// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once #include #include #include #include JPH_NAMESPACE_BEGIN /// 3 component vector (stored as 4 vectors). /// Note that we keep the 4th component the same as the 3rd component to avoid divisions by zero when JPH_FLOATING_POINT_EXCEPTIONS_ENABLED defined class [[nodiscard]] alignas(JPH_VECTOR_ALIGNMENT) Vec3 { public: JPH_OVERRIDE_NEW_DELETE // Underlying vector type #if defined(JPH_USE_SSE) using Type = __m128; #elif defined(JPH_USE_NEON) using Type = float32x4_t; #else using Type = Vec4::Type; #endif // Argument type using ArgType = Vec3Arg; /// Constructor Vec3() = default; ///< Intentionally not initialized for performance reasons Vec3(const Vec3 &inRHS) = default; Vec3 & operator = (const Vec3 &inRHS) = default; explicit JPH_INLINE Vec3(Vec4Arg inRHS); JPH_INLINE Vec3(Type inRHS) : mValue(inRHS) { CheckW(); } /// Load 3 floats from memory explicit JPH_INLINE Vec3(const Float3 &inV); /// Create a vector from 3 components JPH_INLINE Vec3(float inX, float inY, float inZ); /// Vector with all zeros static JPH_INLINE Vec3 sZero(); /// Vector with all ones static JPH_INLINE Vec3 sOne(); /// Vector with all NaN's static JPH_INLINE Vec3 sNaN(); /// Vectors with the principal axis static JPH_INLINE Vec3 sAxisX() { return Vec3(1, 0, 0); } static JPH_INLINE Vec3 sAxisY() { return Vec3(0, 1, 0); } static JPH_INLINE Vec3 sAxisZ() { return Vec3(0, 0, 1); } /// Replicate inV across all components static JPH_INLINE Vec3 sReplicate(float inV); /// Load 3 floats from memory (reads 32 bits extra which it doesn't use) static JPH_INLINE Vec3 sLoadFloat3Unsafe(const Float3 &inV); /// Return the minimum value of each of the components static JPH_INLINE Vec3 sMin(Vec3Arg inV1, Vec3Arg inV2); /// Return the maximum of each of the components static JPH_INLINE Vec3 sMax(Vec3Arg inV1, Vec3Arg inV2); /// Clamp a vector between min and max (component wise) static JPH_INLINE Vec3 sClamp(Vec3Arg inV, Vec3Arg inMin, Vec3Arg inMax); /// Equals (component wise) static JPH_INLINE UVec4 sEquals(Vec3Arg inV1, Vec3Arg inV2); /// Less than (component wise) static JPH_INLINE UVec4 sLess(Vec3Arg inV1, Vec3Arg inV2); /// Less than or equal (component wise) static JPH_INLINE UVec4 sLessOrEqual(Vec3Arg inV1, Vec3Arg inV2); /// Greater than (component wise) static JPH_INLINE UVec4 sGreater(Vec3Arg inV1, Vec3Arg inV2); /// Greater than or equal (component wise) static JPH_INLINE UVec4 sGreaterOrEqual(Vec3Arg inV1, Vec3Arg inV2); /// Calculates inMul1 * inMul2 + inAdd static JPH_INLINE Vec3 sFusedMultiplyAdd(Vec3Arg inMul1, Vec3Arg inMul2, Vec3Arg inAdd); /// Component wise select, returns inNotSet when highest bit of inControl = 0 and inSet when highest bit of inControl = 1 static JPH_INLINE Vec3 sSelect(Vec3Arg inNotSet, Vec3Arg inSet, UVec4Arg inControl); /// Logical or (component wise) static JPH_INLINE Vec3 sOr(Vec3Arg inV1, Vec3Arg inV2); /// Logical xor (component wise) static JPH_INLINE Vec3 sXor(Vec3Arg inV1, Vec3Arg inV2); /// Logical and (component wise) static JPH_INLINE Vec3 sAnd(Vec3Arg inV1, Vec3Arg inV2); /// Get unit vector given spherical coordinates /// inTheta \f$\in [0, \pi]\f$ is angle between vector and z-axis /// inPhi \f$\in [0, 2 \pi]\f$ is the angle in the xy-plane starting from the x axis and rotating counter clockwise around the z-axis static JPH_INLINE Vec3 sUnitSpherical(float inTheta, float inPhi); /// A set of vectors uniformly spanning the surface of a unit sphere, usable for debug purposes JPH_EXPORT static const StaticArray sUnitSphere; /// Get random unit vector template static inline Vec3 sRandom(Random &inRandom); /// Get individual components #if defined(JPH_USE_SSE) JPH_INLINE float GetX() const { return _mm_cvtss_f32(mValue); } JPH_INLINE float GetY() const { return mF32[1]; } JPH_INLINE float GetZ() const { return mF32[2]; } #elif defined(JPH_USE_NEON) JPH_INLINE float GetX() const { return vgetq_lane_f32(mValue, 0); } JPH_INLINE float GetY() const { return vgetq_lane_f32(mValue, 1); } JPH_INLINE float GetZ() const { return vgetq_lane_f32(mValue, 2); } #else JPH_INLINE float GetX() const { return mF32[0]; } JPH_INLINE float GetY() const { return mF32[1]; } JPH_INLINE float GetZ() const { return mF32[2]; } #endif /// Set individual components JPH_INLINE void SetX(float inX) { mF32[0] = inX; } JPH_INLINE void SetY(float inY) { mF32[1] = inY; } JPH_INLINE void SetZ(float inZ) { mF32[2] = mF32[3] = inZ; } // Assure Z and W are the same /// Set all components JPH_INLINE void Set(float inX, float inY, float inZ) { *this = Vec3(inX, inY, inZ); } /// Get float component by index JPH_INLINE float operator [] (uint inCoordinate) const { JPH_ASSERT(inCoordinate < 3); return mF32[inCoordinate]; } /// Set float component by index JPH_INLINE void SetComponent(uint inCoordinate, float inValue) { JPH_ASSERT(inCoordinate < 3); mF32[inCoordinate] = inValue; mValue = sFixW(mValue); } // Assure Z and W are the same /// Comparison JPH_INLINE bool operator == (Vec3Arg inV2) const; JPH_INLINE bool operator != (Vec3Arg inV2) const { return !(*this == inV2); } /// Test if two vectors are close JPH_INLINE bool IsClose(Vec3Arg inV2, float inMaxDistSq = 1.0e-12f) const; /// Test if vector is near zero JPH_INLINE bool IsNearZero(float inMaxDistSq = 1.0e-12f) const; /// Test if vector is normalized JPH_INLINE bool IsNormalized(float inTolerance = 1.0e-6f) const; /// Test if vector contains NaN elements JPH_INLINE bool IsNaN() const; /// Multiply two float vectors (component wise) JPH_INLINE Vec3 operator * (Vec3Arg inV2) const; /// Multiply vector with float JPH_INLINE Vec3 operator * (float inV2) const; /// Multiply vector with float friend JPH_INLINE Vec3 operator * (float inV1, Vec3Arg inV2); /// Divide vector by float JPH_INLINE Vec3 operator / (float inV2) const; /// Multiply vector with float JPH_INLINE Vec3 & operator *= (float inV2); /// Multiply vector with vector JPH_INLINE Vec3 & operator *= (Vec3Arg inV2); /// Divide vector by float JPH_INLINE Vec3 & operator /= (float inV2); /// Add two float vectors (component wise) JPH_INLINE Vec3 operator + (Vec3Arg inV2) const; /// Add two float vectors (component wise) JPH_INLINE Vec3 & operator += (Vec3Arg inV2); /// Negate JPH_INLINE Vec3 operator - () const; /// Subtract two float vectors (component wise) JPH_INLINE Vec3 operator - (Vec3Arg inV2) const; /// Subtract two float vectors (component wise) JPH_INLINE Vec3 & operator -= (Vec3Arg inV2); /// Divide (component wise) JPH_INLINE Vec3 operator / (Vec3Arg inV2) const; /// Swizzle the elements in inV template JPH_INLINE Vec3 Swizzle() const; /// Replicate the X component to all components JPH_INLINE Vec4 SplatX() const; /// Replicate the Y component to all components JPH_INLINE Vec4 SplatY() const; /// Replicate the Z component to all components JPH_INLINE Vec4 SplatZ() const; /// Get index of component with lowest value JPH_INLINE int GetLowestComponentIndex() const; /// Get index of component with highest value JPH_INLINE int GetHighestComponentIndex() const; /// Return the absolute value of each of the components JPH_INLINE Vec3 Abs() const; /// Reciprocal vector (1 / value) for each of the components JPH_INLINE Vec3 Reciprocal() const; /// Cross product JPH_INLINE Vec3 Cross(Vec3Arg inV2) const; /// Dot product, returns the dot product in X, Y and Z components JPH_INLINE Vec3 DotV(Vec3Arg inV2) const; /// Dot product, returns the dot product in X, Y, Z and W components JPH_INLINE Vec4 DotV4(Vec3Arg inV2) const; /// Dot product JPH_INLINE float Dot(Vec3Arg inV2) const; /// Squared length of vector JPH_INLINE float LengthSq() const; /// Length of vector JPH_INLINE float Length() const; /// Normalize vector JPH_INLINE Vec3 Normalized() const; /// Normalize vector or return inZeroValue if the length of the vector is zero JPH_INLINE Vec3 NormalizedOr(Vec3Arg inZeroValue) const; /// Store 3 floats to memory JPH_INLINE void StoreFloat3(Float3 *outV) const; /// Convert each component from a float to an int JPH_INLINE UVec4 ToInt() const; /// Reinterpret Vec3 as a UVec4 (doesn't change the bits) JPH_INLINE UVec4 ReinterpretAsInt() const; /// Get the minimum of X, Y and Z JPH_INLINE float ReduceMin() const; /// Get the maximum of X, Y and Z JPH_INLINE float ReduceMax() const; /// Component wise square root JPH_INLINE Vec3 Sqrt() const; /// Get normalized vector that is perpendicular to this vector JPH_INLINE Vec3 GetNormalizedPerpendicular() const; /// Get vector that contains the sign of each element (returns 1.0f if positive, -1.0f if negative) JPH_INLINE Vec3 GetSign() const; /// To String friend ostream & operator << (ostream &inStream, Vec3Arg inV) { inStream << inV.mF32[0] << ", " << inV.mF32[1] << ", " << inV.mF32[2]; return inStream; } /// Internal helper function that checks that W is equal to Z, so e.g. dividing by it should not generate div by 0 JPH_INLINE void CheckW() const; /// Internal helper function that ensures that the Z component is replicated to the W component to prevent divisions by zero static JPH_INLINE Type sFixW(Type inValue); union { Type mValue; float mF32[4]; }; }; static_assert(std::is_trivial(), "Is supposed to be a trivial type!"); JPH_NAMESPACE_END #include "Vec3.inl"