// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics) // SPDX-FileCopyrightText: 2021 Jorrit Rouwe // SPDX-License-Identifier: MIT #pragma once // Define to validate the integrity of the hull structure //#define JPH_EPA_CONVEX_BUILDER_VALIDATE // Define to draw the building of the hull for debugging purposes //#define JPH_EPA_CONVEX_BUILDER_DRAW #include #include #ifdef JPH_EPA_CONVEX_BUILDER_DRAW #include #include #endif JPH_NAMESPACE_BEGIN /// A convex hull builder specifically made for the EPA penetration depth calculation. It trades accuracy for speed and will simply abort of the hull forms defects due to numerical precision problems. class EPAConvexHullBuilder : public NonCopyable { private: #ifdef JPH_EPA_CONVEX_BUILDER_DRAW /// Factor to scale convex hull when debug drawing the construction process static constexpr Real cDrawScale = 10; #endif public: // Due to the Euler characteristic (https://en.wikipedia.org/wiki/Euler_characteristic) we know that Vertices - Edges + Faces = 2 // In our case we only have triangles and they are always fully connected, so each edge is shared exactly between 2 faces: Edges = Faces * 3 / 2 // Substituting: Vertices = Faces / 2 + 2 which is approximately Faces / 2. static constexpr int cMaxTriangles = 256; ///< Max triangles in hull static constexpr int cMaxPoints = cMaxTriangles / 2; ///< Max number of points in hull // Constants static constexpr int cMaxEdgeLength = 128; ///< Max number of edges in FindEdge static constexpr float cMinTriangleArea = 1.0e-10f; ///< Minimum area of a triangle before, if smaller than this it will not be added to the priority queue static constexpr float cBarycentricEpsilon = 1.0e-3f; ///< Epsilon value used to determine if a point is in the interior of a triangle // Forward declare class Triangle; /// Class that holds the information of an edge class Edge { public: /// Information about neighbouring triangle Triangle * mNeighbourTriangle; ///< Triangle that neighbours this triangle int mNeighbourEdge; ///< Index in mEdge that specifies edge that this Edge is connected to int mStartIdx; ///< Vertex index in mPositions that indicates the start vertex of this edge }; using Edges = StaticArray; using NewTriangles = StaticArray; /// Class that holds the information of one triangle class Triangle : public NonCopyable { public: /// Constructor inline Triangle(int inIdx0, int inIdx1, int inIdx2, const Vec3 *inPositions); /// Check if triangle is facing inPosition inline bool IsFacing(Vec3Arg inPosition) const { JPH_ASSERT(!mRemoved); return mNormal.Dot(inPosition - mCentroid) > 0.0f; } /// Check if triangle is facing the origin inline bool IsFacingOrigin() const { JPH_ASSERT(!mRemoved); return mNormal.Dot(mCentroid) < 0.0f; } /// Get the next edge of edge inIndex inline const Edge & GetNextEdge(int inIndex) const { return mEdge[(inIndex + 1) % 3]; } Edge mEdge[3]; ///< 3 edges of this triangle Vec3 mNormal; ///< Normal of this triangle, length is 2 times area of triangle Vec3 mCentroid; ///< Center of the triangle float mClosestLenSq = FLT_MAX; ///< Closest distance^2 from origin to triangle float mLambda[2]; ///< Barycentric coordinates of closest point to origin on triangle bool mLambdaRelativeTo0; ///< How to calculate the closest point, true: y0 + l0 * (y1 - y0) + l1 * (y2 - y0), false: y1 + l0 * (y0 - y1) + l1 * (y2 - y1) bool mClosestPointInterior = false; ///< Flag that indicates that the closest point from this triangle to the origin is an interior point bool mRemoved = false; ///< Flag that indicates that triangle has been removed bool mInQueue = false; ///< Flag that indicates that this triangle was placed in the sorted heap (stays true after it is popped because the triangle is freed by the main EPA algorithm loop) #ifdef JPH_EPA_CONVEX_BUILDER_DRAW int mIteration; ///< Iteration that this triangle was created #endif }; /// Factory that creates triangles in a fixed size buffer class TriangleFactory : public NonCopyable { private: /// Struct that stores both a triangle or a next pointer in case the triangle is unused union alignas(Triangle) Block { uint8 mTriangle[sizeof(Triangle)]; Block * mNextFree; }; /// Storage for triangle data Block mTriangles[cMaxTriangles]; ///< Storage for triangles Block * mNextFree = nullptr; ///< List of free triangles int mHighWatermark = 0; ///< High water mark for used triangles (if mNextFree == nullptr we can take one from here) public: /// Return all triangles to the free pool void Clear() { mNextFree = nullptr; mHighWatermark = 0; } /// Allocate a new triangle with 3 indexes Triangle * CreateTriangle(int inIdx0, int inIdx1, int inIdx2, const Vec3 *inPositions) { Triangle *t; if (mNextFree != nullptr) { // Entry available from the free list t = reinterpret_cast(&mNextFree->mTriangle); mNextFree = mNextFree->mNextFree; } else { // Allocate from never used before triangle store if (mHighWatermark >= cMaxTriangles) return nullptr; // Buffer full t = reinterpret_cast(&mTriangles[mHighWatermark].mTriangle); ++mHighWatermark; } // Call constructor new (t) Triangle(inIdx0, inIdx1, inIdx2, inPositions); return t; } /// Free a triangle void FreeTriangle(Triangle *inT) { // Destruct triangle inT->~Triangle(); #ifdef JPH_DEBUG memset(inT, 0xcd, sizeof(Triangle)); #endif // Add triangle to the free list Block *tu = reinterpret_cast(inT); tu->mNextFree = mNextFree; mNextFree = tu; } }; // Typedefs using PointsBase = StaticArray; using Triangles = StaticArray; /// Specialized points list that allows direct access to the size class Points : public PointsBase { public: size_type & GetSizeRef() { return mSize; } }; /// Specialized triangles list that keeps them sorted on closest distance to origin class TriangleQueue : public Triangles { public: /// Function to sort triangles on closest distance to origin static bool sTriangleSorter(const Triangle *inT1, const Triangle *inT2) { return inT1->mClosestLenSq > inT2->mClosestLenSq; } /// Add triangle to the list void push_back(Triangle *inT) { // Add to base Triangles::push_back(inT); // Mark in queue inT->mInQueue = true; // Resort heap BinaryHeapPush(begin(), end(), sTriangleSorter); } /// Peek the next closest triangle without removing it Triangle * PeekClosest() { return front(); } /// Get next closest triangle Triangle * PopClosest() { // Move closest to end BinaryHeapPop(begin(), end(), sTriangleSorter); // Remove last triangle Triangle *t = back(); pop_back(); return t; } }; /// Constructor explicit EPAConvexHullBuilder(const Points &inPositions) : mPositions(inPositions) { #ifdef JPH_EPA_CONVEX_BUILDER_DRAW mIteration = 0; mOffset = RVec3::sZero(); #endif } /// Initialize the hull with 3 points void Initialize(int inIdx1, int inIdx2, int inIdx3) { // Release triangles mFactory.Clear(); // Create triangles (back to back) Triangle *t1 = CreateTriangle(inIdx1, inIdx2, inIdx3); Triangle *t2 = CreateTriangle(inIdx1, inIdx3, inIdx2); // Link triangles edges sLinkTriangle(t1, 0, t2, 2); sLinkTriangle(t1, 1, t2, 1); sLinkTriangle(t1, 2, t2, 0); // Always add both triangles to the priority queue mTriangleQueue.push_back(t1); mTriangleQueue.push_back(t2); #ifdef JPH_EPA_CONVEX_BUILDER_DRAW // Draw current state DrawState(); // Increment iteration counter ++mIteration; #endif } /// Check if there's another triangle to process from the queue bool HasNextTriangle() const { return !mTriangleQueue.empty(); } /// Access to the next closest triangle to the origin (won't remove it from the queue). Triangle * PeekClosestTriangleInQueue() { return mTriangleQueue.PeekClosest(); } /// Access to the next closest triangle to the origin and remove it from the queue. Triangle * PopClosestTriangleFromQueue() { return mTriangleQueue.PopClosest(); } /// Find the triangle on which inPosition is the furthest to the front /// Note this function works as long as all points added have been added with AddPoint(..., FLT_MAX). Triangle * FindFacingTriangle(Vec3Arg inPosition, float &outBestDistSq) { Triangle *best = nullptr; float best_dist_sq = 0.0f; for (Triangle *t : mTriangleQueue) if (!t->mRemoved) { float dot = t->mNormal.Dot(inPosition - t->mCentroid); if (dot > 0.0f) { float dist_sq = dot * dot / t->mNormal.LengthSq(); if (dist_sq > best_dist_sq) { best = t; best_dist_sq = dist_sq; } } } outBestDistSq = best_dist_sq; return best; } /// Add a new point to the convex hull bool AddPoint(Triangle *inFacingTriangle, int inIdx, float inClosestDistSq, NewTriangles &outTriangles) { // Get position Vec3 pos = mPositions[inIdx]; #ifdef JPH_EPA_CONVEX_BUILDER_DRAW // Draw new support point DrawMarker(pos, Color::sYellow, 1.0f); #endif #ifdef JPH_EPA_CONVEX_BUILDER_VALIDATE // Check if structure is intact ValidateTriangles(); #endif // Find edge of convex hull of triangles that are not facing the new vertex w Edges edges; if (!FindEdge(inFacingTriangle, pos, edges)) return false; // Create new triangles int num_edges = edges.size(); for (int i = 0; i < num_edges; ++i) { // Create new triangle Triangle *nt = CreateTriangle(edges[i].mStartIdx, edges[(i + 1) % num_edges].mStartIdx, inIdx); if (nt == nullptr) return false; outTriangles.push_back(nt); // Check if we need to put this triangle in the priority queue if ((nt->mClosestPointInterior && nt->mClosestLenSq < inClosestDistSq) // For the main algorithm || nt->mClosestLenSq < 0.0f) // For when the origin is not inside the hull yet mTriangleQueue.push_back(nt); } // Link edges for (int i = 0; i < num_edges; ++i) { sLinkTriangle(outTriangles[i], 0, edges[i].mNeighbourTriangle, edges[i].mNeighbourEdge); sLinkTriangle(outTriangles[i], 1, outTriangles[(i + 1) % num_edges], 2); } #ifdef JPH_EPA_CONVEX_BUILDER_VALIDATE // Check if structure is intact ValidateTriangles(); #endif #ifdef JPH_EPA_CONVEX_BUILDER_DRAW // Draw state of the hull DrawState(); // Increment iteration counter ++mIteration; #endif return true; } /// Free a triangle void FreeTriangle(Triangle *inT) { #ifdef JPH_ENABLE_ASSERTS // Make sure that this triangle is not connected JPH_ASSERT(inT->mRemoved); for (const Edge &e : inT->mEdge) JPH_ASSERT(e.mNeighbourTriangle == nullptr); #endif #if defined(JPH_EPA_CONVEX_BUILDER_VALIDATE) || defined(JPH_EPA_CONVEX_BUILDER_DRAW) // Remove from list of all triangles Triangles::iterator i = std::find(mTriangles.begin(), mTriangles.end(), inT); JPH_ASSERT(i != mTriangles.end()); mTriangles.erase(i); #endif mFactory.FreeTriangle(inT); } private: /// Create a new triangle Triangle * CreateTriangle(int inIdx1, int inIdx2, int inIdx3) { // Call provider to create triangle Triangle *t = mFactory.CreateTriangle(inIdx1, inIdx2, inIdx3, mPositions.data()); if (t == nullptr) return nullptr; #ifdef JPH_EPA_CONVEX_BUILDER_DRAW // Remember iteration counter t->mIteration = mIteration; #endif #if defined(JPH_EPA_CONVEX_BUILDER_VALIDATE) || defined(JPH_EPA_CONVEX_BUILDER_DRAW) // Add to list of triangles for debugging purposes mTriangles.push_back(t); #endif return t; } /// Link triangle edge to other triangle edge static void sLinkTriangle(Triangle *inT1, int inEdge1, Triangle *inT2, int inEdge2) { JPH_ASSERT(inEdge1 >= 0 && inEdge1 < 3); JPH_ASSERT(inEdge2 >= 0 && inEdge2 < 3); Edge &e1 = inT1->mEdge[inEdge1]; Edge &e2 = inT2->mEdge[inEdge2]; // Check not connected yet JPH_ASSERT(e1.mNeighbourTriangle == nullptr); JPH_ASSERT(e2.mNeighbourTriangle == nullptr); // Check vertices match JPH_ASSERT(e1.mStartIdx == inT2->GetNextEdge(inEdge2).mStartIdx); JPH_ASSERT(e2.mStartIdx == inT1->GetNextEdge(inEdge1).mStartIdx); // Link up e1.mNeighbourTriangle = inT2; e1.mNeighbourEdge = inEdge2; e2.mNeighbourTriangle = inT1; e2.mNeighbourEdge = inEdge1; } /// Unlink this triangle void UnlinkTriangle(Triangle *inT) { // Unlink from neighbours for (int i = 0; i < 3; ++i) { Edge &edge = inT->mEdge[i]; if (edge.mNeighbourTriangle != nullptr) { Edge &neighbour_edge = edge.mNeighbourTriangle->mEdge[edge.mNeighbourEdge]; // Validate that neighbour points to us JPH_ASSERT(neighbour_edge.mNeighbourTriangle == inT); JPH_ASSERT(neighbour_edge.mNeighbourEdge == i); // Unlink neighbour_edge.mNeighbourTriangle = nullptr; edge.mNeighbourTriangle = nullptr; } } // If this triangle is not in the priority queue, we can delete it now if (!inT->mInQueue) FreeTriangle(inT); } /// Given one triangle that faces inVertex, find the edges of the triangles that are not facing inVertex. /// Will flag all those triangles for removal. bool FindEdge(Triangle *inFacingTriangle, Vec3Arg inVertex, Edges &outEdges) { // Assert that we were given an empty array JPH_ASSERT(outEdges.empty()); // Should start with a facing triangle JPH_ASSERT(inFacingTriangle->IsFacing(inVertex)); // Flag as removed inFacingTriangle->mRemoved = true; // Instead of recursing, we build our own stack with the information we need struct StackEntry { Triangle * mTriangle; int mEdge; int mIter; }; StackEntry stack[cMaxEdgeLength]; int cur_stack_pos = 0; // Start with the triangle / edge provided stack[0].mTriangle = inFacingTriangle; stack[0].mEdge = 0; stack[0].mIter = -1; // Start with edge 0 (is incremented below before use) // Next index that we expect to find, if we don't then there are 'islands' int next_expected_start_idx = -1; for (;;) { StackEntry &cur_entry = stack[cur_stack_pos]; // Next iteration if (++cur_entry.mIter >= 3) { // This triangle needs to be removed, unlink it now UnlinkTriangle(cur_entry.mTriangle); // Pop from stack if (--cur_stack_pos < 0) break; } else { // Visit neighbour Edge &e = cur_entry.mTriangle->mEdge[(cur_entry.mEdge + cur_entry.mIter) % 3]; Triangle *n = e.mNeighbourTriangle; if (n != nullptr && !n->mRemoved) { // Check if vertex is on the front side of this triangle if (n->IsFacing(inVertex)) { // Vertex on front, this triangle needs to be removed n->mRemoved = true; // Add element to the stack of elements to visit cur_stack_pos++; JPH_ASSERT(cur_stack_pos < cMaxEdgeLength); StackEntry &new_entry = stack[cur_stack_pos]; new_entry.mTriangle = n; new_entry.mEdge = e.mNeighbourEdge; new_entry.mIter = 0; // Is incremented before use, we don't need to test this edge again since we came from it } else { // Detect if edge doesn't connect to previous edge, if this happens we have found and 'island' which means // the newly added point is so close to the triangles of the hull that we classified some (nearly) coplanar // triangles as before and some behind the point. At this point we just abort adding the point because // we've reached numerical precision. // Note that we do not need to test if the first and last edge connect, since when there are islands // there should be at least 2 disconnects. if (e.mStartIdx != next_expected_start_idx && next_expected_start_idx != -1) return false; // Next expected index is the start index of our neighbour's edge next_expected_start_idx = n->mEdge[e.mNeighbourEdge].mStartIdx; // Vertex behind, keep edge outEdges.push_back(e); } } } } // Assert that we have a fully connected loop JPH_ASSERT(outEdges.empty() || outEdges[0].mStartIdx == next_expected_start_idx); #ifdef JPH_EPA_CONVEX_BUILDER_DRAW // Draw edge of facing triangles for (int i = 0; i < (int)outEdges.size(); ++i) { RVec3 edge_start = cDrawScale * (mOffset + mPositions[outEdges[i].mStartIdx]); DebugRenderer::sInstance->DrawArrow(edge_start, cDrawScale * (mOffset + mPositions[outEdges[(i + 1) % outEdges.size()].mStartIdx]), Color::sYellow, 0.01f); DebugRenderer::sInstance->DrawText3D(edge_start, ConvertToString(outEdges[i].mStartIdx), Color::sWhite); } // Draw the state with the facing triangles removed DrawState(); #endif // When we start with two triangles facing away from each other and adding a point that is on the plane, // sometimes we consider the point in front of both causing both triangles to be removed resulting in an empty edge list. // In this case we fail to add the point which will result in no collision reported (the shapes are contacting in 1 point so there's 0 penetration) return outEdges.size() >= 3; } #ifdef JPH_EPA_CONVEX_BUILDER_VALIDATE /// Check consistency of 1 triangle void ValidateTriangle(const Triangle *inT) const { if (inT->mRemoved) { // Validate that removed triangles are not connected to anything for (const Edge &my_edge : inT->mEdge) JPH_ASSERT(my_edge.mNeighbourTriangle == nullptr); } else { for (int i = 0; i < 3; ++i) { const Edge &my_edge = inT->mEdge[i]; // Assert that we have a neighbour const Triangle *nb = my_edge.mNeighbourTriangle; JPH_ASSERT(nb != nullptr); if (nb != nullptr) { // Assert that our neighbours edge points to us const Edge &nb_edge = nb->mEdge[my_edge.mNeighbourEdge]; JPH_ASSERT(nb_edge.mNeighbourTriangle == inT); JPH_ASSERT(nb_edge.mNeighbourEdge == i); // Assert that the next edge of the neighbour points to the same vertex as this edge's vertex const Edge &nb_next_edge = nb->GetNextEdge(my_edge.mNeighbourEdge); JPH_ASSERT(nb_next_edge.mStartIdx == my_edge.mStartIdx); // Assert that my next edge points to the same vertex as my neighbours vertex const Edge &my_next_edge = inT->GetNextEdge(i); JPH_ASSERT(my_next_edge.mStartIdx == nb_edge.mStartIdx); } } } } /// Check consistency of all triangles void ValidateTriangles() const { for (const Triangle *t : mTriangles) ValidateTriangle(t); } #endif #ifdef JPH_EPA_CONVEX_BUILDER_DRAW public: /// Draw state of algorithm void DrawState() { // Draw origin DebugRenderer::sInstance->DrawCoordinateSystem(RMat44::sTranslation(cDrawScale * mOffset), 1.0f); // Draw triangles for (const Triangle *t : mTriangles) if (!t->mRemoved) { // Calculate the triangle vertices RVec3 p1 = cDrawScale * (mOffset + mPositions[t->mEdge[0].mStartIdx]); RVec3 p2 = cDrawScale * (mOffset + mPositions[t->mEdge[1].mStartIdx]); RVec3 p3 = cDrawScale * (mOffset + mPositions[t->mEdge[2].mStartIdx]); // Draw triangle DebugRenderer::sInstance->DrawTriangle(p1, p2, p3, Color::sGetDistinctColor(t->mIteration)); DebugRenderer::sInstance->DrawWireTriangle(p1, p2, p3, Color::sGrey); // Draw normal RVec3 centroid = cDrawScale * (mOffset + t->mCentroid); float len = t->mNormal.Length(); if (len > 0.0f) DebugRenderer::sInstance->DrawArrow(centroid, centroid + t->mNormal / len, Color::sDarkGreen, 0.01f); } // Determine max position float min_x = FLT_MAX; float max_x = -FLT_MAX; for (Vec3 p : mPositions) { min_x = min(min_x, p.GetX()); max_x = max(max_x, p.GetX()); } // Offset to the right mOffset += Vec3(max_x - min_x + 0.5f, 0.0f, 0.0f); } /// Draw a label to indicate the next stage in the algorithm void DrawLabel(const string_view &inText) { DebugRenderer::sInstance->DrawText3D(cDrawScale * mOffset, inText, Color::sWhite, 0.1f * cDrawScale); mOffset += Vec3(5.0f, 0.0f, 0.0f); } /// Draw geometry for debugging purposes void DrawGeometry(const DebugRenderer::GeometryRef &inGeometry, ColorArg inColor) { RMat44 origin = RMat44::sScale(Vec3::sReplicate(cDrawScale)) * RMat44::sTranslation(mOffset); DebugRenderer::sInstance->DrawGeometry(origin, inGeometry->mBounds.Transformed(origin), inGeometry->mBounds.GetExtent().LengthSq(), inColor, inGeometry); mOffset += Vec3(inGeometry->mBounds.GetSize().GetX(), 0, 0); } /// Draw a triangle for debugging purposes void DrawWireTriangle(const Triangle &inTriangle, ColorArg inColor) { RVec3 prev = cDrawScale * (mOffset + mPositions[inTriangle.mEdge[2].mStartIdx]); for (const Edge &edge : inTriangle.mEdge) { RVec3 cur = cDrawScale * (mOffset + mPositions[edge.mStartIdx]); DebugRenderer::sInstance->DrawArrow(prev, cur, inColor, 0.01f); prev = cur; } } /// Draw a marker for debugging purposes void DrawMarker(Vec3Arg inPosition, ColorArg inColor, float inSize) { DebugRenderer::sInstance->DrawMarker(cDrawScale * (mOffset + inPosition), inColor, inSize); } /// Draw an arrow for debugging purposes void DrawArrow(Vec3Arg inFrom, Vec3Arg inTo, ColorArg inColor, float inArrowSize) { DebugRenderer::sInstance->DrawArrow(cDrawScale * (mOffset + inFrom), cDrawScale * (mOffset + inTo), inColor, inArrowSize); } #endif private: TriangleFactory mFactory; ///< Factory to create new triangles and remove old ones const Points & mPositions; ///< List of positions (some of them are part of the hull) TriangleQueue mTriangleQueue; ///< List of triangles that are part of the hull that still need to be checked (if !mRemoved) #if defined(JPH_EPA_CONVEX_BUILDER_VALIDATE) || defined(JPH_EPA_CONVEX_BUILDER_DRAW) Triangles mTriangles; ///< The list of all triangles in this hull (for debug purposes) #endif #ifdef JPH_EPA_CONVEX_BUILDER_DRAW int mIteration; ///< Number of iterations we've had so far (for debug purposes) RVec3 mOffset; ///< Offset to use for state drawing #endif }; // The determinant that is calculated in the Triangle constructor is really sensitive // to numerical round off, disable the fmadd instructions to maintain precision. JPH_PRECISE_MATH_ON EPAConvexHullBuilder::Triangle::Triangle(int inIdx0, int inIdx1, int inIdx2, const Vec3 *inPositions) { // Fill in indexes JPH_ASSERT(inIdx0 != inIdx1 && inIdx0 != inIdx2 && inIdx1 != inIdx2); mEdge[0].mStartIdx = inIdx0; mEdge[1].mStartIdx = inIdx1; mEdge[2].mStartIdx = inIdx2; // Clear links mEdge[0].mNeighbourTriangle = nullptr; mEdge[1].mNeighbourTriangle = nullptr; mEdge[2].mNeighbourTriangle = nullptr; // Get vertex positions Vec3 y0 = inPositions[inIdx0]; Vec3 y1 = inPositions[inIdx1]; Vec3 y2 = inPositions[inIdx2]; // Calculate centroid mCentroid = (y0 + y1 + y2) / 3.0f; // Calculate edges Vec3 y10 = y1 - y0; Vec3 y20 = y2 - y0; Vec3 y21 = y2 - y1; // The most accurate normal is calculated by using the two shortest edges // See: https://box2d.org/posts/2014/01/troublesome-triangle/ // The difference in normals is most pronounced when one edge is much smaller than the others (in which case the other 2 must have roughly the same length). // Therefore we can suffice by just picking the shortest from 2 edges and use that with the 3rd edge to calculate the normal. // We first check which of the edges is shorter. float y20_dot_y20 = y20.Dot(y20); float y21_dot_y21 = y21.Dot(y21); if (y20_dot_y20 < y21_dot_y21) { // We select the edges y10 and y20 mNormal = y10.Cross(y20); // Check if triangle is degenerate float normal_len_sq = mNormal.LengthSq(); if (normal_len_sq > cMinTriangleArea) { // Determine distance between triangle and origin: distance = (centroid - origin) . normal / |normal| // Note that this way of calculating the closest point is much more accurate than first calculating barycentric coordinates and then calculating the closest // point based on those coordinates. Note that we preserve the sign of the distance to check on which side the origin is. float c_dot_n = mCentroid.Dot(mNormal); mClosestLenSq = abs(c_dot_n) * c_dot_n / normal_len_sq; // Calculate closest point to origin using barycentric coordinates: // // v = y0 + l0 * (y1 - y0) + l1 * (y2 - y0) // v . (y1 - y0) = 0 // v . (y2 - y0) = 0 // // Written in matrix form: // // | y10.y10 y20.y10 | | l0 | = | -y0.y10 | // | y10.y20 y20.y20 | | l1 | | -y0.y20 | // // (y10 = y1 - y0 etc.) // // Cramers rule to invert matrix: float y10_dot_y10 = y10.LengthSq(); float y10_dot_y20 = y10.Dot(y20); float determinant = y10_dot_y10 * y20_dot_y20 - y10_dot_y20 * y10_dot_y20; if (determinant > 0.0f) // If determinant == 0 then the system is linearly dependent and the triangle is degenerate, since y10.10 * y20.y20 > y10.y20^2 it should also be > 0 { float y0_dot_y10 = y0.Dot(y10); float y0_dot_y20 = y0.Dot(y20); float l0 = (y10_dot_y20 * y0_dot_y20 - y20_dot_y20 * y0_dot_y10) / determinant; float l1 = (y10_dot_y20 * y0_dot_y10 - y10_dot_y10 * y0_dot_y20) / determinant; mLambda[0] = l0; mLambda[1] = l1; mLambdaRelativeTo0 = true; // Check if closest point is interior to the triangle. For a convex hull which contains the origin each face must contain the origin, but because // our faces are triangles, we can have multiple coplanar triangles and only 1 will have the origin as an interior point. We want to use this triangle // to calculate the contact points because it gives the most accurate results, so we will only add these triangles to the priority queue. if (l0 > -cBarycentricEpsilon && l1 > -cBarycentricEpsilon && l0 + l1 < 1.0f + cBarycentricEpsilon) mClosestPointInterior = true; } } } else { // We select the edges y10 and y21 mNormal = y10.Cross(y21); // Check if triangle is degenerate float normal_len_sq = mNormal.LengthSq(); if (normal_len_sq > cMinTriangleArea) { // Again calculate distance between triangle and origin float c_dot_n = mCentroid.Dot(mNormal); mClosestLenSq = abs(c_dot_n) * c_dot_n / normal_len_sq; // Calculate closest point to origin using barycentric coordinates but this time using y1 as the reference vertex // // v = y1 + l0 * (y0 - y1) + l1 * (y2 - y1) // v . (y0 - y1) = 0 // v . (y2 - y1) = 0 // // Written in matrix form: // // | y10.y10 -y21.y10 | | l0 | = | y1.y10 | // | -y10.y21 y21.y21 | | l1 | | -y1.y21 | // // Cramers rule to invert matrix: float y10_dot_y10 = y10.LengthSq(); float y10_dot_y21 = y10.Dot(y21); float determinant = y10_dot_y10 * y21_dot_y21 - y10_dot_y21 * y10_dot_y21; if (determinant > 0.0f) { float y1_dot_y10 = y1.Dot(y10); float y1_dot_y21 = y1.Dot(y21); float l0 = (y21_dot_y21 * y1_dot_y10 - y10_dot_y21 * y1_dot_y21) / determinant; float l1 = (y10_dot_y21 * y1_dot_y10 - y10_dot_y10 * y1_dot_y21) / determinant; mLambda[0] = l0; mLambda[1] = l1; mLambdaRelativeTo0 = false; // Again check if the closest point is inside the triangle if (l0 > -cBarycentricEpsilon && l1 > -cBarycentricEpsilon && l0 + l1 < 1.0f + cBarycentricEpsilon) mClosestPointInterior = true; } } } } JPH_PRECISE_MATH_OFF JPH_NAMESPACE_END