new build system config

This commit is contained in:
Sara 2023-11-20 12:04:55 +01:00
parent 96867d6e1b
commit 5ab93d62ad
50 changed files with 81 additions and 46 deletions

32
core/Build-Core.lua Normal file
View file

@ -0,0 +1,32 @@
project "Fencer-Core"
kind "StaticLib"
language "C"
targetdir "bin/%{cfg.buildcfg}"
staticruntime "off"
files { "src/**.c" }
includedirs { "src/" }
targetdir ( "../bin" .. OutputDir .. "/%{prj.name}" )
objdir ( "../intermediate" .. OutputDir .. "/%{prj.name}" )
filter "system:windows"
systemversion "latest"
defines {}
filter "configurations:Debug"
defines { "DEBUG" }
runtime "Debug"
symbols "On"
filter "configurations:Release"
defines { "RELEASE" }
runtime "Release"
optimize "On"
symbols "On"
filter "configurations:Dist"
defines { "DIST" }
runtime "Release"
optimize "On"
symbols "Off"

34
core/src/asset.h Normal file
View file

@ -0,0 +1,34 @@
#ifndef _fencer_asset_h
#define _fencer_asset_h
#include "drop.h"
#include "typeclass_helpers.h"
#include <SDL2/SDL_render.h>
typedef uintptr_t asset_id;
typedef struct {
asset_id (*const get_id)(void*);
void (*const set_id)(void*, asset_id);
} IAsset;
typedef struct Asset {
void* data;
IAsset const* tc;
IDrop const* drop;
} Asset;
#define impl_Asset_for(T, get_id_f, set_id_f)\
static inline Asset T##_as_Asset(T* x) {\
TC_FN_TYPECHECK(asset_id, get_id_f, T*);\
TC_FN_TYPECHECK(void, set_id_f, T*, asset_id);\
TC_FN_TYPECHECK(Drop, T##_as_Drop, T*);\
static IAsset tc = (IAsset){\
.get_id = (asset_id(*const)(void*)) get_id_f,\
.set_id = (void(*const)(void*,asset_id)) set_id_f,\
};\
IDrop const* drop = T##_as_Drop(x).tc;\
return (Asset){.data=x, .tc=&tc, .drop=drop};\
}
#endif // !_fencer_asset_h

132
core/src/assets.c Normal file
View file

@ -0,0 +1,132 @@
#include "assets.h"
#include "debug.h"
#include "list.h"
#include <stdlib.h>
#include <memory.h>
#include <stdio.h>
static List _assets;
static asset_id _next_id = 0;
static
size_t file_length(FILE* fp) {
size_t start = ftell(fp);
fseek(fp, 0, SEEK_END);
size_t r = ftell(fp);
fseek(fp, start, SEEK_SET);
return r;
}
static
void read_file(FILE* fp, char* out_buffer, size_t out_size) {
size_t start = ftell(fp);
fread(out_buffer, 1, out_size, fp);
fseek(fp, start, SEEK_SET);
}
void assets_init() {
LOG_INFO("assets_init");
_assets = list_from_type(Asset);
_next_id = 1;
}
// clear all assets without shrinking the assets array.
static
void _empty_assets() {
list_foreach(Asset*, asset, &_assets) {
asset->drop->drop(asset->data);
}
list_empty(&_assets);
}
void assets_clean() {
_empty_assets();
}
void assets_reset() {
_empty_assets();
}
asset_id store_asset(Asset asset) {
list_reserve(&_assets, _assets.len + 1);
size_t index = list_add(&_assets, &asset);
Asset* new_asset = list_at_as(Asset, &_assets, index);
asset_id id = _next_id++;
new_asset->tc->set_id(new_asset->data, id);
asset_id actual_id = new_asset->tc->get_id(new_asset->data);
ASSERT_RETURN(actual_id == id,actual_id, "ID stored in asset not the same as the expected id");
return actual_id;
}
static
Asset* _internal_get_by_id(asset_id id) {
ASSERT_RETURN_WARN(id != 0, NULL, "Cannot get element with id 0");
list_foreach(Asset*, asset, &_assets) {
if(asset->tc->get_id(asset->data) == id) {
return asset;
}
}
RETURN_WARNING(NULL, "Failed to find requested asset with id %zu", id);
}
void* get_asset(asset_id id) {
Asset* found = _internal_get_by_id(id);
ASSERT_RETURN(found != NULL, NULL, "Failed to find asset with id %zu.", id);
return found->data;
}
asset_id get_asset_id(void* asset) {
list_foreach(Asset*, asset, &_assets) {
if(asset->data == asset) {
return asset->tc->get_id(asset->data);
}
}
RETURN_WARNING(0, "Failed to find asset referencing %p", asset);
}
void free_asset(asset_id id) {
Asset* found;
size_t found_index;
for(size_t i = 0; i < _assets.len; ++i) {
found = list_at_as(Asset, &_assets, i);
if(found->tc->get_id(found->data) == id) {
found_index = i;
break;
} else {
found = NULL;
}
}
ASSERT_RETURN(found != NULL,, "Attempt to free nonexistent asset.");
found->drop->drop(found->data);
list_erase(&_assets, found_index);
}
cJSON* load_json_from_file(const char* filename) {
FILE* fp = fopen(filename, "r");
ASSERT_RETURN(fp != NULL, NULL, "Failed to open file %s.", filename);
size_t len = file_length(fp);
char* buffer = malloc(len + 1);
ASSERT_RETURN(buffer != NULL, NULL, "Failed to allocate buffer for json string.");
read_file(fp, buffer, len);
cJSON* out = cJSON_Parse(buffer);
free(buffer);
ASSERT_RETURN(out != NULL, NULL, "Failed to parse json from file %s.", filename);
return out;
}
size_t json_array_len(cJSON* json) {
ASSERT_RETURN(cJSON_IsArray(json), 0, "Tried to get the length of a non-array json element.");
size_t len = 0;
cJSON* itr;
cJSON_ArrayForEach(itr, json) {
++len;
}
return len;
}

46
core/src/assets.h Normal file
View file

@ -0,0 +1,46 @@
#ifndef _fencer_assets_h
#define _fencer_assets_h
#include "vmath.h"
#include "asset.h"
#include <cjson/cJSON.h>
typedef void(*AssetDestructor)(void*);
// Prepare asset management.
// Other asset management functions are invalid until assets_init is called.
void assets_init();
// Clean up and shut down assets management.
void assets_clean();
// Clear all loaded assets
void assets_reset();
// Submit an object to be managed as an asset. If the destructor is NULL, free will be used.
// Returns zero if asset could not be stored.
asset_id store_asset(Asset drop);
// Get an asset already submitted to the asset manager.
// Returns 0 if asset does not exist.
void* get_asset(asset_id id);
// Get an asset id, returns 0 if no such asset exists.
asset_id get_asset_id(void* asset);
// Free an asset managed by the asset manager using it's destructor, or free(..) if NULL.
void free_asset(asset_id id);
// load a file's contents into json
cJSON* load_json_from_file(const char* filepath);
// Get the length of a cJSON array
size_t json_array_len(cJSON* array);
static inline
Vector json_array_to_vector(cJSON* array) {
return (Vector) {
cJSON_GetArrayItem(array, 0)->valuedouble,
cJSON_GetArrayItem(array, 1)->valuedouble,
};
}
static inline
IVector json_array_to_ivector(cJSON* array) {
return (IVector) {
cJSON_GetArrayItem(array, 0)->valueint,
cJSON_GetArrayItem(array, 1)->valueint
};
}
#endif // !_fencer_assets_h

View file

@ -0,0 +1,37 @@
#ifndef _update_entity_h
#define _update_entity_h
#include "drop.h"
#include "typeclass_helpers.h"
#include "vmath.h"
typedef struct {
void (*const spawn)(void* self, Vector at);
void (*const update)(void* self, float dt);
void (*const start)(void* self);
void (*const draw)(void* self);
} IEntityBehaviour;
typedef struct {
void* data;
IEntityBehaviour const* tc;
IDrop const* drop;
} BehaviourEntity;
#define impl_BehaviourEntity_for(T, start_f, update_f, spawn_f, draw_f)\
static inline BehaviourEntity T##_as_BehaviourEntity(T* x) {\
TC_FN_TYPECHECK(void, start_f, T*);\
TC_FN_TYPECHECK(void, update_f, T*, float);\
TC_FN_TYPECHECK(void, draw_f, T*);\
static IEntityBehaviour const tc = {\
.spawn = (void(*const)(void*, Vector)) spawn_f,\
.update = (void(*const)(void*, float)) update_f,\
.start = (void(*const)(void*)) start_f,\
.draw = (void(*const)(void*)) draw_f,\
};\
TC_FN_TYPECHECK(Drop, T##_as_Drop, T*);\
IDrop const* drop = T##_as_Drop(x).tc;\
return (BehaviourEntity){.tc = &tc, .drop = drop, .data = x};\
}\
#endif // !_update_entity_h

46
core/src/camera.c Normal file
View file

@ -0,0 +1,46 @@
#include "camera.h"
#include "debug.h"
#include "render.h"
Camera g_camera;
void camera_init() {
LOG_INFO("camera_init");
g_camera.transform = IdentityTransform;
g_camera.fov = 10;
}
static inline
float _camera_height(Camera* self) {
return self->fov * ((float)g_render_resolution.y / (float)g_render_resolution.x);
}
SDL_FRect camera_world_to_pixel_rect(Camera* self, SDL_FRect* world_space) {
Transform t = self->transform;
t.rotation = 0;
t.scale = OneVector;
t = transform_invert(t);
Vector tl = {world_space->x + (self->fov / 2.0), world_space->y + (_camera_height(self) / 2.0)};
Vector size = {world_space->w, world_space->h};
tl = vmulff(transform_point(&t, tl), g_render_resolution.x / self->fov);
size = vmulff(vmulf(t.scale, size), g_render_resolution.x / self->fov);
return (SDL_FRect){
tl.x, tl.y,
size.x, size.y
};
}
Vector camera_world_to_pixel_point(Camera* self, Vector point) {
Transform t = self->transform;
t.rotation = 0;
t.scale = OneVector;
t = transform_invert(t);
point = (Vector){point.x + (self->fov / 2.0), point.y + (_camera_height(self) / 2.0)};
return vmulff(transform_point(&t, point), g_render_resolution.x / self->fov);
}

23
core/src/camera.h Normal file
View file

@ -0,0 +1,23 @@
#ifndef _fencer_camera_h
#define _fencer_camera_h
#include "vmath.h"
#include "transform.h"
#include <SDL2/SDL_rect.h>
struct Camera {
float fov;
Transform transform;
};
typedef struct Camera Camera;
// current world location of camera
extern Camera g_camera;
extern void camera_init();
extern SDL_FRect camera_screen_to_world_space(Camera* self, SDL_FRect* camera_space);
extern SDL_FRect camera_world_to_pixel_rect(Camera* self, SDL_FRect* world_space);
extern Vector camera_world_to_pixel_point(Camera* self, Vector point);
#endif // !_fencer_camera_h

141
core/src/collision.c Normal file
View file

@ -0,0 +1,141 @@
#include "collision.h"
#include "vmath.h"
#include "rigidbody.h"
// =====================================================
// Shape overlap test using the separating axis theorem
// =====================================================
typedef struct Range {float min; Vector minpoint; float max; Vector maxpoint; } Range;
static
Range _internal_collision_get_range_on_axis(PhysicsEntity self, Vector axis) {
Transform* transform = self.transformable->get_transform(self.data);
Shape* shape = self.tc->get_shape(self.data);
Vector point = shape_get_point_transformed(shape, 0, *transform);
float dot = vdotf(axis, point);
Range range = {dot, point, dot, point};
for(size_t point_index = 1; point_index < shape_get_points_count(shape); ++point_index) {
point = shape_get_point_transformed(shape, point_index, *transform);
dot = vdotf(axis, point);
if(dot < range.min) {
range.min = dot;
range.minpoint = point;
}
if(dot > range.max) {
range.max = dot;
range.maxpoint = point;
}
}
return range;
}
static
Vector _internal_collision_overlap_on_axis(PhysicsEntity self, PhysicsEntity other, Vector axis, Vector* out_point) {
Range a_range = _internal_collision_get_range_on_axis(self, axis);
Range b_range = _internal_collision_get_range_on_axis(other, axis);
const float overlap_left = a_range.max - b_range.min;
const float overlap_right = b_range.min - a_range.max;
*out_point = fabsf(overlap_right) <= fabsf(overlap_left) ? a_range.maxpoint : a_range.minpoint;
if(a_range.min <= b_range.max && b_range.min <= a_range.max) {
const float shortest = fminf(overlap_left, overlap_right);
return vmulff(axis, shortest);
} else {
return ZeroVector;
}
}
static
int _internal_collision_get_overlap(PhysicsEntity self, PhysicsEntity other, Collision* out) {
// get components used
Shape* self_shape = self.tc->get_shape(self.data);
Transform* self_transform = self.transformable->get_transform(self.data);
// the shortest distance to solve collision found so far
Vector shortest_escape = InfinityVector;
// the squared length of the shortest escape vector found so far
float shortest_dot = INFINITY;
// the first index of the points on the edge
size_t shortest_escape_edge = 0;
// the number of points in the shape of self
size_t self_point_count = shape_get_points_count(self_shape);
for(size_t point_index = 0; point_index < self_point_count; ++point_index) {
// the next point on the line
size_t next_index = (point_index + 1) % self_point_count;
// get the two points defining the collision edge
Vector edge_lhs = shape_get_point_transformed(self.tc->get_shape(self.data), point_index, *self_transform);
Vector edge_rhs = shape_get_point_transformed(self.tc->get_shape(self.data), next_index, *self_transform);
// the direction of the line
Vector normal = vnormalizedf(vperpendicularf(vsubf(edge_rhs, edge_lhs)));
Vector overlap_point;
// the smallest escape vector on this axis
Vector escape = _internal_collision_overlap_on_axis(self, other, normal, &overlap_point);
float dot = vdotf(vinvf(normal), escape);
if(dot <= 0.0) {
return 0;
}
if(dot <= shortest_dot) {
shortest_dot = dot;
shortest_escape = escape;
shortest_escape_edge = point_index;
}
}
RigidBody* rba = self.tc->get_rigidbody(self.data);
RigidBody* rbb = other.tc->get_rigidbody(other.data);
const Vector velocity = vsubf(rigidbody_get_velocity(rba), rigidbody_get_velocity(rbb));
const Vector normal = vnormalizedf(shortest_escape);
Vector world_point = _internal_collision_get_range_on_axis(self, normal).minpoint;
*out = (Collision) {
.other = other,
.point = inverse_transform_point(rigidbody_get_transform(rba), world_point),
.normal = normal,
.velocity = velocity,
.penetration_vector = shortest_escape,
.edge_left = shape_get_point_transformed(self_shape, shortest_escape_edge, *self_transform),
.edge_right = shape_get_point_transformed(self_shape, (1 + shortest_escape_edge) % self_point_count, *self_transform),
};
return !veqf(shortest_escape, ZeroVector);
}
Collision collision_invert(Collision collision_a, PhysicsEntity a) {
Vector world_point = _internal_collision_get_range_on_axis(collision_a.other, collision_a.normal).maxpoint;
RigidBody* body = collision_a.other.tc->get_rigidbody(collision_a.other.data);
return (Collision){
.other = a,
.point = inverse_transform_point(rigidbody_get_transform(body), world_point),
.normal = vinvf(collision_a.normal),
.velocity = vinvf(collision_a.velocity),
.penetration_vector = vinvf(collision_a.penetration_vector),
.edge_left = collision_a.edge_left,
.edge_right = collision_a.edge_right,
};
}
int collision_check(PhysicsEntity a, PhysicsEntity b, Collision* out_a, Collision* out_b) {
Collision collision_a, collision_b;
int collision_a_overlaps = _internal_collision_get_overlap(a, b, &collision_a);
int collision_b_overlaps = _internal_collision_get_overlap(b, a, &collision_b);
if(!collision_a_overlaps || !collision_b_overlaps)
return 0;
if(vsqrmagnitudef(collision_a.penetration_vector) <= vsqrmagnitudef(collision_b.penetration_vector))
collision_b = collision_invert(collision_a, a);
else
collision_a = collision_invert(collision_b, b);
*out_a = collision_a;
*out_b = collision_b;
return (collision_b_overlaps << 1) | collision_a_overlaps;
}

24
core/src/collision.h Normal file
View file

@ -0,0 +1,24 @@
#ifndef _fencer_collision_h
#define _fencer_collision_h
#include "shape.h"
#include "physics_entity.h"
#include <stddef.h>
typedef struct Collision {
PhysicsEntity other;
Vector point;
Vector normal;
Vector velocity;
Vector penetration_vector;
Vector edge_left;
Vector edge_right;
} Collision;
extern Collision collision_invert(Collision src, PhysicsEntity new_other);
extern int collision_check(PhysicsEntity a, PhysicsEntity b, Collision* out_a, Collision* out_b);
#endif // !_fencer_collision_h

9
core/src/debug.c Normal file
View file

@ -0,0 +1,9 @@
#include "debug.h"
#if NDEBUG
int g_debug_error_abort = 0;
int g_debug_log_lvl = 0;
#else
int g_debug_error_abort = 1;
int g_debug_log_lvl = 3;
#endif

69
core/src/debug.h Normal file
View file

@ -0,0 +1,69 @@
#ifndef _fencer_debug_h
#define _fencer_debug_h
#include <stdio.h>
#include <stdlib.h>
#ifndef NDEBUG
#include <assert.h>
#endif
extern int g_debug_error_abort;
extern int g_debug_log_lvl;
#define LOG_INFO(...) do {\
if(g_debug_log_lvl < 3) break;\
printf("[%s:%d] INFO | ", __FILE__, __LINE__);\
printf(__VA_ARGS__);\
printf("\n");\
} while(0)
#define LOG_ERROR(...) do {\
if(g_debug_log_lvl >= 1) {\
printf("[%s:%d] ERROR | ", __FILE__, __LINE__);\
printf(__VA_ARGS__);\
printf("\n");\
fflush(stdout);\
}\
if(g_debug_error_abort != 0) abort();\
} while(0)
#define LOG_WARNING(...) do {\
if(g_debug_log_lvl < 2) break;\
printf("[%s:%d] WARNING | ", __FILE__, __LINE__);\
printf(__VA_ARGS__);\
printf("\n");\
} while(0)
#define RETURN_ERROR(__VALUE, ...) do {\
LOG_ERROR(__VA_ARGS__);\
return __VALUE;\
} while(0)
#define RETURN_WARNING(__VALUE, ...) do {\
LOG_WARNING(__VA_ARGS__);\
return __VALUE;\
} while(0)
#define ASSERT_RETURN(__ASSERT, __RETURN, ...) do {\
if(!(__ASSERT)) {\
LOG_ERROR(__VA_ARGS__);\
return __RETURN;\
}\
} while(0)
#define CHECK(__ASSERT, ...) do {\
if(!(__ASSERT)) {\
LOG_ERROR(__VA_ARGS__);\
}\
} while(0)
#define ASSERT_RETURN_WARN(__ASSERT, __RETURN, ...) do {\
if(!(__ASSERT)) {\
LOG_WARNING(__VA_ARGS__);\
return __RETURN;\
}\
} while(0)
#endif // !_fencer_debug_h

26
core/src/drop.h Normal file
View file

@ -0,0 +1,26 @@
#ifndef _fencer_drop_h
#define _fencer_drop_h
typedef struct {
void (*const drop)(void* self);
} IDrop;
typedef struct {
void const* data;
IDrop const* tc;
} Drop;
#define impl_Drop_for(T, drop_f)\
static inline Drop T##_as_Drop(T* x) {\
TC_FN_TYPECHECK(void, drop_f, T*);\
static IDrop const tc = {\
.drop = (void(*const)(void*)) drop_f,\
};\
return (Drop){.tc = &tc, .data = x};\
}
#define impl_default_Drop_for(T)\
static void default_drop_##T(T* v) { free(v); }\
impl_Drop_for(T, default_drop_##T)
#endif // !_fencer_drop_h

80
core/src/game_world.c Normal file
View file

@ -0,0 +1,80 @@
#include "game_world.h"
#include "behaviour_entity.h"
#include "list.h"
#include "program.h"
static List _add_queue;
static List _remove_queue;
static List _game_entities;
static inline
size_t _internal_find_index_for_entity(void* data, const List* list) {
for(size_t i = 0; i < _game_entities.len; ++i) {
BehaviourEntity* entity = list_at_as(BehaviourEntity, &_game_entities, i);
if(entity->data == entity) {
return i;
}
}
return list->len;
}
static inline
void _internal_clear_removed() {
list_foreach(size_t*, index, &_remove_queue) {
BehaviourEntity* entity = list_at_as(BehaviourEntity, &_game_entities, *index);
entity->drop->drop(entity->data);
list_erase(&_game_entities, *index);
}
list_empty(&_remove_queue);
}
static inline
void _internal_process_new() {
list_foreach(BehaviourEntity*, entity, &_add_queue) {
list_add(&_game_entities, entity);
entity->tc->start(entity->data);
}
list_empty(&_add_queue);
}
void game_world_init() {
_game_entities = list_from_type(BehaviourEntity);
_add_queue = list_from_type(BehaviourEntity);
_remove_queue = list_from_type(size_t);
}
void game_world_close() {
_internal_clear_removed();
_internal_process_new();
list_foreach(BehaviourEntity*, entity, &_game_entities) {
entity->drop->drop(entity->data);
}
list_empty(&_game_entities);
}
void game_world_add_entity(BehaviourEntity entity) {
list_add(&_add_queue, &entity);
}
void game_world_remove_entity(void* entity) {
size_t index = _internal_find_index_for_entity(entity, &_game_entities);
if(index != _game_entities.len) {
list_add(&_remove_queue, &index);
}
}
void game_world_update() {
_internal_process_new();
list_foreach(BehaviourEntity*, entity, &_game_entities) {
entity->tc->update(entity->data, delta_time());
}
_internal_clear_removed();
}
void game_word_draw() {
list_foreach(BehaviourEntity*, entity, &_game_entities) {
entity->tc->draw(entity->data);
}
}

15
core/src/game_world.h Normal file
View file

@ -0,0 +1,15 @@
#ifndef _fencer_game_world_h
#define _fencer_game_world_h
#include "behaviour_entity.h"
extern void game_world_init();
extern void game_world_close();
extern void game_world_add_entity(BehaviourEntity entity);
extern void game_world_remove_entity(void* entity);
extern void game_world_update();
extern void game_world_draw();
#endif // !_fencer_game_world_h

103
core/src/input.c Normal file
View file

@ -0,0 +1,103 @@
#include "input.h"
#include "input_axis.h"
#include "debug.h"
static List _devices;
static inline
void _internal_open_keyboard() {
InputDevice* keyboard = malloc(sizeof(InputDevice));
*keyboard = (InputDevice){
.listeners = NULL,
.type = InputDevice_KBM,
.id = -1,
.keyboard = {
.state = SDL_GetKeyboardState(NULL)
}
};
list_add(&_devices, &keyboard);
LOG_INFO("registered keyboard %d", keyboard->id);
}
static inline
void _internal_open_controller(size_t id) {
InputDevice* device = malloc(sizeof(InputDevice));
*device = (InputDevice) {
.listeners = NULL,
.type = InputDevice_Gamepad,
.id = id,
.gamepad = {
.id = id,
.controller = SDL_GameControllerOpen(id)
}
};
list_add(&_devices, &device);
LOG_INFO("registered game controller %d", device->id);
}
void input_init() {
_devices = list_from_type(InputDevice*);
// open the keyboard by default
_internal_open_keyboard();
// open any controllers already available
const size_t joystick_count = SDL_NumJoysticks();
for(size_t i = 0; i < joystick_count; ++i) {
_internal_open_controller(i);
}
}
void input_clean() {
list_foreach(InputDevice**, _device, &_devices) {
InputDevice* device = *_device;
if(device->type == InputDevice_Gamepad)
SDL_GameControllerClose(device->gamepad.controller);
free(device);
}
list_empty(&_devices);
}
void input_handle_event(SDL_Event event) {
list_foreach(InputDevice**, _device, &_devices) {
InputDevice* device = *_device;
if(device->listeners != NULL) {
list_foreach(InputListener*, listener, device->listeners) {
InputAxis axis = listener->axis;
if(axis.tc->is_changed_by(axis.data, event)) {
InputEvent value = axis.tc->evaluate(axis.data, event);
listener->fn(listener->self, value);
}
}
}
}
}
void input_device_set_listeners(InputDevice* self, List* listeners) {
if(self->listeners != NULL) {
list_foreach(InputListener*, listener, self->listeners) {
listener->axis.tc->set_device(listener->axis.data, NULL);
}
}
self->listeners = listeners;
if(listeners == NULL)
return;
list_foreach(InputListener*, listener, listeners)
listener->axis.tc->set_device(listener->axis.data, self);
LOG_INFO("Set listeners for device %d to %p", self->id, listeners);
}
InputDevice* input_get_device_by_id(int id) {
list_foreach(InputDevice**, _device, &_devices) {
InputDevice* device = *_device;
if(device->id == id) {
return device;
}
}
return NULL;
}

49
core/src/input.h Normal file
View file

@ -0,0 +1,49 @@
#ifndef _fencer_input_h
#define _fencer_input_h
#include "list.h"
#include "input_axis.h"
#include <SDL2/SDL_events.h>
#include <SDL2/SDL_scancode.h>
#include <SDL2/SDL_keyboard.h>
#include <SDL2/SDL_gamecontroller.h>
struct PlayerInput;
typedef void (*InputDelegateFn)(void* self, InputEvent event);
typedef struct InputListener {
void* self;
InputDelegateFn fn;
InputAxis axis;
} InputListener;
typedef enum InputDeviceType {
InputDevice_Gamepad,
InputDevice_KBM
} InputDeviceType;
typedef struct InputDevice {
List* listeners;
InputDeviceType type;
int id;
union {
struct {
const uint8_t* state;
} keyboard;
struct {
SDL_JoystickID id;
SDL_GameController* controller;
} gamepad;
};
} InputDevice;
extern void input_init();
extern void input_clean();
// handle an input event
extern void input_handle_event(SDL_Event event);
extern void input_device_set_listeners(InputDevice* self, List* listeners);
extern InputDevice* input_get_device_by_id(int id);
#endif // !_fencer_input_h

187
core/src/input_axis.c Normal file
View file

@ -0,0 +1,187 @@
#include "input_axis.h"
#include "debug.h"
#include "input.h"
KeyBind* keybind_new(SDL_Scancode key) {
KeyBind* self = malloc(sizeof(KeyBind));
*self = (KeyBind) {
.device = NULL,
.scancode = key,
.state = 0
};
return self;
}
int keybind_is_changed_by(KeyBind* self, SDL_Event event) {
return self->device->type == InputDevice_KBM
&& (event.type == SDL_KEYUP || event.type == SDL_KEYDOWN)
&& event.key.keysym.scancode == self->scancode;
}
InputEvent keybind_evaluate(KeyBind* self, SDL_Event event) {
return (InputEvent) {
.type = InputEvent_Bool,
.as_bool = self->device->keyboard.state[self->scancode]
};
}
void keybind_set_device(KeyBind* self, InputDevice* device) {
self->device = device;
}
ControllerAxis* controlleraxis_new(int axis) {
ControllerAxis* self = malloc(sizeof(ControllerAxis));
*self = (ControllerAxis){
.axis = axis,
.device = NULL
};
return self;
}
int controlleraxis_is_changed_by(ControllerAxis* self, SDL_Event event) {
int r = self->device->type == InputDevice_Gamepad
&& event.type == SDL_CONTROLLERAXISMOTION
&& event.caxis.which == self->device->gamepad.id
&& event.caxis.axis == self->axis;
return r;
}
InputEvent controlleraxis_evaluate(ControllerAxis* self, SDL_Event event) {
float result = (float)event.caxis.value / 32767.0;
LOG_INFO("axis %f", result);
return (InputEvent) {
.type = InputEvent_Float,
.as_float = result
};
}
void controlleraxis_set_device(ControllerAxis* self, InputDevice* device) {
self->device = device;
}
ControllerButton* controllerbutton_new(int button) {
ControllerButton* self = malloc(sizeof(ControllerButton));
*self = (ControllerButton) {
.button = button,
.device = NULL
};
return self;
}
int controllerbutton_is_changed_by(ControllerButton* self, SDL_Event event) {
return self->device->type == InputDevice_Gamepad
&& event.cbutton.which == self->device->gamepad.id
&& (event.type == SDL_CONTROLLERBUTTONUP || event.type == SDL_CONTROLLERBUTTONDOWN)
&& event.cbutton.button == self->button;
}
InputEvent controllerbutton_evaluate(ControllerButton* self, SDL_Event event) {
return (InputEvent) {
.type = InputEvent_Bool,
.as_bool = event.cbutton.state
};
}
void controllerbutton_set_device(ControllerButton* self, InputDevice* device) {
self->device = device;
}
CompositeAxis1D* compositeaxis1d_new(InputAxis left, InputAxis right, InputEventType type) {
CompositeAxis1D* self = malloc(sizeof(CompositeAxis1D));
*self = (CompositeAxis1D) {
.left = left,
.right = right,
.type = type,
};
return self;
}
int compositeaxis1d_is_changed_by(CompositeAxis1D* self, SDL_Event event) {
return self->left.tc->is_changed_by(self->left.data, event)
|| self->right.tc->is_changed_by(self->right.data, event);
}
static inline
InputEvent _internal_event_to_type(InputEventType type, InputEvent event) {
if(type == InputEvent_Vector && event.type == InputEvent_Vector)
return event;
float as_float = 0;
switch(event.type) {
case InputEvent_Vector:
LOG_ERROR("No (1)");
break;
case InputEvent_Bool:
as_float = event.as_bool;
break;
case InputEvent_Float:
as_float = event.as_float;
break;
case InputEvent_Int:
as_float = event.as_int;
break;
}
event.type = type;
switch(type) {
case InputEvent_Int:
event.as_int = round(as_float);
return event;
case InputEvent_Float:
event.as_float = as_float;
return event;
case InputEvent_Bool:
event.as_bool = as_float != 0;
return event;
case InputEvent_Vector:
LOG_ERROR("No (2)");
return event;
}
return event;
}
InputEvent compositeaxis1d_evaluate(CompositeAxis1D* self, SDL_Event event) {
InputEvent left_result = self->left.tc->evaluate(self->left.data, event);
InputEvent right_result = self->right.tc->evaluate(self->right.data, event);
ASSERT_RETURN(self->type != InputEvent_Vector
|| (left_result.type == InputEvent_Vector && right_result.type == InputEvent_Vector),
((InputEvent){.type = 0, .as_bool = 0}), "Composite axis can only output vector if both composite elements output vector.");
InputEvent final = {
.type = self->type
};
// if both outputs are booleans, they will be combined to an int
if(final.type == InputEvent_Bool)
final.type = InputEvent_Int;
left_result = _internal_event_to_type(final.type, left_result);
right_result = _internal_event_to_type(final.type, right_result);
switch(final.type) {
default:
LOG_ERROR("Invalid composite input result");
final.type = InputEvent_Bool;
final.as_bool = 0;
return final;
case InputEvent_Int:
final.as_int = right_result.as_int - left_result.as_int;
return final;
case InputEvent_Float:
final.as_float = right_result.as_float - left_result.as_float;
return final;
case InputEvent_Vector:
final.as_vector = vsubf(right_result.as_vector, left_result.as_vector);
return final;
}
}
void compositeaxis1d_set_device(CompositeAxis1D* self, InputDevice* device) {
self->left.tc->set_device(self->left.data, device);
self->right.tc->set_device(self->right.data, device);
}
void compositeaxis1d_drop(CompositeAxis1D* self) {
self->left.drop->drop(self->left.data);
self->right.drop->drop(self->right.data);
free(self);
}

129
core/src/input_axis.h Normal file
View file

@ -0,0 +1,129 @@
#ifndef _fencer_input_axis_h
#define _fencer_input_axis_h
#include "typeclass_helpers.h"
#include "vmath.h"
#include "drop.h"
#include <SDL2/SDL_events.h>
#include <SDL2/SDL_keyboard.h>
#include <SDL2/SDL_gamecontroller.h>
struct InputDevice;
typedef enum InputEventType {
InputEvent_Vector = 0,
InputEvent_Float = 1,
InputEvent_Int = 2,
InputEvent_Bool = 3,
} InputEventType;
typedef struct InputEvent {
InputEventType type;
union {
Vector as_vector;
float as_float;
int as_int;
int as_bool;
};
} InputEvent;
typedef struct {
int (*const is_changed_by)(void*, SDL_Event);
struct InputEvent (*const evaluate)(void*, SDL_Event);
void (*const set_device)(void*, struct InputDevice*);
} IInputAxis;
typedef struct {
void* data;
IInputAxis const* tc;
IDrop const* drop;
} InputAxis;
#define impl_InputAxis_for(T, is_changed_by_f, evaluate_f, set_device_f)\
static inline InputAxis T##_as_InputAxis(T* x) {\
TC_FN_TYPECHECK(int, is_changed_by_f, T*, SDL_Event);\
TC_FN_TYPECHECK(struct InputEvent, evaluate_f, T*, SDL_Event);\
TC_FN_TYPECHECK(void, set_device_f, T*, struct InputDevice*);\
static IInputAxis const tc = {\
.is_changed_by = (int(*const)(void*,SDL_Event)) is_changed_by_f,\
.evaluate = (struct InputEvent(*const)(void*,SDL_Event)) evaluate_f,\
.set_device = (void(*const)(void*,struct InputDevice*)) set_device_f\
};\
IDrop const* drop = T##_as_Drop(x).tc;\
return (InputAxis){.data=x, .tc=&tc, .drop = drop};\
}
typedef struct KeyBind {
int state;
SDL_Scancode scancode;
struct InputDevice* device;
} KeyBind;
extern KeyBind* keybind_new(SDL_Scancode bind);
extern int keybind_is_changed_by(KeyBind* self, SDL_Event event);
extern struct InputEvent keybind_evaluate(KeyBind* self, SDL_Event);
extern void keybind_set_device(KeyBind* self, struct InputDevice* device);
impl_default_Drop_for(KeyBind)
impl_InputAxis_for(KeyBind,
keybind_is_changed_by,
keybind_evaluate,
keybind_set_device
)
typedef struct ControllerAxis {
struct InputDevice* device;
int axis;
} ControllerAxis;
extern ControllerAxis* controlleraxis_new(int axis);
extern int controlleraxis_is_changed_by(ControllerAxis* self, SDL_Event event);
extern struct InputEvent controlleraxis_evaluate(ControllerAxis* self, SDL_Event event);
extern void controlleraxis_set_device(ControllerAxis* self, struct InputDevice* device);
impl_default_Drop_for(ControllerAxis)
impl_InputAxis_for(ControllerAxis,
controlleraxis_is_changed_by,
controlleraxis_evaluate,
controlleraxis_set_device
)
typedef struct ControllerButton {
struct InputDevice* device;
int button;
} ControllerButton;
extern ControllerButton* controllerbutton_new(int button);
extern int controllerbutton_is_changed_by(ControllerButton* self, SDL_Event event);
extern struct InputEvent controllerbutton_evaluate(ControllerButton* self, SDL_Event event);
extern void controllerbutton_set_device(ControllerButton* self, struct InputDevice* device);
impl_default_Drop_for(ControllerButton)
impl_InputAxis_for(ControllerButton,
controllerbutton_is_changed_by,
controllerbutton_evaluate,
controllerbutton_set_device
)
typedef struct CompositeAxis1D {
InputAxis left;
InputAxis right;
InputEventType type;
} CompositeAxis1D;
extern CompositeAxis1D* compositeaxis1d_new(InputAxis left, InputAxis right, InputEventType type);
extern int compositeaxis1d_is_changed_by(CompositeAxis1D* self, SDL_Event event);
extern struct InputEvent compositeaxis1d_evaluate(CompositeAxis1D* self, SDL_Event event);
extern void compositeaxis1d_set_device(CompositeAxis1D* self, struct InputDevice* device);
extern void compositeaxis1d_drop(CompositeAxis1D* self);
impl_Drop_for(CompositeAxis1D,
compositeaxis1d_drop
)
impl_InputAxis_for(CompositeAxis1D,
compositeaxis1d_is_changed_by,
compositeaxis1d_evaluate,
compositeaxis1d_set_device
)
#endif // !_fencer_input_axis_h

161
core/src/list.c Normal file
View file

@ -0,0 +1,161 @@
#include "list.h"
#include "stdint.h"
#include "stdlib.h"
#include "string.h"
#include "debug.h"
#ifndef LIST_DEFAULT_RESERVE
#define LIST_DEFAULT_RESERVE 4
#endif
List list_init(size_t element_size) {
List self = {
.element_size = element_size,
.cap = LIST_DEFAULT_RESERVE,
.len = 0,
.data = malloc(element_size * LIST_DEFAULT_RESERVE),
};
if(self.data == NULL) {
LOG_ERROR("Failed to allocate list with starting capacity of %d", LIST_DEFAULT_RESERVE);
self.cap = 0;
}
return self;
}
List list_copy(const List* source) {
List self = list_init(source->element_size);
list_reserve(&self, source->cap);
if(self.cap > 0) {
memcpy(self.data, source->data, source->element_size * source->len);
self.len = source->len;
}
return self;
}
void list_empty(List* self) {
if(self->data == NULL || self->cap == 0)
return;
self->data = NULL;
self->cap = 0;
self->len = 0;
}
void list_reserve(List* self, size_t at_least) {
if(at_least < self->cap)
return;
size_t new_cap = self->cap > 0 ? self->cap : LIST_DEFAULT_RESERVE;
while(at_least >= new_cap) {
new_cap *= 2;
}
void* new;
if(self->data == NULL)
new = malloc(new_cap * self->element_size);
else
new = realloc(self->data, new_cap * self->element_size);
ASSERT_RETURN(new != NULL,, "Failed to reserve space for %zu extra elements in list", new_cap);
self->data = new;
self->cap = new_cap;
}
static inline
void* list_at_unchecked(List* self, size_t at) {
union {
uint8_t* as_byte;
void* as_void;
} data = {
.as_void = self->data
};
return data.as_byte + self->element_size * at;
}
void* list_at(List* self, size_t at) {
ASSERT_RETURN(at < self->len, NULL, "Index %zu out of bounds", at);
return list_at_unchecked(self, at);
}
size_t list_add(List* self, void* item) {
list_reserve(self, self->len + 1);
union {
uint8_t* as_byte;
void* as_void;
} data = {
.as_void = self->data
};
uint8_t* into = data.as_byte + self->element_size * self->len;
memcpy(into, item, self->element_size);
++self->len;
return self->len - 1;
}
void list_insert(List* self, void* item, size_t at) {
list_reserve(self, self->len + 1);
if(at == self->len - 1) {
list_add(self, item);
return;
}
union {
uint8_t* as_byte;
void* as_void;
} data = {
.as_void = self->data
};
uint8_t* from = data.as_byte + self->element_size * at;
uint8_t* into = data.as_byte + self->element_size * (at + 1);
uint8_t* end = data.as_byte + self->element_size * self->len;
memmove(into, from, end - from);
memcpy(from, item, self->element_size);
++self->len;
}
void list_erase(List* self, size_t at) {
ASSERT_RETURN(at < self->len,, "Index %zu out of bounds", at);
union {
uint8_t* as_byte;
void* as_void;
} data = {
.as_void = self->data
};
uint8_t* into = data.as_byte + at * self->element_size;
uint8_t* from = data.as_byte + (at + 1) * self->element_size;
if(at < self->len - 1)
memmove(into, from, (self->len - at) * self->element_size);
--self->len;
size_t new_cap = self->cap;
while(new_cap > self->len) {
new_cap /= 2;
}
new_cap *= 2;
if(new_cap == self->cap)
return;
void* shrunk = realloc(self->data, new_cap * self->element_size);
ASSERT_RETURN(shrunk != NULL || new_cap == 0,, "Failed to shrink List to %zu", new_cap);
self->data = shrunk;
self->cap = new_cap;
}
void* list_iterator_begin(List* self) {
return list_at_unchecked(self, 0);
}
void* list_iterator_end(List* self) {
return list_at_unchecked(self, self->len);
}

35
core/src/list.h Normal file
View file

@ -0,0 +1,35 @@
#ifndef _fencer_list_h
#define _fencer_list_h
#include "stddef.h"
typedef struct List List;
struct List {
void* data;
size_t cap;
size_t len;
size_t element_size;
};
extern List list_init(size_t element_size);
extern List list_copy(const List* source);
extern void list_empty(List* list);
extern void list_reserve(List* self, size_t at_least);
extern void* list_at(List* list, size_t at);
extern size_t list_add(List* self, void* item);
extern void list_insert(List* self, void* item, size_t at);
extern void list_erase(List* self, size_t at);
extern void* list_iterator_begin(List* self);
extern void* list_iterator_end(List* self);
#define list_from_type(T) list_init(sizeof(T))
#define list_foreach(T, iter, list) for(T iter = list_iterator_begin(list); iter != (T)list_iterator_end(list); ++iter)
#define list_at_as(T, __list, __i) ((T*)(list_at(__list, __i)))
#define list_iterator_begin_as(T, __list) ((T*)(list_iterator_begin(__list)))
#endif // !_fencer_list_h

91
core/src/physics_entity.c Normal file
View file

@ -0,0 +1,91 @@
#include "physics_entity.h"
#include "camera.h"
#include "rigidbody.h"
#include "shape.h"
#include "render.h"
#include "debug.h"
void physics_entity_debug_draw(PhysicsEntity self) {
RigidBody* body = self.tc->get_rigidbody(self.data);
Shape* shape = self.tc->get_shape(self.data);
Transform* transform = self.transformable->get_transform(self.data);
shape_draw(shape, *transform);
rigidbody_debug_draw_contacts(body);
Vector lhs = transform->position;
Vector rhs = vaddf(lhs, rigidbody_get_velocity(body));
lhs = camera_world_to_pixel_point(&g_camera, lhs);
rhs = camera_world_to_pixel_point(&g_camera, rhs);
SDL_SetRenderDrawColor(g_renderer, 0, 255, 0, 255);
SDL_RenderDrawLine(g_renderer, lhs.x, lhs.y, rhs.x, rhs.y);
rhs = camera_world_to_pixel_point(&g_camera, vaddf(transform->position, rigidbody_get_force(body)));
SDL_SetRenderDrawColor(g_renderer, 0, 255, 255, 255);
SDL_RenderDrawLine(g_renderer, lhs.x, lhs.y, rhs.x, rhs.y);
}
static inline
Vector _internal_calculate_contact_force(RigidBody* self, Contact* contact) {
const Vector velocity = contact->hit.velocity;
const Vector normal = contact->hit.normal;
const float push = -vdotf(normal, velocity);
const Vector current_velocity = rigidbody_get_velocity(self);
return vaddf(current_velocity, vmulff(normal, push * rigidbody_get_bounce(self)));
}
static inline
int _internal_default_contact_solver(RigidBody* body, Contact* contact, Transform pre_solve) {
Collision hit = contact->hit;
Transform* trans = rigidbody_get_transform(body);
const Vector world_collision_point = vaddf(transform_point(&pre_solve, hit.point), hit.penetration_vector);
const float current_dot = vdotf(hit.normal, vsubf(transform_point(trans, hit.point), world_collision_point));
if(current_dot >= -0.0001)
return 1;
// the desired position is anywhere the overlapping vertex is further along the normal than the contact point
const Vector target = vaddf(trans->position, vmulff(hit.normal, -current_dot));
trans->position = vmovetowardsf(trans->position, target, 1.f);
return 0;
}
void physics_entity_solve_contacts(PhysicsEntity self, List* contacts) {
RigidBody* body = self.tc->get_rigidbody(self.data);
const Transform pre_solve = *rigidbody_get_transform(body);
// attempt to solve constraints
int done;
for(size_t iteration = 50; iteration != 0; --iteration) {
done = 1;
list_foreach(Contact*, contact, contacts) {
if(!_internal_default_contact_solver(body, contact, pre_solve))
done = 0;
}
if(done)
break;
if(iteration == 1)
LOG_WARNING("gave up on solving %zu contacts", contacts->len);
}
Vector dir = vnormalizedf(vsubf(rigidbody_get_transform(body)->position, pre_solve.position));
Vector vel = rigidbody_get_velocity(body);
float dot = vdotf(dir, vel);
if(dot < 0)
vel = vsubf(vel, vmulff(dir, dot * (1.0 + rigidbody_get_bounce(body))));
rigidbody_set_velocity(body, vel);
}
void physics_entity_update(PhysicsEntity self) {
RigidBody* body = self.tc->get_rigidbody(self.data);
ASSERT_RETURN(!visnanf(rigidbody_get_velocity(body)),, "Velocity is NaN (0)");
List* contacts = rigidbody_get_contacts(body);
if(contacts->len > 0) {
self.tc->collision_solver(self.data, contacts);
list_foreach(Contact*, contact, contacts)
self.tc->on_collision(self.data, contact->hit);
}
rigidbody_collect_contacts(body);
ASSERT_RETURN(!visnanf(rigidbody_get_velocity(body)),, "Velocity is NaN (1)");
}

47
core/src/physics_entity.h Normal file
View file

@ -0,0 +1,47 @@
#ifndef _fencer_collidable_h
#define _fencer_collidable_h
#include "vmath.h"
#include "typeclass_helpers.h"
#include "list.h"
#include "shape.h"
typedef struct Collision Collision;
typedef struct RigidBody RigidBody;
typedef struct {
RigidBody* (*const get_rigidbody)(void* self);
Shape* (*const get_shape)(void* self);
void(*const on_collision)(void* self, Collision collision);
void(*const collision_solver)(void* self, List* collisions);
} IPhysicsEntity;
typedef struct {
void* data;
IPhysicsEntity const* tc;
ITransformable const* transformable;
} PhysicsEntity;
extern void physics_entity_debug_draw(PhysicsEntity self);
extern void physics_entity_solve_contacts(PhysicsEntity self, List* contacts);
extern void physics_entity_update(PhysicsEntity self);
#define impl_PhysicsEntity_for(T, get_rigidbody_f, get_shape_f, on_collision_f, collision_solver_f)\
static inline PhysicsEntity T##_as_PhysicsEntity(T* x) {\
TC_FN_TYPECHECK(Transformable, T##_as_Transformable, T*);\
TC_FN_TYPECHECK(RigidBody*, get_rigidbody_f, T*);\
TC_FN_TYPECHECK(Shape*, get_shape_f, T*);\
TC_FN_TYPECHECK(void, on_collision_f, T*, Collision);\
TC_FN_TYPECHECK(void, collision_solver_f, T*, List*);\
static IPhysicsEntity const tc = {\
.get_rigidbody = (RigidBody*(*const)(void*)) get_rigidbody_f,\
.get_shape = (Shape*(*const)(void*)) get_shape_f,\
.on_collision = (void(*const)(void*,Collision)) on_collision_f,\
.collision_solver = (void(*const)(void*,List*)) collision_solver_f,\
};\
Transformable transformable = T##_as_Transformable(x);\
return (PhysicsEntity){.data = x, .tc = &tc, .transformable = transformable.tc};\
}
#endif // !_fencer_collidable_h

68
core/src/physics_world.c Normal file
View file

@ -0,0 +1,68 @@
#include "physics_world.h"
#include "debug.h"
#include "collision.h"
#include "rigidbody.h"
static List _world_bodies;
void physics_world_init() {
_world_bodies = list_from_type(PhysicsEntity);
}
void physics_world_clean() {
list_empty(&_world_bodies);
}
void physics_world_add_entity(PhysicsEntity entity) {
list_add(&_world_bodies, &entity);
}
void physics_world_remove_entity(PhysicsEntity entity) {
for(size_t i = 0; i < _world_bodies.len; ++i) {
PhysicsEntity* found = list_at_as(PhysicsEntity, &_world_bodies, i);
if(found->data == entity.data) {
list_erase(&_world_bodies, i);
return;
}
}
ASSERT_RETURN(0,, "Physics entity with data at %p is not registered in physics world", entity.data);
}
static inline
void _internal_physics_narrow_collision() {
size_t half_end = _world_bodies.len/2;
Collision collision_left, collision_right;
PhysicsEntity* right = NULL;
list_foreach(PhysicsEntity*, left, &_world_bodies) {
for(size_t right_index = 0; right_index < half_end; ++right_index) {
right = list_at_as(PhysicsEntity, &_world_bodies, right_index);
if(left->data == right->data) continue;
if(collision_check(*left, *right, &collision_left, &collision_right)) {
left->tc->on_collision(left->data, collision_left);
right->tc->on_collision(right->data, collision_right);
}
}
}
}
static inline
void _internal_physics_apply() {
list_foreach(PhysicsEntity*, entity, &_world_bodies) {
physics_entity_update(*entity);
}
}
static inline
void _internal_physics_integrate_forces() {
list_foreach(PhysicsEntity*, entity, &_world_bodies)
rigidbody_integrate_forces(entity->tc->get_rigidbody(entity->data));
}
void physics_world_tick() {
_internal_physics_integrate_forces();
_internal_physics_narrow_collision();
_internal_physics_apply();
}

14
core/src/physics_world.h Normal file
View file

@ -0,0 +1,14 @@
#ifndef _fencer_physics_world_h
#define _fencer_physics_world_h
#include "physics_entity.h"
extern void physics_world_init();
extern void physics_world_clean();
extern void physics_world_add_entity(PhysicsEntity entity);
extern void physics_world_remove_entity(PhysicsEntity entity);
extern void physics_world_tick();
#endif // !_fencer_physics_world_h

37
core/src/player_input.c Normal file
View file

@ -0,0 +1,37 @@
#include "player_input.h"
PlayerInput* playerinput_new(void* target, int device) {
PlayerInput* self = malloc(sizeof(PlayerInput));
self->listeners = list_from_type(InputListener);
self->device = input_get_device_by_id(device);
self->target = target;
input_device_set_listeners(self->device, &self->listeners);
return self;
}
void playerinput_add(PlayerInput* self, InputAxis axis, InputDelegateFn delegate) {
InputListener listener = {
.axis = axis,
.fn = delegate,
.self = self->target,
};
listener.axis.tc->set_device(listener.axis.data, self->device);
list_add(&self->listeners, &listener);
}
void playerinput_set_device(PlayerInput* self, int device) {
if(self->device != NULL)
input_device_set_listeners(self->device, NULL);
self->device = input_get_device_by_id(device);
input_device_set_listeners(self->device, &self->listeners);
}
void playerinput_drop(PlayerInput* self) {
input_device_set_listeners(self->device, NULL);
list_foreach(InputListener*, listener, &self->listeners) {
listener->axis.drop->drop(listener->axis.data);
}
list_empty(&self->listeners);
free(self);
}

23
core/src/player_input.h Normal file
View file

@ -0,0 +1,23 @@
#ifndef _fencer_player_input_h
#define _fencer_player_input_h
#include "list.h"
#include "input.h"
#include "input_axis.h"
typedef struct PlayerInput {
InputDevice* device;
List listeners;
void* target;
} PlayerInput;
extern PlayerInput* playerinput_new(void* target, int device);
extern void playerinput_add(PlayerInput* self, InputAxis axis, InputDelegateFn delegate);
extern void playerinput_set_device(PlayerInput* self, int device);
extern void playerinput_drop(PlayerInput* self);
impl_Drop_for(PlayerInput,
playerinput_drop
)
#endif // !_fencer_player_input_h

141
core/src/program.c Normal file
View file

@ -0,0 +1,141 @@
#include "program.h"
#include "camera.h"
#include "game_world.h"
#include "physics_world.h"
#include "time.h"
#include "assets.h"
#include "debug.h"
#include "input.h"
#include <SDL2/SDL_video.h>
#include <SDL2/SDL_image.h>
SDL_Window* g_window;
static double _target_delta_time = 0.0;
static double _delta_time;
static double _frame_start;
static double _game_start_time;
#define INITFLAGS SDL_INIT_EVENTS | SDL_INIT_VIDEO | SDL_INIT_AUDIO | SDL_INIT_GAMECONTROLLER | SDL_INIT_JOYSTICK
static inline
double tstos(struct timespec ts) {
return (double)ts.tv_sec + (double)ts.tv_nsec * 1E-09;
}
struct timespec get_time() {
struct timespec ts;
timespec_get(&ts, TIME_UTC);
return ts;
}
double get_time_s() {
return tstos(get_time());
}
void program_run(const struct ProgramSettings* settings) {
LOG_INFO("Starting program...");
if(settings->target_fps <= 0) {
_target_delta_time = 0;
} else {
_target_delta_time = 1.0f/settings->target_fps;
}
_game_start_time = get_time_s();
_frame_start = _game_start_time;
if(SDL_Init(INITFLAGS) != 0) {
LOG_ERROR("SDL init error: %s", SDL_GetError());
}
g_window = SDL_CreateWindow(
settings->title,
SDL_WINDOWPOS_CENTERED_DISPLAY(0),
SDL_WINDOWPOS_CENTERED_DISPLAY(0),
settings->view_resolution.x,
settings->view_resolution.y,
SDL_WINDOW_FULLSCREEN_DESKTOP | SDL_WINDOW_RESIZABLE);
physics_world_init();
render_init(g_window, settings);
camera_init();
assets_init();
input_init();
game_world_init();
LOG_INFO("settings->on_play");
settings->on_play();
LOG_INFO("Starting program loop");
for(;;) {
render_present();
double current_time = get_time_s();
_delta_time += current_time - _frame_start;
_frame_start = current_time;
program_handle_events();
while(_delta_time > _target_delta_time) {
_delta_time -= _target_delta_time;
settings->on_tick();
game_world_update();
physics_world_tick();
}
settings->on_draw();
SDL_Delay(1);
}
ASSERT_RETURN(0,, "Program escaped containment, nuking from orbit...");
abort();
}
void program_quit() {
game_world_close();
input_clean();
assets_clean();
render_clean();
physics_world_clean();
SDL_DestroyWindow(g_window);
SDL_Quit();
exit(0);
}
void program_handle_events() {
SDL_Event event;
while(SDL_PollEvent(&event)) {
switch(event.type) {
default: break;
case SDL_KEYUP:
case SDL_KEYDOWN:
case SDL_CONTROLLERBUTTONUP:
case SDL_CONTROLLERBUTTONDOWN:
case SDL_CONTROLLERAXISMOTION:
input_handle_event(event);
break;
case SDL_WINDOWEVENT:
if(event.window.windowID == SDL_GetWindowID(g_window)) {
program_handle_windowevent(&event.window);
}
break;
case SDL_QUIT:
program_quit();
break;
}
}
}
void program_handle_windowevent(SDL_WindowEvent* event) {
switch(event->type) {
default:
render_handle_resize();
break;
}
}
inline
float delta_time() {
return _target_delta_time == 0 ? _delta_time : _target_delta_time;
}
inline
float game_time() {
return get_time_s() - _game_start_time;
}

33
core/src/program.h Normal file
View file

@ -0,0 +1,33 @@
#ifndef _fencer_program_h
#define _fencer_program_h
#include <SDL2/SDL.h>
#include <SDL2/SDL_render.h>
#include "vmath.h"
#include "render.h"
typedef void(*TickCallback)();
typedef void(*PlayCallback)();
typedef void(*DrawCallback)();
struct ProgramSettings {
const char* title;
IVector view_resolution;
int target_fps;
TickCallback on_tick;
PlayCallback on_play;
DrawCallback on_draw;
};
extern SDL_Window* g_window;
extern void program_run(const struct ProgramSettings* settings);
extern void program_quit();
extern void program_handle_events();
extern void program_handle_windowevent(SDL_WindowEvent* event);
extern float delta_time();
extern float game_time();
#endif // !_fencer_program_h

88
core/src/render.c Normal file
View file

@ -0,0 +1,88 @@
#include "render.h"
#include "program.h"
#include "debug.h"
#include <SDL2/SDL_pixels.h>
#include <SDL2/SDL_render.h>
SDL_Renderer* g_renderer;
SDL_Texture* g_render_target;
SDL_Rect g_render_area;
IVector g_render_resolution;
void render_init(SDL_Window* window, const struct ProgramSettings* settings) {
LOG_INFO("render_init");
// create renderer, needs to be able to target textures, preferably hardware accelerated
g_renderer = SDL_CreateRenderer(window, -1, SDL_RENDERER_ACCELERATED | SDL_RENDERER_TARGETTEXTURE);
// create render target texture
g_render_target = SDL_CreateTexture(
g_renderer,
SDL_PIXELFORMAT_ARGB32,
SDL_TEXTUREACCESS_TARGET,
settings->view_resolution.x, settings->view_resolution.y);
// store the desired view resolution
g_render_resolution = settings->view_resolution;
// get the destination area for rendering the target onto the window
render_calculate_render_area();
// clear target black
SDL_SetRenderTarget(g_renderer, g_render_target);
SDL_SetRenderDrawColor(g_renderer, 0, 0, 0, 255);
SDL_RenderClear(g_renderer);
}
void render_clean() {
// clear up allocated SDL objects
SDL_DestroyTexture(g_render_target);
SDL_DestroyRenderer(g_renderer);
}
void render_present() {
// clear window white
SDL_SetRenderTarget(g_renderer, NULL);
SDL_SetRenderDrawColor(g_renderer, 0, 0, 0, 255);
SDL_RenderClear(g_renderer);
// copy render target
SDL_Rect source_rect = {0, 0, g_render_resolution.x, g_render_resolution.y};
SDL_RenderCopy(g_renderer, g_render_target, &source_rect, &g_render_area);
SDL_RenderPresent(g_renderer);
// clear render target
SDL_SetRenderTarget(g_renderer, g_render_target);
SDL_SetRenderDrawColor(g_renderer, 0, 0, 0, 255);
SDL_RenderClear(g_renderer);
}
void render_calculate_render_area() {
// get aspect ratios of both the window and the rendertexture
IVector window_resolution = render_get_window_size();
float window_aspect = (float)window_resolution.x / (float)window_resolution.y;
float target_aspect = (float)g_render_resolution.x / (float)g_render_resolution.y;
// calculate the largest area that will fit the entire rendertexture into the window space
g_render_area = (SDL_Rect) {0, 0, window_resolution.x, window_resolution.y};
if(window_aspect <= target_aspect) {
g_render_area.h = window_resolution.x / target_aspect;
g_render_area.y = (window_resolution.y - g_render_area.h) / 2;
} else {
g_render_area.w = window_resolution.y * target_aspect;
g_render_area.x += (window_resolution.x - g_render_area.w) / 2;
}
}
IVector render_get_window_size() {
// select window as target (store target to reset)
SDL_Texture* target = SDL_GetRenderTarget(g_renderer);
SDL_SetRenderTarget(g_renderer, NULL);
// fetch output size (= window size) of renderer
int window_width, window_height;
SDL_GetRendererOutputSize(g_renderer, &window_width, &window_height);
// reset render target
SDL_SetRenderTarget(g_renderer, target);
// construct IVector from fetched output size
return (IVector){window_width, window_height};
}
void render_handle_resize() {
render_calculate_render_area();
}

29
core/src/render.h Normal file
View file

@ -0,0 +1,29 @@
#ifndef _fencer_render_h
#define _fencer_render_h
#include <SDL2/SDL_render.h>
#include <SDL2/SDL_rect.h>
#include "vmath.h"
struct ProgramSettings;
// renderer created from window in Program passed to render_init
extern SDL_Renderer* g_renderer;
// render target
extern SDL_Texture* g_render_target;
// area of window to render render_target to
extern SDL_Rect g_render_area;
// size of render_target
extern IVector g_render_resolution;
extern void render_init(SDL_Window* window, const struct ProgramSettings* settings);
extern void render_clean();
extern void render_present();
extern SDL_FRect render_calculate_unit_rect();
extern void render_calculate_render_area();
extern IVector render_get_window_size();
extern void render_handle_resize();
#endif // !_fencer_render_h

161
core/src/rigidbody.c Normal file
View file

@ -0,0 +1,161 @@
#include "rigidbody.h"
#include "camera.h"
#include "debug.h"
#include "program.h"
#include "collision.h"
#include "transformable.h"
struct RigidBody {
Transformable transformable;
float mass;
float bounce;
Vector last_linear_force;
Vector next_linear_force;
Vector linear_velocity;
Transform internal_transform;
int is_static;
List contacts;
};
RigidBody* rigidbody_make(Transformable transform) {
RigidBody* self = malloc(sizeof(RigidBody));
ASSERT_RETURN(self != NULL, NULL, "Failed to allocate space for rigidbody");
*self = (RigidBody){
.transformable = transform,
.mass = 1.0f,
.bounce = 0.0f,
.linear_velocity = ZeroVector,
.next_linear_force = ZeroVector,
.last_linear_force = ZeroVector,
.internal_transform = *transform.tc->get_transform(transform.data),
.is_static = 0,
.contacts = list_from_type(Contact),
};
return self;
}
void rigidbody_destroy(RigidBody* self) {
list_empty(&self->contacts);
free(self);
}
void rigidbody_add_contact(RigidBody* self, Collision hit) {
list_add(&self->contacts,
&(Contact) {
.hit = hit,
.duration = delta_time()
});
}
void rigidbody_collect_contacts(RigidBody* self) {
list_empty(&self->contacts);
}
List* rigidbody_get_contacts(RigidBody* self) {
return &self->contacts;
}
static inline
void _internal_debug_draw_collision_edge(RigidBody* self, Contact* contact) {
#if !NDEBUG
Vector left = contact->hit.edge_left;
Vector right = contact->hit.edge_right;
Vector point = transform_point(&self->internal_transform, contact->hit.point);
Vector a = camera_world_to_pixel_point(&g_camera, left);
Vector b = camera_world_to_pixel_point(&g_camera, right);
Vector n = transform_direction(&g_camera.transform, contact->hit.normal);
SDL_SetRenderDrawColor(g_renderer, 255, 2, 255, 255);
SDL_RenderDrawLine(g_renderer, a.x, a.y, b.x, b.y);
a = camera_world_to_pixel_point(&g_camera, point);
b = vaddf(a, vmulff(n, 100.f));
SDL_SetRenderDrawColor(g_renderer, 255, 0, 0, 255);
SDL_RenderDrawLine(g_renderer, a.x, a.y, b.x, b.y);
#endif
}
void rigidbody_integrate_forces(RigidBody* self) {
const float dt = delta_time();
Vector position = self->internal_transform.position;
Vector velocity = self->linear_velocity;
Vector acceleration = vmulff(self->last_linear_force, 0.5f * dt * dt);
position = vaddf(position, vmulff(velocity, dt));
position = vaddf(position, acceleration);
acceleration = vmulff(vaddf(self->next_linear_force, acceleration), dt * 0.5f);
velocity = vaddf(velocity, acceleration);
self->linear_velocity = velocity;
self->internal_transform.position = position;
transformable_set_position(self->transformable, position);
self->last_linear_force = self->next_linear_force;
self->next_linear_force = ZeroVector;
}
float rigidbody_get_mass(const RigidBody* self) {
return self->mass;
}
void rigidbody_set_mass(RigidBody* self, float mass) {
self->mass = mass;
}
float rigidbody_get_bounce(const RigidBody* self) {
return self->bounce;
}
void rigidbody_set_bounce(RigidBody* self, float bounce) {
self->bounce = bounce;
}
void rigidbody_add_impulse(RigidBody* self, Vector force, int use_mass) {
rigidbody_accelerate(self, vmulff(force, 1.0f/delta_time()), use_mass);
}
void rigidbody_accelerate(RigidBody* self, Vector force, int use_mass) {
if(use_mass)
force = vmulff(force, 1.0f / self->mass);
if(vsqrmagnitudef(force) > powf(0.01f, 2))
self->next_linear_force = vaddf(self->next_linear_force, force);
}
int rigidbody_is_static(const RigidBody* self) {
return self->is_static;
}
void rigidbody_set_static(RigidBody* self, int is_static) {
self->is_static = is_static;
}
Vector rigidbody_get_velocity(const RigidBody* self) {
return self->linear_velocity;
}
void rigidbody_set_velocity(RigidBody* self, Vector velocity) {
self->next_linear_force = vaddf(self->next_linear_force, vsubf(velocity, self->next_linear_force));
self->linear_velocity = velocity;
}
Vector rigidbody_get_force(RigidBody* self) {
return self->next_linear_force;
}
void rigidbody_debug_draw_contacts(RigidBody* self) {
list_foreach(Contact*, contact, &self->contacts) {
_internal_debug_draw_collision_edge(self, contact);
}
}
Transform* rigidbody_get_transform(RigidBody* self) {
return &self->internal_transform;
}

51
core/src/rigidbody.h Normal file
View file

@ -0,0 +1,51 @@
#ifndef _fencer_rigidbody_h
#define _fencer_rigidbody_h
#include "shape.h"
#include "transformable.h"
#include "list.h"
#include "collision.h"
struct Collision;
typedef struct {
struct Collision hit;
float duration;
} Contact;
typedef struct RigidBody RigidBody;
typedef void (*CollisionHandlerFn)(void* obj, List* collisions);
// Referenced transform is stored but not owned by the rigidbody.
extern RigidBody* rigidbody_make(Transformable transform);
extern void rigidbody_destroy(RigidBody* self);
extern void rigidbody_add_contact(RigidBody* self, struct Collision hit);
extern void rigidbody_collect_contacts(RigidBody* self);
extern List* rigidbody_get_contacts(RigidBody* self);
extern void rigidbody_integrate_forces(RigidBody* self);
extern float rigidbody_get_mass(const RigidBody* self);
extern void rigidbody_set_mass(RigidBody* self, float mass);
extern float rigidbody_get_bounce(const RigidBody* self);
extern void rigidbody_set_bounce(RigidBody* self, float bounce);
extern void rigidbody_add_impulse(RigidBody* self, Vector force, int use_mass);
extern void rigidbody_accelerate(RigidBody* self, Vector force, int use_mass);
extern int rigidbody_is_static(const RigidBody* self);
extern void rigidbody_set_static(RigidBody* self, int is_static);
extern Vector rigidbody_get_velocity(const RigidBody* self);
extern void rigidbody_set_velocity(RigidBody* self, Vector velocity);
extern Vector rigidbody_get_force(RigidBody* self);
extern void rigidbody_debug_draw_contacts(RigidBody* self);
extern Transform* rigidbody_get_transform(RigidBody* self);
impl_Transformable_for(RigidBody,
rigidbody_get_transform
)
#endif // !_fencer_rigidbody_h

185
core/src/shape.c Normal file
View file

@ -0,0 +1,185 @@
#include "shape.h"
#include "camera.h"
#include "debug.h"
#include "render.h"
#include "list.h"
#include <SDL2/SDL_render.h>
#include <stdlib.h>
struct Shape {
List points;
Vector mean;
int is_convex;
};
static
Vector* _shape_get_furthest_in_direction(Shape* self, Vector direction) {
// ensure direction is normalized
direction = vnormalizedf(direction);
float furthest_dot = vdotf(direction, vsubf(*list_at_as(Vector, &self->points, 0), self->mean));
Vector* furthest = list_at(&self->points, 0);
float dot;
list_foreach(Vector*, point, &self->points) {
dot = vdotf(direction, vsubf(*point, self->mean));
if(dot > furthest_dot) {
furthest = point;
}
}
return furthest;
}
// go through each point,
// in order to be convex, none of the points in the shape can be "inset".
// This means that if one of the points is not the furthest in it's own direction
// measured from the median.
static
int _shape_calculate_is_convex(Shape* self) {
// point relative to mean
Vector relative;
list_foreach(Vector*, point, &self->points) {
relative = vsubf(*point, self->mean);
if(point != _shape_get_furthest_in_direction(self, relative)) {
return 0;
}
}
return 1;
}
static
Vector _shape_calculate_mean(Shape* self) {
Vector avg = ZeroVector;
size_t count = 0;
list_foreach(Vector*, point, &self->points) {
++count;
avg = vaddf(avg, vmulff(*point, 1.0/count));
}
return avg;
}
Shape* shape_new(const Vector* points, size_t points_len) {
// allocate required space for shape and points array
Shape* self = malloc(sizeof(Shape));
ASSERT_RETURN(self != NULL, NULL, "Failed to allocate enough space for a shape object.");
self->points = list_from_type(Vector);
list_reserve(&self->points, points_len);
if(points != NULL) {
memcpy(list_iterator_begin_as(Vector, &self->points), points, points_len * sizeof(Vector));
self->points.len = points_len;
// derive metadata
self->mean = _shape_calculate_mean(self);
self->is_convex = _shape_calculate_is_convex(self);
} else {
self->is_convex = 1;
self->mean = ZeroVector;
}
return self;
}
Shape* shape_new_square(Vector size) {
return shape_new((Vector[4]){
ZeroVector,
(Vector){size.x, 0.f},
size,
(Vector){0.f, size.y},
}, 4);
}
Shape* shape_clone(const Shape* source) {
Shape* self = malloc(sizeof(Shape));
ASSERT_RETURN(self != NULL, NULL, "Failed to allocate space for shape object.");
self->points = list_copy(&source->points);
// copy data from source
self->mean = source->mean;
self->is_convex = source->is_convex;
return self;
}
void shape_destroy(Shape* self) {
list_empty(&self->points);
free(self);
}
Vector* shape_get_start(Shape* self) {
return list_iterator_begin(&self->points);
}
Vector* shape_get_end(Shape* self) {
return list_iterator_end(&self->points);
}
size_t shape_get_points_count(const Shape* self) {
return self->points.len;
}
Vector shape_get_point(Shape* self, size_t at) {
ASSERT_RETURN(at < self->points.len, self->mean, "Point index %zu out of bounds for shape", at);
return *list_at_as(Vector, &self->points, at);
}
Vector shape_get_point_transformed(Shape* self, size_t at, Transform transform) {
return transform_point(&transform, shape_get_point(self, at));
}
void shape_set_point(Shape* self, size_t at, Vector point) {
ASSERT_RETURN(at < self->points.len,, "Point index %zu out of bounds for shape", at);
*list_at_as(Vector, &self->points, at) = point;
}
void shape_add_point(Shape* self, Vector point) {
list_add(&self->points, &point);
}
void shape_insert_point(Shape* self, size_t at, Vector point) {
ASSERT_RETURN(at < self->points.len + 1,, "Point index %zu out of bounds for shape", at);
list_insert(&self->points, &point, at);
}
List* shape_get_points(Shape* self) {
return &self->points;
}
Vector shape_remove_point(Shape* self, size_t at) {
Vector point = *list_at_as(Vector, &self->points, at);
list_erase(&self->points, at);
return point;
}
Vector shape_get_median_point(Shape* self) {
return self->mean;
}
int shape_is_convex(Shape* self) {
return self->is_convex;
}
void shape_draw(Shape* self, Transform transform) {
Vector lhs, rhs, normal;
for(size_t i = 0; i < self->points.len; ++i) {
lhs = shape_get_point_transformed(self, i, transform);
rhs = shape_get_point_transformed(self, (i + 1) % self->points.len, transform);
normal = vnormalizedf(vperpendicularf(vsubf(rhs, lhs)));
lhs = camera_world_to_pixel_point(&g_camera, lhs);
rhs = camera_world_to_pixel_point(&g_camera, rhs);
normal = transform_direction(&g_camera.transform, normal);
SDL_SetRenderDrawColor(g_renderer, 255, 255, 255, 255);
SDL_RenderDrawLineF(g_renderer, lhs.x, lhs.y, rhs.x, rhs.y);
lhs = vlerpf(lhs, rhs, 0.5f);
rhs = vaddf(lhs, vmulff(normal, 10.f));
SDL_SetRenderDrawColor(g_renderer, 0, 0, 255, 255);
SDL_RenderDrawLineF(g_renderer, lhs.x, lhs.y, rhs.x, rhs.y);
}
}

32
core/src/shape.h Normal file
View file

@ -0,0 +1,32 @@
#ifndef _fencer_shape_h
#define _fencer_shape_h
#include "vmath.h"
#include "transform.h"
#include "list.h"
typedef struct Shape Shape;
extern Shape* shape_new(const Vector* points, size_t points_len);
extern Shape* shape_new_square(Vector size);
extern Shape* shape_clone(const Shape* source);
extern void shape_destroy(Shape* self);
extern Vector* shape_get_start(Shape* self);
extern Vector* shape_get_end(Shape* self);
extern size_t shape_get_points_count(const Shape* self);
extern Vector shape_get_point(Shape* self, size_t at);
extern Vector shape_get_point_transformed(Shape* self, size_t at, Transform transform);
extern void shape_set_point(Shape* self, size_t at, Vector point);
extern void shape_add_point(Shape* self, Vector point);
extern void shape_insert_point(Shape* self, size_t at, Vector point);
extern List* shape_get_points(Shape* self);
extern Vector shape_remove_point(Shape* self, size_t at);
extern Vector shape_get_median_point(Shape* self);
extern int shape_is_convex(Shape* self);
extern void shape_draw(Shape* self, Transform transform);
#endif // !_fencer_shape_h

104
core/src/sprite.c Normal file
View file

@ -0,0 +1,104 @@
#include "sprite.h"
#include "camera.h"
#include "debug.h"
#include "render.h"
#include "spritesheet.h"
#include <SDL2/SDL_image.h>
#include <SDL2/SDL_render.h>
struct Sprite {
// The animation sheet to sample sprites from.
Spritesheet* spritesheet;
// The current frame of animation.
size_t tile_index;
// The local transformation of this sprite.
Vector origin;
SDL_RendererFlip flip_state;
};
Sprite* sprite_from_spritesheet(Spritesheet* sheet, size_t initial_frame) {
Sprite* self = malloc(sizeof(Sprite));
ASSERT_RETURN(self != NULL, NULL, "Failed to allocate memory for new sprite.");
self->spritesheet = sheet;
self->origin = (Vector){0.5f, 0.5f};
self->tile_index = initial_frame;
self->flip_state = SDL_FLIP_NONE;
return self;
}
void sprite_destroy(Sprite* self) {
free(self);
}
void sprite_draw(Sprite* self, Transform transform) {
SDL_Texture* texture = spritesheet_get_texture(self->spritesheet);
SDL_Rect source = spritesheet_get_tile_rect(self->spritesheet, self->tile_index);
Vector origin = self->origin;
if(self->flip_state && SDL_FLIP_HORIZONTAL) {
origin.x = 1.0-origin.x;
}
if((self->flip_state & SDL_FLIP_VERTICAL) != 0) {
origin.y = 1.0-origin.y;
}
Vector left_top = transform_point(&transform, vinvf(origin));
SDL_FRect destination = (SDL_FRect) {
left_top.x, left_top.y,
transform.scale.x, transform.scale.y
};
destination = camera_world_to_pixel_rect(&g_camera, &destination);
origin = vmulf(origin, transform.scale);
SDL_RenderCopyExF(g_renderer, texture, &source, &destination,
transform.rotation * 57.2958, &origin, self->flip_state);
SDL_SetRenderDrawColor(g_renderer, 255, 255, 255, 255);
}
Vector sprite_get_origin(Sprite* self) {
return self->origin;
}
void sprite_set_origin(Sprite* self, Vector origin) {
self->origin = origin;
}
size_t sprite_get_tile(const Sprite* self) {
return self->tile_index;
}
void sprite_set_tile(Sprite* self, size_t frame) {
frame = frame % spritesheet_get_tile_count(self->spritesheet);
self->tile_index = frame;
}
Spritesheet* sprite_get_spritesheet(const Sprite* self) {
return self->spritesheet;
}
void sprite_set_spritesheet(Sprite* self, Spritesheet* spritesheet) {
self->spritesheet = spritesheet;
}
void sprite_flip_horizontal(Sprite* self, int horizontal) {
if(horizontal) {
self->flip_state |= SDL_FLIP_HORIZONTAL;
} else {
self->flip_state &= ~SDL_FLIP_HORIZONTAL;
}
}
void sprite_flip_vertical(Sprite* self, int vertical) {
if(vertical) {
self->flip_state |= SDL_FLIP_VERTICAL;
} else {
self->flip_state &= ~SDL_FLIP_VERTICAL;
}
}

30
core/src/sprite.h Normal file
View file

@ -0,0 +1,30 @@
#ifndef _fencer_sprite_h
#define _fencer_sprite_h
#include "vmath.h"
#include "transform.h"
#include "spritesheet.h"
#include <SDL2/SDL_render.h>
#include <SDL2/SDL_rect.h>
// Forward declaration of the private sprite struct
typedef struct Sprite Sprite;
extern Sprite* sprite_from_spritesheet(Spritesheet* sheet, size_t initial_frame);
extern void sprite_destroy(Sprite* sprite);
extern void sprite_draw(Sprite* self, Transform transform);
extern Vector sprite_get_origin(Sprite* self);
extern void sprite_set_origin(Sprite* self, Vector origin);
extern size_t sprite_get_tile(const Sprite* self);
extern void sprite_set_tile(Sprite* self, size_t tile);
extern Spritesheet* sprite_get_spritesheet(const Sprite* self);
extern void sprite_set_spritesheet(Sprite* self, Spritesheet* spritesheet);
extern void sprite_flip_horizontal(Sprite* self, int horizontal);
extern void sprite_flip_vertical(Sprite* self, int vertical);
#endif // !_fencer_sprite_h

8
core/src/sprite_entity.c Normal file
View file

@ -0,0 +1,8 @@
#include "sprite_entity.h"
#include "sprite.h"
void sprite_entity_draw(SpriteEntity self) {
Sprite* sprite = self.tc->get_sprite(self.data);
Transform* transform = self.transformable->get_transform(self.data);
sprite_draw(sprite, *transform);
}

29
core/src/sprite_entity.h Normal file
View file

@ -0,0 +1,29 @@
#ifndef _fencer_sprite_entity_h
#define _fencer_sprite_entity_h
#include "typeclass_helpers.h"
#include "sprite.h"
typedef struct {
Sprite* (*const get_sprite)(void*);
} ISpriteEntity;
typedef struct {
void* data;
ISpriteEntity const* tc;
ITransformable const* transformable;
} SpriteEntity;
extern void sprite_entity_draw(SpriteEntity self);
#define impl_SpriteEntity_for(T, get_sprite_f)\
static inline SpriteEntity T##_as_SpriteEntity(T* x) {\
TC_FN_TYPECHECK(Sprite*, get_sprite_f, T*);\
static ISpriteEntity const tc = {\
.get_sprite = (Sprite*(*const)(void*)) get_sprite_f,\
};\
Transformable t = T##_as_Transformable(x);\
return (SpriteEntity){.tc = &tc, .transformable = t.tc, .data = x};\
}
#endif // !_fencer_sprite_entity_h

83
core/src/spritesheet.c Normal file
View file

@ -0,0 +1,83 @@
#include "spritesheet.h"
#include "assets.h"
#include "render.h"
#include "debug.h"
#include <SDL2/SDL_render.h>
#include <SDL2/SDL_image.h>
struct Spritesheet {
asset_id asset_id;
// The texture to sample.
SDL_Texture* texture;
// The resolution of the texture.
IVector resolution;
// The number of tiles in the sheet.
size_t tile_count;
// The number of tiles contained in the width of the texture.
size_t tile_shear;
// The resolution of a single tile of the sheet.
IVector tile_size;
};
void _internal_spritesheet_destroy(Spritesheet* self) {
SDL_DestroyTexture(self->texture);
free(self);
}
Spritesheet* spritesheet_load(const char* texture_name, IVector tile_size) {
SDL_Texture* texture = IMG_LoadTexture(g_renderer, texture_name);
ASSERT_RETURN(texture != NULL, NULL, "Failed to load texture from file %s.", texture_name);
return spritesheet_from_texture(texture, tile_size);
}
Spritesheet* spritesheet_from_texture(SDL_Texture* texture, IVector tile_size) {
Spritesheet* self = malloc(sizeof(Spritesheet));
ASSERT_RETURN(self != NULL, NULL, "Failed to allocate spritesheet.");
self->asset_id = store_asset(Spritesheet_as_Asset(self));
// Load the texture image and query it's size
self->texture = texture;
SDL_QueryTexture(self->texture, NULL, NULL, &self->resolution.x, &self->resolution.y);
self->tile_size = tile_size;
self->tile_shear = self->resolution.x / self->tile_size.x;
self->tile_count = self->resolution.x / self->tile_size.x * self->resolution.y / self->tile_size.y;
return self;
}
void spritesheet_destroy(Spritesheet* self) {
free_asset(self->asset_id);
}
SDL_Texture* spritesheet_get_texture(const Spritesheet* self) {
return self->texture;
}
SDL_Rect spritesheet_get_tile_rect(const Spritesheet* self, size_t index) {
IVector tile_coord = {index % self->tile_shear, index / self->tile_shear};
tile_coord = vmuli(tile_coord, self->tile_size);
return (SDL_Rect) {
tile_coord.x, tile_coord.y,
self->tile_size.x, self->tile_size.y
};
}
IVector spritesheet_get_resolution(const Spritesheet* self) {
return self->resolution;
}
size_t spritesheet_get_tile_count(const Spritesheet* self) {
return self->tile_count;
}
asset_id spritesheet_get_asset_id(Spritesheet* self) {
return self->asset_id;
}
void spritesheet_set_asset_id(Spritesheet* self, asset_id id) {
self->asset_id = id;
}

33
core/src/spritesheet.h Normal file
View file

@ -0,0 +1,33 @@
#ifndef _fencer_spritesheet_h
#define _fencer_spritesheet_h
#include "asset.h"
#include "vmath.h"
#include <SDL2/SDL_render.h>
typedef struct Spritesheet Spritesheet;
extern Spritesheet* spritesheet_load(const char* texture_name, IVector tile_size);
extern Spritesheet* spritesheet_from_texture(SDL_Texture* texture, IVector tile_size);
extern void spritesheet_destroy(Spritesheet* self);
extern SDL_Texture* spritesheet_get_texture(const Spritesheet* self);
extern SDL_Rect spritesheet_get_tile_rect(const Spritesheet* self, size_t index);
extern IVector spritesheet_get_resolution(const Spritesheet* self);
extern size_t spritesheet_get_tile_count(const Spritesheet* self);
extern asset_id spritesheet_get_asset_id(Spritesheet* self);
extern void spritesheet_set_asset_id(Spritesheet* self, asset_id id);
extern void _internal_spritesheet_destroy(Spritesheet* self_void);
impl_Drop_for(Spritesheet,
_internal_spritesheet_destroy
)
impl_Asset_for(Spritesheet,
spritesheet_get_asset_id,
spritesheet_set_asset_id
)
#endif // !_fencer_spritesheet_h

63
core/src/transform.h Normal file
View file

@ -0,0 +1,63 @@
#ifndef _fencer_transform_h
#define _fencer_transform_h
#include "vmath.h"
#include "transformable.h"
typedef struct Transform Transform;
struct Transform {
Vector position;
Vector scale;
float rotation;
};
#define IdentityTransform (Transform){ZeroVector, OneVector, 0.0f}
static inline Transform transform_apply(Transform parent, Transform child);
static inline Transform transform_invert(Transform a);
static inline Vector transform_direction(Transform* self, Vector direction);
static inline Vector transform_point(Transform* self, Vector point);
static inline
Transform transform_apply(Transform parent, Transform child) {
return (Transform) {
.position = transform_point(&parent, child.position),
.scale = vmulf(parent.scale, child.scale),
.rotation = parent.rotation + child.rotation
};
}
static inline
Transform transform_invert(Transform a) {
return (Transform) {
.position = vinvf(a.position),
.scale = vreciprocalf(a.scale),
.rotation = -a.rotation
};
}
static inline
Vector transform_direction(Transform* self, Vector direction) {
return vrotatef(direction, self->rotation);
}
static inline
Vector transform_point(Transform* self, Vector position) {
return vaddf(vmulf(vrotatef(position, self->rotation), self->scale), self->position);
}
static inline
Vector inverse_transform_point(Transform* self, Vector position) {
return vrotatef(vmulf(vsubf(position, self->position), vreciprocalf(self->scale)), -self->rotation);
}
static
Transform* transform_get_transform(Transform* self) {
return self;
}
impl_Transformable_for(Transform,
transform_get_transform
);
#endif // !_fencer_transform_h

41
core/src/transformable.c Normal file
View file

@ -0,0 +1,41 @@
#include "transformable.h"
#include "transform.h"
Vector transformable_get_position(Transformable self) {
return self.tc->get_transform(self.data)->position;
}
void transformable_set_position(Transformable self, Vector position) {
self.tc->get_transform(self.data)->position = position;
}
void transformable_move(Transformable self, Vector delta) {
Vector* position = &self.tc->get_transform(self.data)->position;
*position = vaddf(*position, delta);
}
Vector transformable_get_scale(Transformable self) {
return self.tc->get_transform(self.data)->scale;
}
void transformable_set_scale(Transformable self, Vector scale) {
self.tc->get_transform(self.data)->scale = scale;
}
void transformable_scale(Transformable self, Vector factor) {
Vector* scale = &self.tc->get_transform(self.data)->scale;
*scale = vmulf(*scale, factor);
}
float transformable_get_rotation(Transformable self) {
return self.tc->get_transform(self.data)->rotation;
}
void transformable_set_rotation(Transformable self, float rotation) {
self.tc->get_transform(self.data)->rotation = rotation;
}
void transformable_rotate(Transformable self, float delta) {
float* rotation = &self.tc->get_transform(self.data)->rotation;
*rotation = *rotation + delta;
}

37
core/src/transformable.h Normal file
View file

@ -0,0 +1,37 @@
#ifndef _fencer_transformable_h
#define _fencer_transformable_h
#include "vmath.h"
#include "typeclass_helpers.h"
typedef struct {
struct Transform* (*const get_transform)(void* self);
} ITransformable;
typedef struct {
void* data;
ITransformable const* tc;
} Transformable;
extern Vector transformable_get_position(Transformable self);
extern void transformable_set_position(Transformable self, Vector position);
extern void transformable_move(Transformable self, Vector delta);
extern Vector transformable_get_scale(Transformable self);
extern void transformable_set_scale(Transformable self, Vector scale);
extern void transformable_scale(Transformable self, Vector factor);
extern float transformable_get_rotation(Transformable self);
extern void transformable_set_rotation(Transformable self, float rotation);
extern void transformable_rotate(Transformable self, float delta);
#define impl_Transformable_for(T, get_transform_f)\
static inline Transformable T##_as_Transformable(T* x) {\
TC_FN_TYPECHECK(Transform*, get_transform_f, T*);\
static ITransformable const tc = {\
.get_transform = (Transform*(*const)(void*)) get_transform_f\
};\
return (Transformable){.tc = &tc, .data = x};\
}
#endif // !_fencer_transformable_h

View file

@ -0,0 +1,7 @@
#ifndef _fencer_typeclass_helpers_h
#define _fencer_typeclass_helpers_h
#define TC_FN_TYPECHECK(__Return, __Name, ...)\
__Return (*const __Name##_)(__VA_ARGS__) = __Name; (void)__Name##_
#endif // !_fencer_typeclass_helpers_h

170
core/src/vmath.h Normal file
View file

@ -0,0 +1,170 @@
#ifndef _fencer_vmath_h
#define _fencer_vmath_h
#include <math.h>
#if VMATH_SDL == 1
#include <SDL2/SDL_rect.h>
typedef SDL_FPoint Vector;
typedef SDL_Point IVector;
#else
typedef struct Vector {
float x;
float y;
} Vector;
typedef struct IVector {
int x;
int y;
} IVector;
#endif
// Vector Constant Macros
#define ZeroVector (Vector){0.0f, 0.0f}
#define InfinityVector (Vector){INFINITY, INFINITY}
#define OneVector (Vector){1.0f,1.0f}
#define UpVector (Vector){0.0f,-1.0f}
#define RightVector (Vector){1.0f,0.0f}
#define LeftVector (Vector){-1.0f,0.0f}
#define DownVector (Vector){0.0f,1.0f}
#define MakeVector(__X, __Y) (Vector){__X, __Y}
#define VectorFrom(__A) (Vector){__A, __A}
// Integer Vector Constant Macros
#define ZeroIVector (IVector){0,0}
#define OneIVector (IVector){1,1}
#define UpIVector (IVector){-1,0}
#define DownIVector (IVector){1,0}
#define RightIVector (IVector){1,0}
#define LeftIVector (IVector){-1,0}
#define MakeIVector(__X, __Y) (IVector){__X, __Y}
#define IVectorFrom(__A) (IVector){__A, __A}
///
// Floating point vector maths functions.
///
static inline
int veqf(Vector a, Vector b) {
const float e = 0.0001f;
return fabsf(a.x - b.x) + fabsf(a.y - b.y) < e;
}
static inline
int visnanf(Vector a) {
return isnanf(a.x) || isnanf(a.y);
}
static inline
Vector vaddf(Vector a, Vector b) {
return (Vector){a.x + b.x, a.y + b.y};
}
static inline
Vector vsubf(Vector a, Vector b) {
return (Vector){a.x - b.x, a.y - b.y};
}
static inline
Vector vmulff(Vector a, float b) {
return (Vector){a.x * b, a.y * b};
}
static inline
Vector vmulf(Vector a, Vector b) {
return (Vector) {a.x * b.x, a.y * b.y};
}
static inline
Vector vinvf(Vector a) {
return (Vector){-a.x, -a.y};
}
static inline
Vector vperpendicularf(Vector a) {
return (Vector){a.y, -a.x};
}
static inline
float vmagnitudef(Vector a) {
if(veqf(a, ZeroVector)) return 0.f;
a.x = fabsf(a.x);
a.y = fabsf(a.y);
return sqrtf(a.x*a.x + a.y*a.y);
}
static inline
float vsqrmagnitudef(Vector a) {
a.x = fabsf(a.x);
a.y = fabsf(a.y);
return a.x*a.x + a.y*a.y;
}
static inline
Vector vnormalizedf(Vector a) {
if(veqf(a, ZeroVector)) return ZeroVector;
return vmulff(a, 1.0/vmagnitudef(a));
}
static inline
float vdotf(Vector a, Vector b) {
return (a.x*b.x) + (a.y*b.y);
}
static inline
float vdistancef(Vector a, Vector b) {
return vmagnitudef(vsubf(a, b));
}
static inline
float vsqrdistf(Vector a, Vector b) {
return vsqrmagnitudef(vsubf(a, b));
}
static inline
Vector vreciprocalf(Vector a) {
return (Vector){1.0/a.x, 1.0/a.y};
}
static inline
Vector vrotatef(Vector a, float t) {
return (Vector){
cosf(t) * a.x - sinf(t) * a.y,
sinf(t) * a.x + cosf(t) * a.y
};
}
static inline
float vanglebetweenf(Vector a, Vector b) {
return vdotf(a, b) / (vmagnitudef(a) * vmagnitudef(b));
}
static inline
Vector vprojectf(Vector onto, Vector from) {
float dot = vdotf(onto, from);
return vmulff(onto, dot);
}
static inline
Vector vlerpf(Vector start, Vector end, float t) {
if(veqf(start, end))
return end;
t = fminf(fmaxf(0.0f, t), 1.0f);
return vaddf(start, vmulff(vsubf(end, start), t));
}
static inline
Vector vmovetowardsf(Vector start, Vector end, float delta) {
return vlerpf(start, end, delta / vdistancef(end, start));
}
static inline
Vector vaveragef(Vector* array, size_t count) {
Vector acc = ZeroVector;
for(size_t i = 0; i < count; ++i) {
acc = vaddf(acc, array[i]);
}
return vmulff(acc, 1.0/(float)count);
}
static inline
IVector vaddi(IVector a, IVector b) {
return (IVector){a.x + b.x, a.y + b.y};
}
static inline
IVector vsubi(IVector a, IVector b) {
return (IVector){a.x - b.x, a.y - b.y};
}
static inline
IVector vmuli(IVector a, IVector b) {
return (IVector){a.x * b.x, a.y * b.y};
}
#endif // !_fencer_vmath_h