() const; /// Length of vector JPH_INLINE float Length() const; /// Normalize vector JPH_INLINE Vec4 Normalized() const; /// Store 4 floats to memory JPH_INLINE void StoreFloat4(Float4 *outV) const; /// Convert each component from a float to an int JPH_INLINE UVec4 ToInt() const; /// Reinterpret Vec4 as a UVec4 (doesn't change the bits) JPH_INLINE UVec4 ReinterpretAsInt() const; /// Store if X is negative in bit 0, Y in bit 1, Z in bit 2 and W in bit 3 JPH_INLINE int GetSignBits() const; /// Get the minimum of X, Y, Z and W JPH_INLINE float ReduceMin() const; /// Get the maximum of X, Y, Z and W JPH_INLINE float ReduceMax() const; /// Component wise square root JPH_INLINE Vec4 Sqrt() const; /// Get vector that contains the sign of each element (returns 1.0f if positive, -1.0f if negative) JPH_INLINE Vec4 GetSign() const; /// Calculate the sine and cosine for each element of this vector (input in radians) inline void SinCos(Vec4 &outSin, Vec4 &outCos) const; /// Calculate the tangent for each element of this vector (input in radians) inline Vec4 Tan() const; /// Calculate the arc sine for each element of this vector (returns value in the range [-PI / 2, PI / 2]) /// Note that all input values will be clamped to the range [-1, 1] and this function will not return NaNs like std::asin inline Vec4 ASin() const; /// Calculate the arc cosine for each element of this vector (returns value in the range [0, PI]) /// Note that all input values will be clamped to the range [-1, 1] and this function will not return NaNs like std::acos inline Vec4 ACos() const; /// Calculate the arc tangent for each element of this vector (returns value in the range [-PI / 2, PI / 2]) inline Vec4 ATan() const; /// Calculate the arc tangent of y / x using the signs of the arguments to determine the correct quadrant (returns value in the range [-PI, PI]) inline static Vec4 sATan2(Vec4Arg inY, Vec4Arg inX); /// To String friend ostream & operator << (ostream &inStream, Vec4Arg inV) { inStream << inV.mF32[0] << ", " << inV.mF32[1] << ", " << inV.mF32[2] << ", " << inV.mF32[3]; return inStream; } union { Type mValue; float mF32[4]; }; }; static_assert(std::is_trivial(), "Is supposed to be a trivial type!"); JPH_NAMESPACE_END #include "Vec4.inl"