183 lines
7.8 KiB
GLSL
183 lines
7.8 KiB
GLSL
layout(std140) uniform TonemapData { //ubo:0
|
|
float exposure;
|
|
float white;
|
|
int tonemapper;
|
|
int pad;
|
|
|
|
int pad2;
|
|
float brightness;
|
|
float contrast;
|
|
float saturation;
|
|
};
|
|
|
|
// This expects 0-1 range input.
|
|
vec3 linear_to_srgb(vec3 color) {
|
|
//color = clamp(color, vec3(0.0), vec3(1.0));
|
|
//const vec3 a = vec3(0.055f);
|
|
//return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f)));
|
|
// Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
|
|
return max(vec3(1.055) * pow(color, vec3(0.416666667)) - vec3(0.055), vec3(0.0));
|
|
}
|
|
|
|
// This expects 0-1 range input, outside that range it behaves poorly.
|
|
vec3 srgb_to_linear(vec3 color) {
|
|
// Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html
|
|
return color * (color * (color * 0.305306011 + 0.682171111) + 0.012522878);
|
|
}
|
|
|
|
#ifdef APPLY_TONEMAPPING
|
|
|
|
// Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt
|
|
vec3 tonemap_reinhard(vec3 color, float p_white) {
|
|
float white_squared = p_white * p_white;
|
|
vec3 white_squared_color = white_squared * color;
|
|
// Equivalent to color * (1 + color / white_squared) / (1 + color)
|
|
return (white_squared_color + color * color) / (white_squared_color + white_squared);
|
|
}
|
|
|
|
vec3 tonemap_filmic(vec3 color, float p_white) {
|
|
// exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers
|
|
// also useful to scale the input to the range that the tonemapper is designed for (some require very high input values)
|
|
// has no effect on the curve's general shape or visual properties
|
|
const float exposure_bias = 2.0f;
|
|
const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance
|
|
const float B = 0.30f * exposure_bias;
|
|
const float C = 0.10f;
|
|
const float D = 0.20f;
|
|
const float E = 0.01f;
|
|
const float F = 0.30f;
|
|
|
|
vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F;
|
|
float p_white_tonemapped = ((p_white * (A * p_white + C * B) + D * E) / (p_white * (A * p_white + B) + D * F)) - E / F;
|
|
|
|
return color_tonemapped / p_white_tonemapped;
|
|
}
|
|
|
|
// Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl
|
|
// (MIT License).
|
|
vec3 tonemap_aces(vec3 color, float p_white) {
|
|
const float exposure_bias = 1.8f;
|
|
const float A = 0.0245786f;
|
|
const float B = 0.000090537f;
|
|
const float C = 0.983729f;
|
|
const float D = 0.432951f;
|
|
const float E = 0.238081f;
|
|
|
|
// Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias`
|
|
const mat3 rgb_to_rrt = mat3(
|
|
vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias),
|
|
vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias),
|
|
vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias));
|
|
|
|
const mat3 odt_to_rgb = mat3(
|
|
vec3(1.60475f, -0.53108f, -0.07367f),
|
|
vec3(-0.10208f, 1.10813f, -0.00605f),
|
|
vec3(-0.00327f, -0.07276f, 1.07602f));
|
|
|
|
color *= rgb_to_rrt;
|
|
vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E);
|
|
color_tonemapped *= odt_to_rgb;
|
|
|
|
p_white *= exposure_bias;
|
|
float p_white_tonemapped = (p_white * (p_white + A) - B) / (p_white * (C * p_white + D) + E);
|
|
|
|
return color_tonemapped / p_white_tonemapped;
|
|
}
|
|
|
|
// Polynomial approximation of EaryChow's AgX sigmoid curve.
|
|
// x must be within the range [0.0, 1.0]
|
|
vec3 agx_contrast_approx(vec3 x) {
|
|
// Generated with Excel trendline
|
|
// Input data: Generated using python sigmoid with EaryChow's configuration and 57 steps
|
|
// Additional padding values were added to give correct intersections at 0.0 and 1.0
|
|
// 6th order, intercept of 0.0 to remove an operation and ensure intersection at 0.0
|
|
vec3 x2 = x * x;
|
|
vec3 x4 = x2 * x2;
|
|
return 0.021 * x + 4.0111 * x2 - 25.682 * x2 * x + 70.359 * x4 - 74.778 * x4 * x + 27.069 * x4 * x2;
|
|
}
|
|
|
|
// This is an approximation and simplification of EaryChow's AgX implementation that is used by Blender.
|
|
// This code is based off of the script that generates the AgX_Base_sRGB.cube LUT that Blender uses.
|
|
// Source: https://github.com/EaryChow/AgX_LUT_Gen/blob/main/AgXBasesRGB.py
|
|
vec3 tonemap_agx(vec3 color) {
|
|
// Combined linear sRGB to linear Rec 2020 and Blender AgX inset matrices:
|
|
const mat3 srgb_to_rec2020_agx_inset_matrix = mat3(
|
|
0.54490813676363087053, 0.14044005884001287035, 0.088827411851915368603,
|
|
0.37377945959812267119, 0.75410959864013760045, 0.17887712465043811023,
|
|
0.081384976686407536266, 0.10543358536857773485, 0.73224999956948382528);
|
|
|
|
// Combined inverse AgX outset matrix and linear Rec 2020 to linear sRGB matrices.
|
|
const mat3 agx_outset_rec2020_to_srgb_matrix = mat3(
|
|
1.9645509602733325934, -0.29932243390911083839, -0.16436833806080403409,
|
|
-0.85585845117807513559, 1.3264510741502356555, -0.23822464068860595117,
|
|
-0.10886710826831608324, -0.027084020983874825605, 1.402665347143271889);
|
|
|
|
// LOG2_MIN = -10.0
|
|
// LOG2_MAX = +6.5
|
|
// MIDDLE_GRAY = 0.18
|
|
const float min_ev = -12.4739311883324; // log2(pow(2, LOG2_MIN) * MIDDLE_GRAY)
|
|
const float max_ev = 4.02606881166759; // log2(pow(2, LOG2_MAX) * MIDDLE_GRAY)
|
|
|
|
// Large negative values in one channel and large positive values in other
|
|
// channels can result in a colour that appears darker and more saturated than
|
|
// desired after passing it through the inset matrix. For this reason, it is
|
|
// best to prevent negative input values.
|
|
// This is done before the Rec. 2020 transform to allow the Rec. 2020
|
|
// transform to be combined with the AgX inset matrix. This results in a loss
|
|
// of color information that could be correctly interpreted within the
|
|
// Rec. 2020 color space as positive RGB values, but it is less common for Godot
|
|
// to provide this function with negative sRGB values and therefore not worth
|
|
// the performance cost of an additional matrix multiplication.
|
|
// A value of 2e-10 intentionally introduces insignificant error to prevent
|
|
// log2(0.0) after the inset matrix is applied; color will be >= 1e-10 after
|
|
// the matrix transform.
|
|
color = max(color, 2e-10);
|
|
|
|
// Do AGX in rec2020 to match Blender and then apply inset matrix.
|
|
color = srgb_to_rec2020_agx_inset_matrix * color;
|
|
|
|
// Log2 space encoding.
|
|
// Must be clamped because agx_contrast_approx may not work
|
|
// well with values outside of the range [0.0, 1.0]
|
|
color = clamp(log2(color), min_ev, max_ev);
|
|
color = (color - min_ev) / (max_ev - min_ev);
|
|
|
|
// Apply sigmoid function approximation.
|
|
color = agx_contrast_approx(color);
|
|
|
|
// Convert back to linear before applying outset matrix.
|
|
color = pow(color, vec3(2.4));
|
|
|
|
// Apply outset to make the result more chroma-laden and then go back to linear sRGB.
|
|
color = agx_outset_rec2020_to_srgb_matrix * color;
|
|
|
|
// Blender's lusRGB.compensate_low_side is too complex for this shader, so
|
|
// simply return the color, even if it has negative components. These negative
|
|
// components may be useful for subsequent color adjustments.
|
|
return color;
|
|
}
|
|
|
|
#define TONEMAPPER_LINEAR 0
|
|
#define TONEMAPPER_REINHARD 1
|
|
#define TONEMAPPER_FILMIC 2
|
|
#define TONEMAPPER_ACES 3
|
|
#define TONEMAPPER_AGX 4
|
|
|
|
vec3 apply_tonemapping(vec3 color, float p_white) { // inputs are LINEAR
|
|
// Ensure color values passed to tonemappers are positive.
|
|
// They can be negative in the case of negative lights, which leads to undesired behavior.
|
|
if (tonemapper == TONEMAPPER_LINEAR) {
|
|
return color;
|
|
} else if (tonemapper == TONEMAPPER_REINHARD) {
|
|
return tonemap_reinhard(max(vec3(0.0f), color), p_white);
|
|
} else if (tonemapper == TONEMAPPER_FILMIC) {
|
|
return tonemap_filmic(max(vec3(0.0f), color), p_white);
|
|
} else if (tonemapper == TONEMAPPER_ACES) {
|
|
return tonemap_aces(max(vec3(0.0f), color), p_white);
|
|
} else { // TONEMAPPER_AGX
|
|
return tonemap_agx(color);
|
|
}
|
|
}
|
|
|
|
#endif // APPLY_TONEMAPPING
|