/**************************************************************************/ /* jolt_area_3d.cpp */ /**************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /**************************************************************************/ /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /**************************************************************************/ #include "jolt_area_3d.h" #include "../jolt_project_settings.h" #include "../misc/jolt_type_conversions.h" #include "../shapes/jolt_shape_3d.h" #include "../spaces/jolt_broad_phase_layer.h" #include "../spaces/jolt_space_3d.h" #include "jolt_body_3d.h" #include "jolt_group_filter.h" #include "jolt_soft_body_3d.h" namespace { constexpr double DEFAULT_WIND_FORCE_MAGNITUDE = 0.0; constexpr double DEFAULT_WIND_ATTENUATION_FACTOR = 0.0; const Vector3 DEFAULT_WIND_SOURCE = Vector3(); const Vector3 DEFAULT_WIND_DIRECTION = Vector3(); } // namespace JPH::BroadPhaseLayer JoltArea3D::_get_broad_phase_layer() const { return monitorable ? JoltBroadPhaseLayer::AREA_DETECTABLE : JoltBroadPhaseLayer::AREA_UNDETECTABLE; } JPH::ObjectLayer JoltArea3D::_get_object_layer() const { ERR_FAIL_NULL_V(space, 0); return space->map_to_object_layer(_get_broad_phase_layer(), collision_layer, collision_mask); } void JoltArea3D::_add_to_space() { jolt_shape = build_shapes(true); JPH::CollisionGroup::GroupID group_id = 0; JPH::CollisionGroup::SubGroupID sub_group_id = 0; JoltGroupFilter::encode_object(this, group_id, sub_group_id); jolt_settings->mUserData = reinterpret_cast(this); jolt_settings->mObjectLayer = _get_object_layer(); jolt_settings->mCollisionGroup = JPH::CollisionGroup(nullptr, group_id, sub_group_id); jolt_settings->mMotionType = _get_motion_type(); jolt_settings->mIsSensor = true; jolt_settings->mUseManifoldReduction = false; jolt_settings->mOverrideMassProperties = JPH::EOverrideMassProperties::MassAndInertiaProvided; jolt_settings->mMassPropertiesOverride.mMass = 1.0f; jolt_settings->mMassPropertiesOverride.mInertia = JPH::Mat44::sIdentity(); if (JoltProjectSettings::areas_detect_static_bodies()) { jolt_settings->mCollideKinematicVsNonDynamic = true; } jolt_settings->SetShape(jolt_shape); const JPH::BodyID new_jolt_id = space->add_rigid_body(*this, *jolt_settings); if (new_jolt_id.IsInvalid()) { return; } jolt_id = new_jolt_id; delete jolt_settings; jolt_settings = nullptr; } void JoltArea3D::_enqueue_call_queries() { if (space != nullptr) { space->enqueue_call_queries(&call_queries_element); } } void JoltArea3D::_dequeue_call_queries() { if (space != nullptr) { space->dequeue_call_queries(&call_queries_element); } } void JoltArea3D::_add_shape_pair(Overlap &p_overlap, const JPH::BodyID &p_body_id, const JPH::SubShapeID &p_other_shape_id, const JPH::SubShapeID &p_self_shape_id) { const JoltReadableBody3D other_jolt_body = space->read_body(p_body_id); const JoltShapedObject3D *other_object = other_jolt_body.as_shaped(); ERR_FAIL_NULL(other_object); p_overlap.rid = other_object->get_rid(); p_overlap.instance_id = other_object->get_instance_id(); ShapeIndexPair &shape_indices = p_overlap.shape_pairs[{ p_other_shape_id, p_self_shape_id }]; shape_indices.other = other_object->find_shape_index(p_other_shape_id); shape_indices.self = find_shape_index(p_self_shape_id); p_overlap.pending_added.push_back(shape_indices); _events_changed(); } bool JoltArea3D::_remove_shape_pair(Overlap &p_overlap, const JPH::SubShapeID &p_other_shape_id, const JPH::SubShapeID &p_self_shape_id) { HashMap::Iterator shape_pair = p_overlap.shape_pairs.find(ShapeIDPair(p_other_shape_id, p_self_shape_id)); if (shape_pair == p_overlap.shape_pairs.end()) { return false; } p_overlap.pending_removed.push_back(shape_pair->value); p_overlap.shape_pairs.remove(shape_pair); _events_changed(); return true; } void JoltArea3D::_flush_events(OverlapsById &p_objects, const Callable &p_callback) { for (OverlapsById::Iterator E = p_objects.begin(); E;) { Overlap &overlap = E->value; if (p_callback.is_valid()) { for (ShapeIndexPair &shape_indices : overlap.pending_removed) { _report_event(p_callback, PhysicsServer3D::AREA_BODY_REMOVED, overlap.rid, overlap.instance_id, shape_indices.other, shape_indices.self); } for (ShapeIndexPair &shape_indices : overlap.pending_added) { _report_event(p_callback, PhysicsServer3D::AREA_BODY_ADDED, overlap.rid, overlap.instance_id, shape_indices.other, shape_indices.self); } } overlap.pending_removed.clear(); overlap.pending_added.clear(); OverlapsById::Iterator next = E; ++next; if (overlap.shape_pairs.is_empty()) { p_objects.remove(E); } E = next; } } void JoltArea3D::_report_event(const Callable &p_callback, PhysicsServer3D::AreaBodyStatus p_status, const RID &p_other_rid, ObjectID p_other_instance_id, int p_other_shape_index, int p_self_shape_index) const { ERR_FAIL_COND(!p_callback.is_valid()); const Variant arg1 = p_status; const Variant arg2 = p_other_rid; const Variant arg3 = p_other_instance_id; const Variant arg4 = p_other_shape_index; const Variant arg5 = p_self_shape_index; const Variant *args[5] = { &arg1, &arg2, &arg3, &arg4, &arg5 }; Callable::CallError ce; Variant ret; p_callback.callp(args, 5, ret, ce); if (unlikely(ce.error != Callable::CallError::CALL_OK)) { ERR_PRINT_ONCE(vformat("Failed to call area monitor callback for '%s'. It returned the following error: '%s'.", to_string(), Variant::get_callable_error_text(p_callback, args, 5, ce))); } } void JoltArea3D::_notify_body_entered(const JPH::BodyID &p_body_id) { const JoltReadableBody3D jolt_body = space->read_body(p_body_id); JoltBody3D *body = jolt_body.as_body(); if (unlikely(body == nullptr)) { return; } body->add_area(this); } void JoltArea3D::_notify_body_exited(const JPH::BodyID &p_body_id) { const JoltReadableBody3D jolt_body = space->read_body(p_body_id); JoltBody3D *body = jolt_body.as_body(); if (unlikely(body == nullptr)) { return; } body->remove_area(this); } void JoltArea3D::_force_bodies_entered() { for (KeyValue &E : bodies_by_id) { Overlap &body = E.value; if (unlikely(body.shape_pairs.is_empty())) { continue; } for (const KeyValue &P : body.shape_pairs) { body.pending_removed.erase(P.value); body.pending_added.push_back(P.value); } _events_changed(); } } void JoltArea3D::_force_bodies_exited(bool p_remove) { for (KeyValue &E : bodies_by_id) { const JPH::BodyID &id = E.key; Overlap &body = E.value; if (unlikely(body.shape_pairs.is_empty())) { continue; } for (const KeyValue &P : body.shape_pairs) { body.pending_added.erase(P.value); body.pending_removed.push_back(P.value); } _events_changed(); if (p_remove) { body.shape_pairs.clear(); _notify_body_exited(id); } } } void JoltArea3D::_force_areas_entered() { for (KeyValue &E : areas_by_id) { Overlap &area = E.value; if (unlikely(area.shape_pairs.is_empty())) { continue; } for (const KeyValue &P : area.shape_pairs) { area.pending_removed.erase(P.value); area.pending_added.push_back(P.value); } _events_changed(); } } void JoltArea3D::_force_areas_exited(bool p_remove) { for (KeyValue &E : areas_by_id) { Overlap &area = E.value; if (unlikely(area.shape_pairs.is_empty())) { continue; } for (const KeyValue &P : area.shape_pairs) { area.pending_added.erase(P.value); area.pending_removed.push_back(P.value); } _events_changed(); if (p_remove) { area.shape_pairs.clear(); } } } void JoltArea3D::_update_group_filter() { if (!in_space()) { return; } const JoltWritableBody3D body = space->write_body(jolt_id); ERR_FAIL_COND(body.is_invalid()); body->GetCollisionGroup().SetGroupFilter(JoltGroupFilter::instance); } void JoltArea3D::_update_default_gravity() { if (is_default_area()) { space->get_physics_system().SetGravity(to_jolt(gravity_vector) * gravity); } } void JoltArea3D::_space_changing() { JoltShapedObject3D::_space_changing(); if (space != nullptr) { // Ideally we would rely on our contact listener to report all the exits when we move // between (or out of) spaces, but because our Jolt body is going to be destroyed when we // leave this space the contact listener won't be able to retrieve the corresponding area // and as such cannot report any exits, so we're forced to do it manually instead. _force_bodies_exited(true); _force_areas_exited(true); } _dequeue_call_queries(); } void JoltArea3D::_space_changed() { JoltShapedObject3D::_space_changed(); _update_group_filter(); _update_default_gravity(); } void JoltArea3D::_events_changed() { _enqueue_call_queries(); } void JoltArea3D::_body_monitoring_changed() { if (has_body_monitor_callback()) { _force_bodies_entered(); } else { _force_bodies_exited(false); } } void JoltArea3D::_area_monitoring_changed() { if (has_area_monitor_callback()) { _force_areas_entered(); } else { _force_areas_exited(false); } } void JoltArea3D::_monitorable_changed() { _update_object_layer(); } void JoltArea3D::_gravity_changed() { _update_default_gravity(); } JoltArea3D::JoltArea3D() : JoltShapedObject3D(OBJECT_TYPE_AREA), call_queries_element(this) { } bool JoltArea3D::is_default_area() const { return space != nullptr && space->get_default_area() == this; } void JoltArea3D::set_default_area(bool p_value) { if (p_value) { _update_default_gravity(); } } void JoltArea3D::set_transform(Transform3D p_transform) { JOLT_ENSURE_SCALE_NOT_ZERO(p_transform, vformat("An invalid transform was passed to area '%s'.", to_string())); const Vector3 new_scale = p_transform.basis.get_scale(); // Ideally we would do an exact comparison here, but due to floating-point precision this would be invalidated very often. if (!scale.is_equal_approx(new_scale)) { scale = new_scale; _shapes_changed(); } p_transform.basis.orthonormalize(); if (!in_space()) { jolt_settings->mPosition = to_jolt_r(p_transform.origin); jolt_settings->mRotation = to_jolt(p_transform.basis); } else { space->get_body_iface().SetPositionAndRotation(jolt_id, to_jolt_r(p_transform.origin), to_jolt(p_transform.basis), JPH::EActivation::DontActivate); } } Variant JoltArea3D::get_param(PhysicsServer3D::AreaParameter p_param) const { switch (p_param) { case PhysicsServer3D::AREA_PARAM_GRAVITY_OVERRIDE_MODE: { return get_gravity_mode(); } case PhysicsServer3D::AREA_PARAM_GRAVITY: { return get_gravity(); } case PhysicsServer3D::AREA_PARAM_GRAVITY_VECTOR: { return get_gravity_vector(); } case PhysicsServer3D::AREA_PARAM_GRAVITY_IS_POINT: { return is_point_gravity(); } case PhysicsServer3D::AREA_PARAM_GRAVITY_POINT_UNIT_DISTANCE: { return get_point_gravity_distance(); } case PhysicsServer3D::AREA_PARAM_LINEAR_DAMP_OVERRIDE_MODE: { return get_linear_damp_mode(); } case PhysicsServer3D::AREA_PARAM_LINEAR_DAMP: { return get_linear_damp(); } case PhysicsServer3D::AREA_PARAM_ANGULAR_DAMP_OVERRIDE_MODE: { return get_angular_damp_mode(); } case PhysicsServer3D::AREA_PARAM_ANGULAR_DAMP: { return get_angular_damp(); } case PhysicsServer3D::AREA_PARAM_PRIORITY: { return get_priority(); } case PhysicsServer3D::AREA_PARAM_WIND_FORCE_MAGNITUDE: { return DEFAULT_WIND_FORCE_MAGNITUDE; } case PhysicsServer3D::AREA_PARAM_WIND_SOURCE: { return DEFAULT_WIND_SOURCE; } case PhysicsServer3D::AREA_PARAM_WIND_DIRECTION: { return DEFAULT_WIND_DIRECTION; } case PhysicsServer3D::AREA_PARAM_WIND_ATTENUATION_FACTOR: { return DEFAULT_WIND_ATTENUATION_FACTOR; } default: { ERR_FAIL_V_MSG(Variant(), vformat("Unhandled area parameter: '%d'. This should not happen. Please report this.", p_param)); } } } void JoltArea3D::set_param(PhysicsServer3D::AreaParameter p_param, const Variant &p_value) { switch (p_param) { case PhysicsServer3D::AREA_PARAM_GRAVITY_OVERRIDE_MODE: { set_gravity_mode((OverrideMode)(int)p_value); } break; case PhysicsServer3D::AREA_PARAM_GRAVITY: { set_gravity(p_value); } break; case PhysicsServer3D::AREA_PARAM_GRAVITY_VECTOR: { set_gravity_vector(p_value); } break; case PhysicsServer3D::AREA_PARAM_GRAVITY_IS_POINT: { set_point_gravity(p_value); } break; case PhysicsServer3D::AREA_PARAM_GRAVITY_POINT_UNIT_DISTANCE: { set_point_gravity_distance(p_value); } break; case PhysicsServer3D::AREA_PARAM_LINEAR_DAMP_OVERRIDE_MODE: { set_linear_damp_mode((OverrideMode)(int)p_value); } break; case PhysicsServer3D::AREA_PARAM_LINEAR_DAMP: { set_area_linear_damp(p_value); } break; case PhysicsServer3D::AREA_PARAM_ANGULAR_DAMP_OVERRIDE_MODE: { set_angular_damp_mode((OverrideMode)(int)p_value); } break; case PhysicsServer3D::AREA_PARAM_ANGULAR_DAMP: { set_area_angular_damp(p_value); } break; case PhysicsServer3D::AREA_PARAM_PRIORITY: { set_priority(p_value); } break; case PhysicsServer3D::AREA_PARAM_WIND_FORCE_MAGNITUDE: { if (!Math::is_equal_approx((double)p_value, DEFAULT_WIND_FORCE_MAGNITUDE)) { WARN_PRINT(vformat("Invalid wind force magnitude for '%s'. Area wind force magnitude is not supported when using Jolt Physics. Any such value will be ignored.", to_string())); } } break; case PhysicsServer3D::AREA_PARAM_WIND_SOURCE: { if (!((Vector3)p_value).is_equal_approx(DEFAULT_WIND_SOURCE)) { WARN_PRINT(vformat("Invalid wind source for '%s'. Area wind source is not supported when using Jolt Physics. Any such value will be ignored.", to_string())); } } break; case PhysicsServer3D::AREA_PARAM_WIND_DIRECTION: { if (!((Vector3)p_value).is_equal_approx(DEFAULT_WIND_DIRECTION)) { WARN_PRINT(vformat("Invalid wind direction for '%s'. Area wind direction is not supported when using Jolt Physics. Any such value will be ignored.", to_string())); } } break; case PhysicsServer3D::AREA_PARAM_WIND_ATTENUATION_FACTOR: { if (!Math::is_equal_approx((double)p_value, DEFAULT_WIND_ATTENUATION_FACTOR)) { WARN_PRINT(vformat("Invalid wind attenuation for '%s'. Area wind attenuation is not supported when using Jolt Physics. Any such value will be ignored.", to_string())); } } break; default: { ERR_FAIL_MSG(vformat("Unhandled area parameter: '%d'. This should not happen. Please report this.", p_param)); } break; } } void JoltArea3D::set_body_monitor_callback(const Callable &p_callback) { if (p_callback == body_monitor_callback) { return; } body_monitor_callback = p_callback; _body_monitoring_changed(); } void JoltArea3D::set_area_monitor_callback(const Callable &p_callback) { if (p_callback == area_monitor_callback) { return; } area_monitor_callback = p_callback; _area_monitoring_changed(); } void JoltArea3D::set_monitorable(bool p_monitorable) { if (p_monitorable == monitorable) { return; } monitorable = p_monitorable; _monitorable_changed(); } bool JoltArea3D::can_monitor(const JoltBody3D &p_other) const { return (collision_mask & p_other.get_collision_layer()) != 0; } bool JoltArea3D::can_monitor(const JoltSoftBody3D &p_other) const { return false; } bool JoltArea3D::can_monitor(const JoltArea3D &p_other) const { return p_other.is_monitorable() && (collision_mask & p_other.get_collision_layer()) != 0; } bool JoltArea3D::can_interact_with(const JoltBody3D &p_other) const { return can_monitor(p_other); } bool JoltArea3D::can_interact_with(const JoltSoftBody3D &p_other) const { return false; } bool JoltArea3D::can_interact_with(const JoltArea3D &p_other) const { return can_monitor(p_other) || p_other.can_monitor(*this); } Vector3 JoltArea3D::get_velocity_at_position(const Vector3 &p_position) const { return Vector3(); } void JoltArea3D::set_point_gravity(bool p_enabled) { if (point_gravity == p_enabled) { return; } point_gravity = p_enabled; _gravity_changed(); } void JoltArea3D::set_gravity(float p_gravity) { if (gravity == p_gravity) { return; } gravity = p_gravity; _gravity_changed(); } void JoltArea3D::set_point_gravity_distance(float p_distance) { if (point_gravity_distance == p_distance) { return; } point_gravity_distance = p_distance; _gravity_changed(); } void JoltArea3D::set_gravity_mode(OverrideMode p_mode) { if (gravity_mode == p_mode) { return; } gravity_mode = p_mode; _gravity_changed(); } void JoltArea3D::set_gravity_vector(const Vector3 &p_vector) { if (gravity_vector == p_vector) { return; } gravity_vector = p_vector; _gravity_changed(); } Vector3 JoltArea3D::compute_gravity(const Vector3 &p_position) const { if (!point_gravity) { return gravity_vector * gravity; } const Vector3 point = get_transform_scaled().xform(gravity_vector); const Vector3 to_point = point - p_position; const real_t to_point_dist_sq = MAX(to_point.length_squared(), (real_t)CMP_EPSILON); const Vector3 to_point_dir = to_point / Math::sqrt(to_point_dist_sq); if (point_gravity_distance == 0.0f) { return to_point_dir * gravity; } const float gravity_dist_sq = point_gravity_distance * point_gravity_distance; return to_point_dir * (gravity * gravity_dist_sq / to_point_dist_sq); } void JoltArea3D::body_shape_entered(const JPH::BodyID &p_body_id, const JPH::SubShapeID &p_other_shape_id, const JPH::SubShapeID &p_self_shape_id) { Overlap &overlap = bodies_by_id[p_body_id]; if (overlap.shape_pairs.is_empty()) { _notify_body_entered(p_body_id); } _add_shape_pair(overlap, p_body_id, p_other_shape_id, p_self_shape_id); } bool JoltArea3D::body_shape_exited(const JPH::BodyID &p_body_id, const JPH::SubShapeID &p_other_shape_id, const JPH::SubShapeID &p_self_shape_id) { Overlap *overlap = bodies_by_id.getptr(p_body_id); if (overlap == nullptr) { return false; } if (!_remove_shape_pair(*overlap, p_other_shape_id, p_self_shape_id)) { return false; } if (overlap->shape_pairs.is_empty()) { _notify_body_exited(p_body_id); } return true; } void JoltArea3D::area_shape_entered(const JPH::BodyID &p_body_id, const JPH::SubShapeID &p_other_shape_id, const JPH::SubShapeID &p_self_shape_id) { _add_shape_pair(areas_by_id[p_body_id], p_body_id, p_other_shape_id, p_self_shape_id); } bool JoltArea3D::area_shape_exited(const JPH::BodyID &p_body_id, const JPH::SubShapeID &p_other_shape_id, const JPH::SubShapeID &p_self_shape_id) { Overlap *overlap = areas_by_id.getptr(p_body_id); if (overlap == nullptr) { return false; } return _remove_shape_pair(*overlap, p_other_shape_id, p_self_shape_id); } bool JoltArea3D::shape_exited(const JPH::BodyID &p_body_id, const JPH::SubShapeID &p_other_shape_id, const JPH::SubShapeID &p_self_shape_id) { return body_shape_exited(p_body_id, p_other_shape_id, p_self_shape_id) || area_shape_exited(p_body_id, p_other_shape_id, p_self_shape_id); } void JoltArea3D::body_exited(const JPH::BodyID &p_body_id, bool p_notify) { Overlap *overlap = bodies_by_id.getptr(p_body_id); if (unlikely(overlap == nullptr)) { return; } if (unlikely(overlap->shape_pairs.is_empty())) { return; } for (const KeyValue &E : overlap->shape_pairs) { overlap->pending_added.erase(E.value); overlap->pending_removed.push_back(E.value); } _events_changed(); overlap->shape_pairs.clear(); if (p_notify) { _notify_body_exited(p_body_id); } } void JoltArea3D::area_exited(const JPH::BodyID &p_body_id) { Overlap *overlap = areas_by_id.getptr(p_body_id); if (unlikely(overlap == nullptr)) { return; } if (unlikely(overlap->shape_pairs.is_empty())) { return; } for (const KeyValue &E : overlap->shape_pairs) { overlap->pending_added.erase(E.value); overlap->pending_removed.push_back(E.value); } _events_changed(); overlap->shape_pairs.clear(); } void JoltArea3D::call_queries() { _flush_events(bodies_by_id, body_monitor_callback); _flush_events(areas_by_id, area_monitor_callback); }