godot-module-template/engine/thirdparty/jolt_physics/Jolt/Math/Vec3.h
2025-04-12 18:40:44 +02:00

299 lines
9.9 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Core/StaticArray.h>
#include <Jolt/Math/Float3.h>
#include <Jolt/Math/Swizzle.h>
#include <Jolt/Math/MathTypes.h>
JPH_NAMESPACE_BEGIN
/// 3 component vector (stored as 4 vectors).
/// Note that we keep the 4th component the same as the 3rd component to avoid divisions by zero when JPH_FLOATING_POINT_EXCEPTIONS_ENABLED defined
class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) Vec3
{
public:
JPH_OVERRIDE_NEW_DELETE
// Underlying vector type
#if defined(JPH_USE_SSE)
using Type = __m128;
#elif defined(JPH_USE_NEON)
using Type = float32x4_t;
#else
using Type = Vec4::Type;
#endif
// Argument type
using ArgType = Vec3Arg;
/// Constructor
Vec3() = default; ///< Intentionally not initialized for performance reasons
Vec3(const Vec3 &inRHS) = default;
Vec3 & operator = (const Vec3 &inRHS) = default;
explicit JPH_INLINE Vec3(Vec4Arg inRHS);
JPH_INLINE Vec3(Type inRHS) : mValue(inRHS) { CheckW(); }
/// Load 3 floats from memory
explicit JPH_INLINE Vec3(const Float3 &inV);
/// Create a vector from 3 components
JPH_INLINE Vec3(float inX, float inY, float inZ);
/// Vector with all zeros
static JPH_INLINE Vec3 sZero();
/// Vector with all ones
static JPH_INLINE Vec3 sOne();
/// Vector with all NaN's
static JPH_INLINE Vec3 sNaN();
/// Vectors with the principal axis
static JPH_INLINE Vec3 sAxisX() { return Vec3(1, 0, 0); }
static JPH_INLINE Vec3 sAxisY() { return Vec3(0, 1, 0); }
static JPH_INLINE Vec3 sAxisZ() { return Vec3(0, 0, 1); }
/// Replicate inV across all components
static JPH_INLINE Vec3 sReplicate(float inV);
/// Load 3 floats from memory (reads 32 bits extra which it doesn't use)
static JPH_INLINE Vec3 sLoadFloat3Unsafe(const Float3 &inV);
/// Return the minimum value of each of the components
static JPH_INLINE Vec3 sMin(Vec3Arg inV1, Vec3Arg inV2);
/// Return the maximum of each of the components
static JPH_INLINE Vec3 sMax(Vec3Arg inV1, Vec3Arg inV2);
/// Clamp a vector between min and max (component wise)
static JPH_INLINE Vec3 sClamp(Vec3Arg inV, Vec3Arg inMin, Vec3Arg inMax);
/// Equals (component wise)
static JPH_INLINE UVec4 sEquals(Vec3Arg inV1, Vec3Arg inV2);
/// Less than (component wise)
static JPH_INLINE UVec4 sLess(Vec3Arg inV1, Vec3Arg inV2);
/// Less than or equal (component wise)
static JPH_INLINE UVec4 sLessOrEqual(Vec3Arg inV1, Vec3Arg inV2);
/// Greater than (component wise)
static JPH_INLINE UVec4 sGreater(Vec3Arg inV1, Vec3Arg inV2);
/// Greater than or equal (component wise)
static JPH_INLINE UVec4 sGreaterOrEqual(Vec3Arg inV1, Vec3Arg inV2);
/// Calculates inMul1 * inMul2 + inAdd
static JPH_INLINE Vec3 sFusedMultiplyAdd(Vec3Arg inMul1, Vec3Arg inMul2, Vec3Arg inAdd);
/// Component wise select, returns inNotSet when highest bit of inControl = 0 and inSet when highest bit of inControl = 1
static JPH_INLINE Vec3 sSelect(Vec3Arg inNotSet, Vec3Arg inSet, UVec4Arg inControl);
/// Logical or (component wise)
static JPH_INLINE Vec3 sOr(Vec3Arg inV1, Vec3Arg inV2);
/// Logical xor (component wise)
static JPH_INLINE Vec3 sXor(Vec3Arg inV1, Vec3Arg inV2);
/// Logical and (component wise)
static JPH_INLINE Vec3 sAnd(Vec3Arg inV1, Vec3Arg inV2);
/// Get unit vector given spherical coordinates
/// inTheta \f$\in [0, \pi]\f$ is angle between vector and z-axis
/// inPhi \f$\in [0, 2 \pi]\f$ is the angle in the xy-plane starting from the x axis and rotating counter clockwise around the z-axis
static JPH_INLINE Vec3 sUnitSpherical(float inTheta, float inPhi);
/// A set of vectors uniformly spanning the surface of a unit sphere, usable for debug purposes
JPH_EXPORT static const StaticArray<Vec3, 1026> sUnitSphere;
/// Get random unit vector
template <class Random>
static inline Vec3 sRandom(Random &inRandom);
/// Get individual components
#if defined(JPH_USE_SSE)
JPH_INLINE float GetX() const { return _mm_cvtss_f32(mValue); }
JPH_INLINE float GetY() const { return mF32[1]; }
JPH_INLINE float GetZ() const { return mF32[2]; }
#elif defined(JPH_USE_NEON)
JPH_INLINE float GetX() const { return vgetq_lane_f32(mValue, 0); }
JPH_INLINE float GetY() const { return vgetq_lane_f32(mValue, 1); }
JPH_INLINE float GetZ() const { return vgetq_lane_f32(mValue, 2); }
#else
JPH_INLINE float GetX() const { return mF32[0]; }
JPH_INLINE float GetY() const { return mF32[1]; }
JPH_INLINE float GetZ() const { return mF32[2]; }
#endif
/// Set individual components
JPH_INLINE void SetX(float inX) { mF32[0] = inX; }
JPH_INLINE void SetY(float inY) { mF32[1] = inY; }
JPH_INLINE void SetZ(float inZ) { mF32[2] = mF32[3] = inZ; } // Assure Z and W are the same
/// Set all components
JPH_INLINE void Set(float inX, float inY, float inZ) { *this = Vec3(inX, inY, inZ); }
/// Get float component by index
JPH_INLINE float operator [] (uint inCoordinate) const { JPH_ASSERT(inCoordinate < 3); return mF32[inCoordinate]; }
/// Set float component by index
JPH_INLINE void SetComponent(uint inCoordinate, float inValue) { JPH_ASSERT(inCoordinate < 3); mF32[inCoordinate] = inValue; mValue = sFixW(mValue); } // Assure Z and W are the same
/// Comparison
JPH_INLINE bool operator == (Vec3Arg inV2) const;
JPH_INLINE bool operator != (Vec3Arg inV2) const { return !(*this == inV2); }
/// Test if two vectors are close
JPH_INLINE bool IsClose(Vec3Arg inV2, float inMaxDistSq = 1.0e-12f) const;
/// Test if vector is near zero
JPH_INLINE bool IsNearZero(float inMaxDistSq = 1.0e-12f) const;
/// Test if vector is normalized
JPH_INLINE bool IsNormalized(float inTolerance = 1.0e-6f) const;
/// Test if vector contains NaN elements
JPH_INLINE bool IsNaN() const;
/// Multiply two float vectors (component wise)
JPH_INLINE Vec3 operator * (Vec3Arg inV2) const;
/// Multiply vector with float
JPH_INLINE Vec3 operator * (float inV2) const;
/// Multiply vector with float
friend JPH_INLINE Vec3 operator * (float inV1, Vec3Arg inV2);
/// Divide vector by float
JPH_INLINE Vec3 operator / (float inV2) const;
/// Multiply vector with float
JPH_INLINE Vec3 & operator *= (float inV2);
/// Multiply vector with vector
JPH_INLINE Vec3 & operator *= (Vec3Arg inV2);
/// Divide vector by float
JPH_INLINE Vec3 & operator /= (float inV2);
/// Add two float vectors (component wise)
JPH_INLINE Vec3 operator + (Vec3Arg inV2) const;
/// Add two float vectors (component wise)
JPH_INLINE Vec3 & operator += (Vec3Arg inV2);
/// Negate
JPH_INLINE Vec3 operator - () const;
/// Subtract two float vectors (component wise)
JPH_INLINE Vec3 operator - (Vec3Arg inV2) const;
/// Subtract two float vectors (component wise)
JPH_INLINE Vec3 & operator -= (Vec3Arg inV2);
/// Divide (component wise)
JPH_INLINE Vec3 operator / (Vec3Arg inV2) const;
/// Swizzle the elements in inV
template<uint32 SwizzleX, uint32 SwizzleY, uint32 SwizzleZ>
JPH_INLINE Vec3 Swizzle() const;
/// Replicate the X component to all components
JPH_INLINE Vec4 SplatX() const;
/// Replicate the Y component to all components
JPH_INLINE Vec4 SplatY() const;
/// Replicate the Z component to all components
JPH_INLINE Vec4 SplatZ() const;
/// Get index of component with lowest value
JPH_INLINE int GetLowestComponentIndex() const;
/// Get index of component with highest value
JPH_INLINE int GetHighestComponentIndex() const;
/// Return the absolute value of each of the components
JPH_INLINE Vec3 Abs() const;
/// Reciprocal vector (1 / value) for each of the components
JPH_INLINE Vec3 Reciprocal() const;
/// Cross product
JPH_INLINE Vec3 Cross(Vec3Arg inV2) const;
/// Dot product, returns the dot product in X, Y and Z components
JPH_INLINE Vec3 DotV(Vec3Arg inV2) const;
/// Dot product, returns the dot product in X, Y, Z and W components
JPH_INLINE Vec4 DotV4(Vec3Arg inV2) const;
/// Dot product
JPH_INLINE float Dot(Vec3Arg inV2) const;
/// Squared length of vector
JPH_INLINE float LengthSq() const;
/// Length of vector
JPH_INLINE float Length() const;
/// Normalize vector
JPH_INLINE Vec3 Normalized() const;
/// Normalize vector or return inZeroValue if the length of the vector is zero
JPH_INLINE Vec3 NormalizedOr(Vec3Arg inZeroValue) const;
/// Store 3 floats to memory
JPH_INLINE void StoreFloat3(Float3 *outV) const;
/// Convert each component from a float to an int
JPH_INLINE UVec4 ToInt() const;
/// Reinterpret Vec3 as a UVec4 (doesn't change the bits)
JPH_INLINE UVec4 ReinterpretAsInt() const;
/// Get the minimum of X, Y and Z
JPH_INLINE float ReduceMin() const;
/// Get the maximum of X, Y and Z
JPH_INLINE float ReduceMax() const;
/// Component wise square root
JPH_INLINE Vec3 Sqrt() const;
/// Get normalized vector that is perpendicular to this vector
JPH_INLINE Vec3 GetNormalizedPerpendicular() const;
/// Get vector that contains the sign of each element (returns 1.0f if positive, -1.0f if negative)
JPH_INLINE Vec3 GetSign() const;
/// To String
friend ostream & operator << (ostream &inStream, Vec3Arg inV)
{
inStream << inV.mF32[0] << ", " << inV.mF32[1] << ", " << inV.mF32[2];
return inStream;
}
/// Internal helper function that checks that W is equal to Z, so e.g. dividing by it should not generate div by 0
JPH_INLINE void CheckW() const;
/// Internal helper function that ensures that the Z component is replicated to the W component to prevent divisions by zero
static JPH_INLINE Type sFixW(Type inValue);
union
{
Type mValue;
float mF32[4];
};
};
static_assert(std::is_trivial<Vec3>(), "Is supposed to be a trivial type!");
JPH_NAMESPACE_END
#include "Vec3.inl"