layout(std140) uniform TonemapData { //ubo:0 float exposure; float white; int tonemapper; int pad; int pad2; float brightness; float contrast; float saturation; }; // This expects 0-1 range input. vec3 linear_to_srgb(vec3 color) { //color = clamp(color, vec3(0.0), vec3(1.0)); //const vec3 a = vec3(0.055f); //return mix((vec3(1.0f) + a) * pow(color.rgb, vec3(1.0f / 2.4f)) - a, 12.92f * color.rgb, lessThan(color.rgb, vec3(0.0031308f))); // Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html return max(vec3(1.055) * pow(color, vec3(0.416666667)) - vec3(0.055), vec3(0.0)); } // This expects 0-1 range input, outside that range it behaves poorly. vec3 srgb_to_linear(vec3 color) { // Approximation from http://chilliant.blogspot.com/2012/08/srgb-approximations-for-hlsl.html return color * (color * (color * 0.305306011 + 0.682171111) + 0.012522878); } #ifdef APPLY_TONEMAPPING // Based on Reinhard's extended formula, see equation 4 in https://doi.org/cjbgrt vec3 tonemap_reinhard(vec3 color, float p_white) { float white_squared = p_white * p_white; vec3 white_squared_color = white_squared * color; // Equivalent to color * (1 + color / white_squared) / (1 + color) return (white_squared_color + color * color) / (white_squared_color + white_squared); } vec3 tonemap_filmic(vec3 color, float p_white) { // exposure bias: input scale (color *= bias, white *= bias) to make the brightness consistent with other tonemappers // also useful to scale the input to the range that the tonemapper is designed for (some require very high input values) // has no effect on the curve's general shape or visual properties const float exposure_bias = 2.0f; const float A = 0.22f * exposure_bias * exposure_bias; // bias baked into constants for performance const float B = 0.30f * exposure_bias; const float C = 0.10f; const float D = 0.20f; const float E = 0.01f; const float F = 0.30f; vec3 color_tonemapped = ((color * (A * color + C * B) + D * E) / (color * (A * color + B) + D * F)) - E / F; float p_white_tonemapped = ((p_white * (A * p_white + C * B) + D * E) / (p_white * (A * p_white + B) + D * F)) - E / F; return color_tonemapped / p_white_tonemapped; } // Adapted from https://github.com/TheRealMJP/BakingLab/blob/master/BakingLab/ACES.hlsl // (MIT License). vec3 tonemap_aces(vec3 color, float p_white) { const float exposure_bias = 1.8f; const float A = 0.0245786f; const float B = 0.000090537f; const float C = 0.983729f; const float D = 0.432951f; const float E = 0.238081f; // Exposure bias baked into transform to save shader instructions. Equivalent to `color *= exposure_bias` const mat3 rgb_to_rrt = mat3( vec3(0.59719f * exposure_bias, 0.35458f * exposure_bias, 0.04823f * exposure_bias), vec3(0.07600f * exposure_bias, 0.90834f * exposure_bias, 0.01566f * exposure_bias), vec3(0.02840f * exposure_bias, 0.13383f * exposure_bias, 0.83777f * exposure_bias)); const mat3 odt_to_rgb = mat3( vec3(1.60475f, -0.53108f, -0.07367f), vec3(-0.10208f, 1.10813f, -0.00605f), vec3(-0.00327f, -0.07276f, 1.07602f)); color *= rgb_to_rrt; vec3 color_tonemapped = (color * (color + A) - B) / (color * (C * color + D) + E); color_tonemapped *= odt_to_rgb; p_white *= exposure_bias; float p_white_tonemapped = (p_white * (p_white + A) - B) / (p_white * (C * p_white + D) + E); return color_tonemapped / p_white_tonemapped; } // Polynomial approximation of EaryChow's AgX sigmoid curve. // x must be within the range [0.0, 1.0] vec3 agx_contrast_approx(vec3 x) { // Generated with Excel trendline // Input data: Generated using python sigmoid with EaryChow's configuration and 57 steps // Additional padding values were added to give correct intersections at 0.0 and 1.0 // 6th order, intercept of 0.0 to remove an operation and ensure intersection at 0.0 vec3 x2 = x * x; vec3 x4 = x2 * x2; return 0.021 * x + 4.0111 * x2 - 25.682 * x2 * x + 70.359 * x4 - 74.778 * x4 * x + 27.069 * x4 * x2; } // This is an approximation and simplification of EaryChow's AgX implementation that is used by Blender. // This code is based off of the script that generates the AgX_Base_sRGB.cube LUT that Blender uses. // Source: https://github.com/EaryChow/AgX_LUT_Gen/blob/main/AgXBasesRGB.py vec3 tonemap_agx(vec3 color) { // Combined linear sRGB to linear Rec 2020 and Blender AgX inset matrices: const mat3 srgb_to_rec2020_agx_inset_matrix = mat3( 0.54490813676363087053, 0.14044005884001287035, 0.088827411851915368603, 0.37377945959812267119, 0.75410959864013760045, 0.17887712465043811023, 0.081384976686407536266, 0.10543358536857773485, 0.73224999956948382528); // Combined inverse AgX outset matrix and linear Rec 2020 to linear sRGB matrices. const mat3 agx_outset_rec2020_to_srgb_matrix = mat3( 1.9645509602733325934, -0.29932243390911083839, -0.16436833806080403409, -0.85585845117807513559, 1.3264510741502356555, -0.23822464068860595117, -0.10886710826831608324, -0.027084020983874825605, 1.402665347143271889); // LOG2_MIN = -10.0 // LOG2_MAX = +6.5 // MIDDLE_GRAY = 0.18 const float min_ev = -12.4739311883324; // log2(pow(2, LOG2_MIN) * MIDDLE_GRAY) const float max_ev = 4.02606881166759; // log2(pow(2, LOG2_MAX) * MIDDLE_GRAY) // Large negative values in one channel and large positive values in other // channels can result in a colour that appears darker and more saturated than // desired after passing it through the inset matrix. For this reason, it is // best to prevent negative input values. // This is done before the Rec. 2020 transform to allow the Rec. 2020 // transform to be combined with the AgX inset matrix. This results in a loss // of color information that could be correctly interpreted within the // Rec. 2020 color space as positive RGB values, but it is less common for Godot // to provide this function with negative sRGB values and therefore not worth // the performance cost of an additional matrix multiplication. // A value of 2e-10 intentionally introduces insignificant error to prevent // log2(0.0) after the inset matrix is applied; color will be >= 1e-10 after // the matrix transform. color = max(color, 2e-10); // Do AGX in rec2020 to match Blender and then apply inset matrix. color = srgb_to_rec2020_agx_inset_matrix * color; // Log2 space encoding. // Must be clamped because agx_contrast_approx may not work // well with values outside of the range [0.0, 1.0] color = clamp(log2(color), min_ev, max_ev); color = (color - min_ev) / (max_ev - min_ev); // Apply sigmoid function approximation. color = agx_contrast_approx(color); // Convert back to linear before applying outset matrix. color = pow(color, vec3(2.4)); // Apply outset to make the result more chroma-laden and then go back to linear sRGB. color = agx_outset_rec2020_to_srgb_matrix * color; // Blender's lusRGB.compensate_low_side is too complex for this shader, so // simply return the color, even if it has negative components. These negative // components may be useful for subsequent color adjustments. return color; } #define TONEMAPPER_LINEAR 0 #define TONEMAPPER_REINHARD 1 #define TONEMAPPER_FILMIC 2 #define TONEMAPPER_ACES 3 #define TONEMAPPER_AGX 4 vec3 apply_tonemapping(vec3 color, float p_white) { // inputs are LINEAR // Ensure color values passed to tonemappers are positive. // They can be negative in the case of negative lights, which leads to undesired behavior. if (tonemapper == TONEMAPPER_LINEAR) { return color; } else if (tonemapper == TONEMAPPER_REINHARD) { return tonemap_reinhard(max(vec3(0.0f), color), p_white); } else if (tonemapper == TONEMAPPER_FILMIC) { return tonemap_filmic(max(vec3(0.0f), color), p_white); } else if (tonemapper == TONEMAPPER_ACES) { return tonemap_aces(max(vec3(0.0f), color), p_white); } else { // TONEMAPPER_AGX return tonemap_agx(color); } } #endif // APPLY_TONEMAPPING