godot-module-template/engine/thirdparty/jolt_physics/Jolt/Geometry/EPAConvexHullBuilder.h

846 lines
27 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
// Define to validate the integrity of the hull structure
//#define JPH_EPA_CONVEX_BUILDER_VALIDATE
// Define to draw the building of the hull for debugging purposes
//#define JPH_EPA_CONVEX_BUILDER_DRAW
#include <Jolt/Core/NonCopyable.h>
#include <Jolt/Core/BinaryHeap.h>
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
#include <Jolt/Renderer/DebugRenderer.h>
#include <Jolt/Core/StringTools.h>
#endif
JPH_NAMESPACE_BEGIN
/// A convex hull builder specifically made for the EPA penetration depth calculation. It trades accuracy for speed and will simply abort of the hull forms defects due to numerical precision problems.
class EPAConvexHullBuilder : public NonCopyable
{
private:
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
/// Factor to scale convex hull when debug drawing the construction process
static constexpr Real cDrawScale = 10;
#endif
public:
// Due to the Euler characteristic (https://en.wikipedia.org/wiki/Euler_characteristic) we know that Vertices - Edges + Faces = 2
// In our case we only have triangles and they are always fully connected, so each edge is shared exactly between 2 faces: Edges = Faces * 3 / 2
// Substituting: Vertices = Faces / 2 + 2 which is approximately Faces / 2.
static constexpr int cMaxTriangles = 256; ///< Max triangles in hull
static constexpr int cMaxPoints = cMaxTriangles / 2; ///< Max number of points in hull
// Constants
static constexpr int cMaxEdgeLength = 128; ///< Max number of edges in FindEdge
static constexpr float cMinTriangleArea = 1.0e-10f; ///< Minimum area of a triangle before, if smaller than this it will not be added to the priority queue
static constexpr float cBarycentricEpsilon = 1.0e-3f; ///< Epsilon value used to determine if a point is in the interior of a triangle
// Forward declare
class Triangle;
/// Class that holds the information of an edge
class Edge
{
public:
/// Information about neighbouring triangle
Triangle * mNeighbourTriangle; ///< Triangle that neighbours this triangle
int mNeighbourEdge; ///< Index in mEdge that specifies edge that this Edge is connected to
int mStartIdx; ///< Vertex index in mPositions that indicates the start vertex of this edge
};
using Edges = StaticArray<Edge, cMaxEdgeLength>;
using NewTriangles = StaticArray<Triangle *, cMaxEdgeLength>;
/// Class that holds the information of one triangle
class Triangle : public NonCopyable
{
public:
/// Constructor
inline Triangle(int inIdx0, int inIdx1, int inIdx2, const Vec3 *inPositions);
/// Check if triangle is facing inPosition
inline bool IsFacing(Vec3Arg inPosition) const
{
JPH_ASSERT(!mRemoved);
return mNormal.Dot(inPosition - mCentroid) > 0.0f;
}
/// Check if triangle is facing the origin
inline bool IsFacingOrigin() const
{
JPH_ASSERT(!mRemoved);
return mNormal.Dot(mCentroid) < 0.0f;
}
/// Get the next edge of edge inIndex
inline const Edge & GetNextEdge(int inIndex) const
{
return mEdge[(inIndex + 1) % 3];
}
Edge mEdge[3]; ///< 3 edges of this triangle
Vec3 mNormal; ///< Normal of this triangle, length is 2 times area of triangle
Vec3 mCentroid; ///< Center of the triangle
float mClosestLenSq = FLT_MAX; ///< Closest distance^2 from origin to triangle
float mLambda[2]; ///< Barycentric coordinates of closest point to origin on triangle
bool mLambdaRelativeTo0; ///< How to calculate the closest point, true: y0 + l0 * (y1 - y0) + l1 * (y2 - y0), false: y1 + l0 * (y0 - y1) + l1 * (y2 - y1)
bool mClosestPointInterior = false; ///< Flag that indicates that the closest point from this triangle to the origin is an interior point
bool mRemoved = false; ///< Flag that indicates that triangle has been removed
bool mInQueue = false; ///< Flag that indicates that this triangle was placed in the sorted heap (stays true after it is popped because the triangle is freed by the main EPA algorithm loop)
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
int mIteration; ///< Iteration that this triangle was created
#endif
};
/// Factory that creates triangles in a fixed size buffer
class TriangleFactory : public NonCopyable
{
private:
/// Struct that stores both a triangle or a next pointer in case the triangle is unused
union alignas(Triangle) Block
{
uint8 mTriangle[sizeof(Triangle)];
Block * mNextFree;
};
/// Storage for triangle data
Block mTriangles[cMaxTriangles]; ///< Storage for triangles
Block * mNextFree = nullptr; ///< List of free triangles
int mHighWatermark = 0; ///< High water mark for used triangles (if mNextFree == nullptr we can take one from here)
public:
/// Return all triangles to the free pool
void Clear()
{
mNextFree = nullptr;
mHighWatermark = 0;
}
/// Allocate a new triangle with 3 indexes
Triangle * CreateTriangle(int inIdx0, int inIdx1, int inIdx2, const Vec3 *inPositions)
{
Triangle *t;
if (mNextFree != nullptr)
{
// Entry available from the free list
t = reinterpret_cast<Triangle *>(&mNextFree->mTriangle);
mNextFree = mNextFree->mNextFree;
}
else
{
// Allocate from never used before triangle store
if (mHighWatermark >= cMaxTriangles)
return nullptr; // Buffer full
t = reinterpret_cast<Triangle *>(&mTriangles[mHighWatermark].mTriangle);
++mHighWatermark;
}
// Call constructor
new (t) Triangle(inIdx0, inIdx1, inIdx2, inPositions);
return t;
}
/// Free a triangle
void FreeTriangle(Triangle *inT)
{
// Destruct triangle
inT->~Triangle();
#ifdef JPH_DEBUG
memset(inT, 0xcd, sizeof(Triangle));
#endif
// Add triangle to the free list
Block *tu = reinterpret_cast<Block *>(inT);
tu->mNextFree = mNextFree;
mNextFree = tu;
}
};
// Typedefs
using PointsBase = StaticArray<Vec3, cMaxPoints>;
using Triangles = StaticArray<Triangle *, cMaxTriangles>;
/// Specialized points list that allows direct access to the size
class Points : public PointsBase
{
public:
size_type & GetSizeRef()
{
return mSize;
}
};
/// Specialized triangles list that keeps them sorted on closest distance to origin
class TriangleQueue : public Triangles
{
public:
/// Function to sort triangles on closest distance to origin
static bool sTriangleSorter(const Triangle *inT1, const Triangle *inT2)
{
return inT1->mClosestLenSq > inT2->mClosestLenSq;
}
/// Add triangle to the list
void push_back(Triangle *inT)
{
// Add to base
Triangles::push_back(inT);
// Mark in queue
inT->mInQueue = true;
// Resort heap
BinaryHeapPush(begin(), end(), sTriangleSorter);
}
/// Peek the next closest triangle without removing it
Triangle * PeekClosest()
{
return front();
}
/// Get next closest triangle
Triangle * PopClosest()
{
// Move closest to end
BinaryHeapPop(begin(), end(), sTriangleSorter);
// Remove last triangle
Triangle *t = back();
pop_back();
return t;
}
};
/// Constructor
explicit EPAConvexHullBuilder(const Points &inPositions) :
mPositions(inPositions)
{
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
mIteration = 0;
mOffset = RVec3::sZero();
#endif
}
/// Initialize the hull with 3 points
void Initialize(int inIdx1, int inIdx2, int inIdx3)
{
// Release triangles
mFactory.Clear();
// Create triangles (back to back)
Triangle *t1 = CreateTriangle(inIdx1, inIdx2, inIdx3);
Triangle *t2 = CreateTriangle(inIdx1, inIdx3, inIdx2);
// Link triangles edges
sLinkTriangle(t1, 0, t2, 2);
sLinkTriangle(t1, 1, t2, 1);
sLinkTriangle(t1, 2, t2, 0);
// Always add both triangles to the priority queue
mTriangleQueue.push_back(t1);
mTriangleQueue.push_back(t2);
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Draw current state
DrawState();
// Increment iteration counter
++mIteration;
#endif
}
/// Check if there's another triangle to process from the queue
bool HasNextTriangle() const
{
return !mTriangleQueue.empty();
}
/// Access to the next closest triangle to the origin (won't remove it from the queue).
Triangle * PeekClosestTriangleInQueue()
{
return mTriangleQueue.PeekClosest();
}
/// Access to the next closest triangle to the origin and remove it from the queue.
Triangle * PopClosestTriangleFromQueue()
{
return mTriangleQueue.PopClosest();
}
/// Find the triangle on which inPosition is the furthest to the front
/// Note this function works as long as all points added have been added with AddPoint(..., FLT_MAX).
Triangle * FindFacingTriangle(Vec3Arg inPosition, float &outBestDistSq)
{
Triangle *best = nullptr;
float best_dist_sq = 0.0f;
for (Triangle *t : mTriangleQueue)
if (!t->mRemoved)
{
float dot = t->mNormal.Dot(inPosition - t->mCentroid);
if (dot > 0.0f)
{
float dist_sq = dot * dot / t->mNormal.LengthSq();
if (dist_sq > best_dist_sq)
{
best = t;
best_dist_sq = dist_sq;
}
}
}
outBestDistSq = best_dist_sq;
return best;
}
/// Add a new point to the convex hull
bool AddPoint(Triangle *inFacingTriangle, int inIdx, float inClosestDistSq, NewTriangles &outTriangles)
{
// Get position
Vec3 pos = mPositions[inIdx];
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Draw new support point
DrawMarker(pos, Color::sYellow, 1.0f);
#endif
#ifdef JPH_EPA_CONVEX_BUILDER_VALIDATE
// Check if structure is intact
ValidateTriangles();
#endif
// Find edge of convex hull of triangles that are not facing the new vertex w
Edges edges;
if (!FindEdge(inFacingTriangle, pos, edges))
return false;
// Create new triangles
int num_edges = edges.size();
for (int i = 0; i < num_edges; ++i)
{
// Create new triangle
Triangle *nt = CreateTriangle(edges[i].mStartIdx, edges[(i + 1) % num_edges].mStartIdx, inIdx);
if (nt == nullptr)
return false;
outTriangles.push_back(nt);
// Check if we need to put this triangle in the priority queue
if ((nt->mClosestPointInterior && nt->mClosestLenSq < inClosestDistSq) // For the main algorithm
|| nt->mClosestLenSq < 0.0f) // For when the origin is not inside the hull yet
mTriangleQueue.push_back(nt);
}
// Link edges
for (int i = 0; i < num_edges; ++i)
{
sLinkTriangle(outTriangles[i], 0, edges[i].mNeighbourTriangle, edges[i].mNeighbourEdge);
sLinkTriangle(outTriangles[i], 1, outTriangles[(i + 1) % num_edges], 2);
}
#ifdef JPH_EPA_CONVEX_BUILDER_VALIDATE
// Check if structure is intact
ValidateTriangles();
#endif
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Draw state of the hull
DrawState();
// Increment iteration counter
++mIteration;
#endif
return true;
}
/// Free a triangle
void FreeTriangle(Triangle *inT)
{
#ifdef JPH_ENABLE_ASSERTS
// Make sure that this triangle is not connected
JPH_ASSERT(inT->mRemoved);
for (const Edge &e : inT->mEdge)
JPH_ASSERT(e.mNeighbourTriangle == nullptr);
#endif
#if defined(JPH_EPA_CONVEX_BUILDER_VALIDATE) || defined(JPH_EPA_CONVEX_BUILDER_DRAW)
// Remove from list of all triangles
Triangles::iterator i = std::find(mTriangles.begin(), mTriangles.end(), inT);
JPH_ASSERT(i != mTriangles.end());
mTriangles.erase(i);
#endif
mFactory.FreeTriangle(inT);
}
private:
/// Create a new triangle
Triangle * CreateTriangle(int inIdx1, int inIdx2, int inIdx3)
{
// Call provider to create triangle
Triangle *t = mFactory.CreateTriangle(inIdx1, inIdx2, inIdx3, mPositions.data());
if (t == nullptr)
return nullptr;
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Remember iteration counter
t->mIteration = mIteration;
#endif
#if defined(JPH_EPA_CONVEX_BUILDER_VALIDATE) || defined(JPH_EPA_CONVEX_BUILDER_DRAW)
// Add to list of triangles for debugging purposes
mTriangles.push_back(t);
#endif
return t;
}
/// Link triangle edge to other triangle edge
static void sLinkTriangle(Triangle *inT1, int inEdge1, Triangle *inT2, int inEdge2)
{
JPH_ASSERT(inEdge1 >= 0 && inEdge1 < 3);
JPH_ASSERT(inEdge2 >= 0 && inEdge2 < 3);
Edge &e1 = inT1->mEdge[inEdge1];
Edge &e2 = inT2->mEdge[inEdge2];
// Check not connected yet
JPH_ASSERT(e1.mNeighbourTriangle == nullptr);
JPH_ASSERT(e2.mNeighbourTriangle == nullptr);
// Check vertices match
JPH_ASSERT(e1.mStartIdx == inT2->GetNextEdge(inEdge2).mStartIdx);
JPH_ASSERT(e2.mStartIdx == inT1->GetNextEdge(inEdge1).mStartIdx);
// Link up
e1.mNeighbourTriangle = inT2;
e1.mNeighbourEdge = inEdge2;
e2.mNeighbourTriangle = inT1;
e2.mNeighbourEdge = inEdge1;
}
/// Unlink this triangle
void UnlinkTriangle(Triangle *inT)
{
// Unlink from neighbours
for (int i = 0; i < 3; ++i)
{
Edge &edge = inT->mEdge[i];
if (edge.mNeighbourTriangle != nullptr)
{
Edge &neighbour_edge = edge.mNeighbourTriangle->mEdge[edge.mNeighbourEdge];
// Validate that neighbour points to us
JPH_ASSERT(neighbour_edge.mNeighbourTriangle == inT);
JPH_ASSERT(neighbour_edge.mNeighbourEdge == i);
// Unlink
neighbour_edge.mNeighbourTriangle = nullptr;
edge.mNeighbourTriangle = nullptr;
}
}
// If this triangle is not in the priority queue, we can delete it now
if (!inT->mInQueue)
FreeTriangle(inT);
}
/// Given one triangle that faces inVertex, find the edges of the triangles that are not facing inVertex.
/// Will flag all those triangles for removal.
bool FindEdge(Triangle *inFacingTriangle, Vec3Arg inVertex, Edges &outEdges)
{
// Assert that we were given an empty array
JPH_ASSERT(outEdges.empty());
// Should start with a facing triangle
JPH_ASSERT(inFacingTriangle->IsFacing(inVertex));
// Flag as removed
inFacingTriangle->mRemoved = true;
// Instead of recursing, we build our own stack with the information we need
struct StackEntry
{
Triangle * mTriangle;
int mEdge;
int mIter;
};
StackEntry stack[cMaxEdgeLength];
int cur_stack_pos = 0;
// Start with the triangle / edge provided
stack[0].mTriangle = inFacingTriangle;
stack[0].mEdge = 0;
stack[0].mIter = -1; // Start with edge 0 (is incremented below before use)
// Next index that we expect to find, if we don't then there are 'islands'
int next_expected_start_idx = -1;
for (;;)
{
StackEntry &cur_entry = stack[cur_stack_pos];
// Next iteration
if (++cur_entry.mIter >= 3)
{
// This triangle needs to be removed, unlink it now
UnlinkTriangle(cur_entry.mTriangle);
// Pop from stack
if (--cur_stack_pos < 0)
break;
}
else
{
// Visit neighbour
Edge &e = cur_entry.mTriangle->mEdge[(cur_entry.mEdge + cur_entry.mIter) % 3];
Triangle *n = e.mNeighbourTriangle;
if (n != nullptr && !n->mRemoved)
{
// Check if vertex is on the front side of this triangle
if (n->IsFacing(inVertex))
{
// Vertex on front, this triangle needs to be removed
n->mRemoved = true;
// Add element to the stack of elements to visit
cur_stack_pos++;
JPH_ASSERT(cur_stack_pos < cMaxEdgeLength);
StackEntry &new_entry = stack[cur_stack_pos];
new_entry.mTriangle = n;
new_entry.mEdge = e.mNeighbourEdge;
new_entry.mIter = 0; // Is incremented before use, we don't need to test this edge again since we came from it
}
else
{
// Detect if edge doesn't connect to previous edge, if this happens we have found and 'island' which means
// the newly added point is so close to the triangles of the hull that we classified some (nearly) coplanar
// triangles as before and some behind the point. At this point we just abort adding the point because
// we've reached numerical precision.
// Note that we do not need to test if the first and last edge connect, since when there are islands
// there should be at least 2 disconnects.
if (e.mStartIdx != next_expected_start_idx && next_expected_start_idx != -1)
return false;
// Next expected index is the start index of our neighbour's edge
next_expected_start_idx = n->mEdge[e.mNeighbourEdge].mStartIdx;
// Vertex behind, keep edge
outEdges.push_back(e);
}
}
}
}
// Assert that we have a fully connected loop
JPH_ASSERT(outEdges.empty() || outEdges[0].mStartIdx == next_expected_start_idx);
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
// Draw edge of facing triangles
for (int i = 0; i < (int)outEdges.size(); ++i)
{
RVec3 edge_start = cDrawScale * (mOffset + mPositions[outEdges[i].mStartIdx]);
DebugRenderer::sInstance->DrawArrow(edge_start, cDrawScale * (mOffset + mPositions[outEdges[(i + 1) % outEdges.size()].mStartIdx]), Color::sYellow, 0.01f);
DebugRenderer::sInstance->DrawText3D(edge_start, ConvertToString(outEdges[i].mStartIdx), Color::sWhite);
}
// Draw the state with the facing triangles removed
DrawState();
#endif
// When we start with two triangles facing away from each other and adding a point that is on the plane,
// sometimes we consider the point in front of both causing both triangles to be removed resulting in an empty edge list.
// In this case we fail to add the point which will result in no collision reported (the shapes are contacting in 1 point so there's 0 penetration)
return outEdges.size() >= 3;
}
#ifdef JPH_EPA_CONVEX_BUILDER_VALIDATE
/// Check consistency of 1 triangle
void ValidateTriangle(const Triangle *inT) const
{
if (inT->mRemoved)
{
// Validate that removed triangles are not connected to anything
for (const Edge &my_edge : inT->mEdge)
JPH_ASSERT(my_edge.mNeighbourTriangle == nullptr);
}
else
{
for (int i = 0; i < 3; ++i)
{
const Edge &my_edge = inT->mEdge[i];
// Assert that we have a neighbour
const Triangle *nb = my_edge.mNeighbourTriangle;
JPH_ASSERT(nb != nullptr);
if (nb != nullptr)
{
// Assert that our neighbours edge points to us
const Edge &nb_edge = nb->mEdge[my_edge.mNeighbourEdge];
JPH_ASSERT(nb_edge.mNeighbourTriangle == inT);
JPH_ASSERT(nb_edge.mNeighbourEdge == i);
// Assert that the next edge of the neighbour points to the same vertex as this edge's vertex
const Edge &nb_next_edge = nb->GetNextEdge(my_edge.mNeighbourEdge);
JPH_ASSERT(nb_next_edge.mStartIdx == my_edge.mStartIdx);
// Assert that my next edge points to the same vertex as my neighbours vertex
const Edge &my_next_edge = inT->GetNextEdge(i);
JPH_ASSERT(my_next_edge.mStartIdx == nb_edge.mStartIdx);
}
}
}
}
/// Check consistency of all triangles
void ValidateTriangles() const
{
for (const Triangle *t : mTriangles)
ValidateTriangle(t);
}
#endif
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
public:
/// Draw state of algorithm
void DrawState()
{
// Draw origin
DebugRenderer::sInstance->DrawCoordinateSystem(RMat44::sTranslation(cDrawScale * mOffset), 1.0f);
// Draw triangles
for (const Triangle *t : mTriangles)
if (!t->mRemoved)
{
// Calculate the triangle vertices
RVec3 p1 = cDrawScale * (mOffset + mPositions[t->mEdge[0].mStartIdx]);
RVec3 p2 = cDrawScale * (mOffset + mPositions[t->mEdge[1].mStartIdx]);
RVec3 p3 = cDrawScale * (mOffset + mPositions[t->mEdge[2].mStartIdx]);
// Draw triangle
DebugRenderer::sInstance->DrawTriangle(p1, p2, p3, Color::sGetDistinctColor(t->mIteration));
DebugRenderer::sInstance->DrawWireTriangle(p1, p2, p3, Color::sGrey);
// Draw normal
RVec3 centroid = cDrawScale * (mOffset + t->mCentroid);
float len = t->mNormal.Length();
if (len > 0.0f)
DebugRenderer::sInstance->DrawArrow(centroid, centroid + t->mNormal / len, Color::sDarkGreen, 0.01f);
}
// Determine max position
float min_x = FLT_MAX;
float max_x = -FLT_MAX;
for (Vec3 p : mPositions)
{
min_x = min(min_x, p.GetX());
max_x = max(max_x, p.GetX());
}
// Offset to the right
mOffset += Vec3(max_x - min_x + 0.5f, 0.0f, 0.0f);
}
/// Draw a label to indicate the next stage in the algorithm
void DrawLabel(const string_view &inText)
{
DebugRenderer::sInstance->DrawText3D(cDrawScale * mOffset, inText, Color::sWhite, 0.1f * cDrawScale);
mOffset += Vec3(5.0f, 0.0f, 0.0f);
}
/// Draw geometry for debugging purposes
void DrawGeometry(const DebugRenderer::GeometryRef &inGeometry, ColorArg inColor)
{
RMat44 origin = RMat44::sScale(Vec3::sReplicate(cDrawScale)) * RMat44::sTranslation(mOffset);
DebugRenderer::sInstance->DrawGeometry(origin, inGeometry->mBounds.Transformed(origin), inGeometry->mBounds.GetExtent().LengthSq(), inColor, inGeometry);
mOffset += Vec3(inGeometry->mBounds.GetSize().GetX(), 0, 0);
}
/// Draw a triangle for debugging purposes
void DrawWireTriangle(const Triangle &inTriangle, ColorArg inColor)
{
RVec3 prev = cDrawScale * (mOffset + mPositions[inTriangle.mEdge[2].mStartIdx]);
for (const Edge &edge : inTriangle.mEdge)
{
RVec3 cur = cDrawScale * (mOffset + mPositions[edge.mStartIdx]);
DebugRenderer::sInstance->DrawArrow(prev, cur, inColor, 0.01f);
prev = cur;
}
}
/// Draw a marker for debugging purposes
void DrawMarker(Vec3Arg inPosition, ColorArg inColor, float inSize)
{
DebugRenderer::sInstance->DrawMarker(cDrawScale * (mOffset + inPosition), inColor, inSize);
}
/// Draw an arrow for debugging purposes
void DrawArrow(Vec3Arg inFrom, Vec3Arg inTo, ColorArg inColor, float inArrowSize)
{
DebugRenderer::sInstance->DrawArrow(cDrawScale * (mOffset + inFrom), cDrawScale * (mOffset + inTo), inColor, inArrowSize);
}
#endif
private:
TriangleFactory mFactory; ///< Factory to create new triangles and remove old ones
const Points & mPositions; ///< List of positions (some of them are part of the hull)
TriangleQueue mTriangleQueue; ///< List of triangles that are part of the hull that still need to be checked (if !mRemoved)
#if defined(JPH_EPA_CONVEX_BUILDER_VALIDATE) || defined(JPH_EPA_CONVEX_BUILDER_DRAW)
Triangles mTriangles; ///< The list of all triangles in this hull (for debug purposes)
#endif
#ifdef JPH_EPA_CONVEX_BUILDER_DRAW
int mIteration; ///< Number of iterations we've had so far (for debug purposes)
RVec3 mOffset; ///< Offset to use for state drawing
#endif
};
// The determinant that is calculated in the Triangle constructor is really sensitive
// to numerical round off, disable the fmadd instructions to maintain precision.
JPH_PRECISE_MATH_ON
EPAConvexHullBuilder::Triangle::Triangle(int inIdx0, int inIdx1, int inIdx2, const Vec3 *inPositions)
{
// Fill in indexes
JPH_ASSERT(inIdx0 != inIdx1 && inIdx0 != inIdx2 && inIdx1 != inIdx2);
mEdge[0].mStartIdx = inIdx0;
mEdge[1].mStartIdx = inIdx1;
mEdge[2].mStartIdx = inIdx2;
// Clear links
mEdge[0].mNeighbourTriangle = nullptr;
mEdge[1].mNeighbourTriangle = nullptr;
mEdge[2].mNeighbourTriangle = nullptr;
// Get vertex positions
Vec3 y0 = inPositions[inIdx0];
Vec3 y1 = inPositions[inIdx1];
Vec3 y2 = inPositions[inIdx2];
// Calculate centroid
mCentroid = (y0 + y1 + y2) / 3.0f;
// Calculate edges
Vec3 y10 = y1 - y0;
Vec3 y20 = y2 - y0;
Vec3 y21 = y2 - y1;
// The most accurate normal is calculated by using the two shortest edges
// See: https://box2d.org/posts/2014/01/troublesome-triangle/
// The difference in normals is most pronounced when one edge is much smaller than the others (in which case the other 2 must have roughly the same length).
// Therefore we can suffice by just picking the shortest from 2 edges and use that with the 3rd edge to calculate the normal.
// We first check which of the edges is shorter.
float y20_dot_y20 = y20.Dot(y20);
float y21_dot_y21 = y21.Dot(y21);
if (y20_dot_y20 < y21_dot_y21)
{
// We select the edges y10 and y20
mNormal = y10.Cross(y20);
// Check if triangle is degenerate
float normal_len_sq = mNormal.LengthSq();
if (normal_len_sq > cMinTriangleArea)
{
// Determine distance between triangle and origin: distance = (centroid - origin) . normal / |normal|
// Note that this way of calculating the closest point is much more accurate than first calculating barycentric coordinates and then calculating the closest
// point based on those coordinates. Note that we preserve the sign of the distance to check on which side the origin is.
float c_dot_n = mCentroid.Dot(mNormal);
mClosestLenSq = abs(c_dot_n) * c_dot_n / normal_len_sq;
// Calculate closest point to origin using barycentric coordinates:
//
// v = y0 + l0 * (y1 - y0) + l1 * (y2 - y0)
// v . (y1 - y0) = 0
// v . (y2 - y0) = 0
//
// Written in matrix form:
//
// | y10.y10 y20.y10 | | l0 | = | -y0.y10 |
// | y10.y20 y20.y20 | | l1 | | -y0.y20 |
//
// (y10 = y1 - y0 etc.)
//
// Cramers rule to invert matrix:
float y10_dot_y10 = y10.LengthSq();
float y10_dot_y20 = y10.Dot(y20);
float determinant = y10_dot_y10 * y20_dot_y20 - y10_dot_y20 * y10_dot_y20;
if (determinant > 0.0f) // If determinant == 0 then the system is linearly dependent and the triangle is degenerate, since y10.10 * y20.y20 > y10.y20^2 it should also be > 0
{
float y0_dot_y10 = y0.Dot(y10);
float y0_dot_y20 = y0.Dot(y20);
float l0 = (y10_dot_y20 * y0_dot_y20 - y20_dot_y20 * y0_dot_y10) / determinant;
float l1 = (y10_dot_y20 * y0_dot_y10 - y10_dot_y10 * y0_dot_y20) / determinant;
mLambda[0] = l0;
mLambda[1] = l1;
mLambdaRelativeTo0 = true;
// Check if closest point is interior to the triangle. For a convex hull which contains the origin each face must contain the origin, but because
// our faces are triangles, we can have multiple coplanar triangles and only 1 will have the origin as an interior point. We want to use this triangle
// to calculate the contact points because it gives the most accurate results, so we will only add these triangles to the priority queue.
if (l0 > -cBarycentricEpsilon && l1 > -cBarycentricEpsilon && l0 + l1 < 1.0f + cBarycentricEpsilon)
mClosestPointInterior = true;
}
}
}
else
{
// We select the edges y10 and y21
mNormal = y10.Cross(y21);
// Check if triangle is degenerate
float normal_len_sq = mNormal.LengthSq();
if (normal_len_sq > cMinTriangleArea)
{
// Again calculate distance between triangle and origin
float c_dot_n = mCentroid.Dot(mNormal);
mClosestLenSq = abs(c_dot_n) * c_dot_n / normal_len_sq;
// Calculate closest point to origin using barycentric coordinates but this time using y1 as the reference vertex
//
// v = y1 + l0 * (y0 - y1) + l1 * (y2 - y1)
// v . (y0 - y1) = 0
// v . (y2 - y1) = 0
//
// Written in matrix form:
//
// | y10.y10 -y21.y10 | | l0 | = | y1.y10 |
// | -y10.y21 y21.y21 | | l1 | | -y1.y21 |
//
// Cramers rule to invert matrix:
float y10_dot_y10 = y10.LengthSq();
float y10_dot_y21 = y10.Dot(y21);
float determinant = y10_dot_y10 * y21_dot_y21 - y10_dot_y21 * y10_dot_y21;
if (determinant > 0.0f)
{
float y1_dot_y10 = y1.Dot(y10);
float y1_dot_y21 = y1.Dot(y21);
float l0 = (y21_dot_y21 * y1_dot_y10 - y10_dot_y21 * y1_dot_y21) / determinant;
float l1 = (y10_dot_y21 * y1_dot_y10 - y10_dot_y10 * y1_dot_y21) / determinant;
mLambda[0] = l0;
mLambda[1] = l1;
mLambdaRelativeTo0 = false;
// Again check if the closest point is inside the triangle
if (l0 > -cBarycentricEpsilon && l1 > -cBarycentricEpsilon && l0 + l1 < 1.0f + cBarycentricEpsilon)
mClosestPointInterior = true;
}
}
}
}
JPH_PRECISE_MATH_OFF
JPH_NAMESPACE_END