3883 lines
119 KiB
C
3883 lines
119 KiB
C
/*
|
|
* Stack-less Just-In-Time compiler
|
|
*
|
|
* Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without modification, are
|
|
* permitted provided that the following conditions are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
* conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
* of conditions and the following disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
|
|
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
|
|
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
|
|
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void)
|
|
{
|
|
return "LOONGARCH" SLJIT_CPUINFO;
|
|
}
|
|
|
|
typedef sljit_u32 sljit_ins;
|
|
|
|
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
|
|
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
|
|
#define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
|
|
#define TMP_ZERO 0
|
|
|
|
/* Flags are kept in volatile registers. */
|
|
#define EQUAL_FLAG (SLJIT_NUMBER_OF_REGISTERS + 5)
|
|
#define RETURN_ADDR_REG TMP_REG2
|
|
#define OTHER_FLAG (SLJIT_NUMBER_OF_REGISTERS + 6)
|
|
|
|
#define TMP_FREG1 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1)
|
|
#define TMP_FREG2 (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2)
|
|
|
|
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 7] = {
|
|
0, 4, 5, 6, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 22, 31, 30, 29, 28, 27, 26, 25, 24, 23, 3, 13, 1, 14, 12, 15
|
|
};
|
|
|
|
static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 3] = {
|
|
0, 0, 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 31, 30, 29, 28, 27, 26, 25, 24, 8, 9
|
|
};
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
/* Instrucion forms */
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/*
|
|
LoongArch instructions are 32 bits wide, belonging to 9 basic instruction formats (and variants of them):
|
|
|
|
| Format name | Composition |
|
|
| 2R | Opcode + Rj + Rd |
|
|
| 3R | Opcode + Rk + Rj + Rd |
|
|
| 4R | Opcode + Ra + Rk + Rj + Rd |
|
|
| 2RI8 | Opcode + I8 + Rj + Rd |
|
|
| 2RI12 | Opcode + I12 + Rj + Rd |
|
|
| 2RI14 | Opcode + I14 + Rj + Rd |
|
|
| 2RI16 | Opcode + I16 + Rj + Rd |
|
|
| 1RI21 | Opcode + I21L + Rj + I21H |
|
|
| I26 | Opcode + I26L + I26H |
|
|
|
|
Rd is the destination register operand, while Rj, Rk and Ra (“a” stands for “additional”) are the source register operands.
|
|
I8/I12/I14/I16/I21/I26 are immediate operands of respective width. The longer I21 and I26 are stored in separate higher and
|
|
lower parts in the instruction word, denoted by the “L” and “H” suffixes. */
|
|
|
|
#define RD(rd) ((sljit_ins)reg_map[rd])
|
|
#define RJ(rj) ((sljit_ins)reg_map[rj] << 5)
|
|
#define RK(rk) ((sljit_ins)reg_map[rk] << 10)
|
|
#define RA(ra) ((sljit_ins)reg_map[ra] << 15)
|
|
|
|
#define FD(fd) ((sljit_ins)reg_map[fd])
|
|
#define FRD(fd) ((sljit_ins)freg_map[fd])
|
|
#define FRJ(fj) ((sljit_ins)freg_map[fj] << 5)
|
|
#define FRK(fk) ((sljit_ins)freg_map[fk] << 10)
|
|
#define FRA(fa) ((sljit_ins)freg_map[fa] << 15)
|
|
|
|
#define IMM_V(imm) ((sljit_ins)(imm) << 10)
|
|
#define IMM_I8(imm) (((sljit_ins)(imm)&0xff) << 10)
|
|
#define IMM_I12(imm) (((sljit_ins)(imm)&0xfff) << 10)
|
|
#define IMM_I14(imm) (((sljit_ins)(imm)&0xfff3) << 10)
|
|
#define IMM_I16(imm) (((sljit_ins)(imm)&0xffff) << 10)
|
|
#define IMM_I20(imm) (((sljit_ins)(imm)&0xffffffff) >> 12 << 5)
|
|
#define IMM_I21(imm) ((((sljit_ins)(imm)&0xffff) << 10) | (((sljit_ins)(imm) >> 16) & 0x1f))
|
|
#define IMM_I26(imm) ((((sljit_ins)(imm)&0xffff) << 10) | (((sljit_ins)(imm) >> 16) & 0x3ff))
|
|
|
|
#define OPC_I26(opc) ((sljit_ins)(opc) << 26)
|
|
#define OPC_1RI21(opc) ((sljit_ins)(opc) << 26)
|
|
#define OPC_2RI16(opc) ((sljit_ins)(opc) << 26)
|
|
#define OPC_2RI14(opc) ((sljit_ins)(opc) << 24)
|
|
#define OPC_2RI12(opc) ((sljit_ins)(opc) << 22)
|
|
#define OPC_2RI8(opc) ((sljit_ins)(opc) << 18)
|
|
#define OPC_4R(opc) ((sljit_ins)(opc) << 20)
|
|
#define OPC_3R(opc) ((sljit_ins)(opc) << 15)
|
|
#define OPC_2R(opc) ((sljit_ins)(opc) << 10)
|
|
#define OPC_1RI20(opc) ((sljit_ins)(opc) << 25)
|
|
|
|
/* Arithmetic operation instructions */
|
|
#define ADD_W OPC_3R(0x20)
|
|
#define ADD_D OPC_3R(0x21)
|
|
#define SUB_W OPC_3R(0x22)
|
|
#define SUB_D OPC_3R(0x23)
|
|
#define ADDI_W OPC_2RI12(0xa)
|
|
#define ADDI_D OPC_2RI12(0xb)
|
|
#define ANDI OPC_2RI12(0xd)
|
|
#define ORI OPC_2RI12(0xe)
|
|
#define XORI OPC_2RI12(0xf)
|
|
#define ADDU16I_D OPC_2RI16(0x4)
|
|
#define LU12I_W OPC_1RI20(0xa)
|
|
#define LU32I_D OPC_1RI20(0xb)
|
|
#define LU52I_D OPC_2RI12(0xc)
|
|
#define SLT OPC_3R(0x24)
|
|
#define SLTU OPC_3R(0x25)
|
|
#define SLTI OPC_2RI12(0x8)
|
|
#define SLTUI OPC_2RI12(0x9)
|
|
#define PCADDI OPC_1RI20(0xc)
|
|
#define PCALAU12I OPC_1RI20(0xd)
|
|
#define PCADDU12I OPC_1RI20(0xe)
|
|
#define PCADDU18I OPC_1RI20(0xf)
|
|
#define NOR OPC_3R(0x28)
|
|
#define AND OPC_3R(0x29)
|
|
#define OR OPC_3R(0x2a)
|
|
#define XOR OPC_3R(0x2b)
|
|
#define ORN OPC_3R(0x2c)
|
|
#define ANDN OPC_3R(0x2d)
|
|
#define MUL_W OPC_3R(0x38)
|
|
#define MULH_W OPC_3R(0x39)
|
|
#define MULH_WU OPC_3R(0x3a)
|
|
#define MUL_D OPC_3R(0x3b)
|
|
#define MULH_D OPC_3R(0x3c)
|
|
#define MULH_DU OPC_3R(0x3d)
|
|
#define MULW_D_W OPC_3R(0x3e)
|
|
#define MULW_D_WU OPC_3R(0x3f)
|
|
#define DIV_W OPC_3R(0x40)
|
|
#define MOD_W OPC_3R(0x41)
|
|
#define DIV_WU OPC_3R(0x42)
|
|
#define MOD_WU OPC_3R(0x43)
|
|
#define DIV_D OPC_3R(0x44)
|
|
#define MOD_D OPC_3R(0x45)
|
|
#define DIV_DU OPC_3R(0x46)
|
|
#define MOD_DU OPC_3R(0x47)
|
|
|
|
/* Bit-shift instructions */
|
|
#define SLL_W OPC_3R(0x2e)
|
|
#define SRL_W OPC_3R(0x2f)
|
|
#define SRA_W OPC_3R(0x30)
|
|
#define SLL_D OPC_3R(0x31)
|
|
#define SRL_D OPC_3R(0x32)
|
|
#define SRA_D OPC_3R(0x33)
|
|
#define ROTR_W OPC_3R(0x36)
|
|
#define ROTR_D OPC_3R(0x37)
|
|
#define SLLI_W OPC_3R(0x81)
|
|
#define SLLI_D ((sljit_ins)(0x41) << 16)
|
|
#define SRLI_W OPC_3R(0x89)
|
|
#define SRLI_D ((sljit_ins)(0x45) << 16)
|
|
#define SRAI_W OPC_3R(0x91)
|
|
#define SRAI_D ((sljit_ins)(0x49) << 16)
|
|
#define ROTRI_W OPC_3R(0x99)
|
|
#define ROTRI_D ((sljit_ins)(0x4d) << 16)
|
|
|
|
/* Bit-manipulation instructions */
|
|
#define CLO_W OPC_2R(0x4)
|
|
#define CLZ_W OPC_2R(0x5)
|
|
#define CTO_W OPC_2R(0x6)
|
|
#define CTZ_W OPC_2R(0x7)
|
|
#define CLO_D OPC_2R(0x8)
|
|
#define CLZ_D OPC_2R(0x9)
|
|
#define CTO_D OPC_2R(0xa)
|
|
#define CTZ_D OPC_2R(0xb)
|
|
#define REVB_2H OPC_2R(0xc)
|
|
#define REVB_4H OPC_2R(0xd)
|
|
#define REVB_2W OPC_2R(0xe)
|
|
#define REVB_D OPC_2R(0xf)
|
|
#define REVH_2W OPC_2R(0x10)
|
|
#define REVH_D OPC_2R(0x11)
|
|
#define BITREV_4B OPC_2R(0x12)
|
|
#define BITREV_8B OPC_2R(0x13)
|
|
#define BITREV_W OPC_2R(0x14)
|
|
#define BITREV_D OPC_2R(0x15)
|
|
#define EXT_W_H OPC_2R(0x16)
|
|
#define EXT_W_B OPC_2R(0x17)
|
|
#define BSTRINS_W (0x1 << 22 | 1 << 21)
|
|
#define BSTRPICK_W (0x1 << 22 | 1 << 21 | 1 << 15)
|
|
#define BSTRINS_D (0x2 << 22)
|
|
#define BSTRPICK_D (0x3 << 22)
|
|
|
|
/* Branch instructions */
|
|
#define BEQZ OPC_1RI21(0x10)
|
|
#define BNEZ OPC_1RI21(0x11)
|
|
#define JIRL OPC_2RI16(0x13)
|
|
#define B OPC_I26(0x14)
|
|
#define BL OPC_I26(0x15)
|
|
#define BEQ OPC_2RI16(0x16)
|
|
#define BNE OPC_2RI16(0x17)
|
|
#define BLT OPC_2RI16(0x18)
|
|
#define BGE OPC_2RI16(0x19)
|
|
#define BLTU OPC_2RI16(0x1a)
|
|
#define BGEU OPC_2RI16(0x1b)
|
|
|
|
/* Memory access instructions */
|
|
#define LD_B OPC_2RI12(0xa0)
|
|
#define LD_H OPC_2RI12(0xa1)
|
|
#define LD_W OPC_2RI12(0xa2)
|
|
#define LD_D OPC_2RI12(0xa3)
|
|
|
|
#define ST_B OPC_2RI12(0xa4)
|
|
#define ST_H OPC_2RI12(0xa5)
|
|
#define ST_W OPC_2RI12(0xa6)
|
|
#define ST_D OPC_2RI12(0xa7)
|
|
|
|
#define LD_BU OPC_2RI12(0xa8)
|
|
#define LD_HU OPC_2RI12(0xa9)
|
|
#define LD_WU OPC_2RI12(0xaa)
|
|
|
|
#define LDX_B OPC_3R(0x7000)
|
|
#define LDX_H OPC_3R(0x7008)
|
|
#define LDX_W OPC_3R(0x7010)
|
|
#define LDX_D OPC_3R(0x7018)
|
|
|
|
#define STX_B OPC_3R(0x7020)
|
|
#define STX_H OPC_3R(0x7028)
|
|
#define STX_W OPC_3R(0x7030)
|
|
#define STX_D OPC_3R(0x7038)
|
|
|
|
#define LDX_BU OPC_3R(0x7040)
|
|
#define LDX_HU OPC_3R(0x7048)
|
|
#define LDX_WU OPC_3R(0x7050)
|
|
|
|
#define PRELD OPC_2RI12(0xab)
|
|
|
|
/* Atomic memory access instructions */
|
|
#define LL_W OPC_2RI14(0x20)
|
|
#define SC_W OPC_2RI14(0x21)
|
|
#define LL_D OPC_2RI14(0x22)
|
|
#define SC_D OPC_2RI14(0x23)
|
|
|
|
/* LoongArch V1.10 Instructions */
|
|
#define AMCAS_B OPC_3R(0x70B0)
|
|
#define AMCAS_H OPC_3R(0x70B1)
|
|
#define AMCAS_W OPC_3R(0x70B2)
|
|
#define AMCAS_D OPC_3R(0x70B3)
|
|
|
|
/* Memory barrier instructions */
|
|
#define DBAR OPC_3R(0x70e4)
|
|
|
|
/* Other instructions */
|
|
#define BREAK OPC_3R(0x54)
|
|
#define DBGCALL OPC_3R(0x55)
|
|
#define SYSCALL OPC_3R(0x56)
|
|
|
|
/* Basic Floating-Point Instructions */
|
|
/* Floating-Point Arithmetic Operation Instructions */
|
|
#define FADD_S OPC_3R(0x201)
|
|
#define FADD_D OPC_3R(0x202)
|
|
#define FSUB_S OPC_3R(0x205)
|
|
#define FSUB_D OPC_3R(0x206)
|
|
#define FMUL_S OPC_3R(0x209)
|
|
#define FMUL_D OPC_3R(0x20a)
|
|
#define FDIV_S OPC_3R(0x20d)
|
|
#define FDIV_D OPC_3R(0x20e)
|
|
#define FCMP_COND_S OPC_4R(0xc1)
|
|
#define FCMP_COND_D OPC_4R(0xc2)
|
|
#define FCOPYSIGN_S OPC_3R(0x225)
|
|
#define FCOPYSIGN_D OPC_3R(0x226)
|
|
#define FSEL OPC_4R(0xd0)
|
|
#define FABS_S OPC_2R(0x4501)
|
|
#define FABS_D OPC_2R(0x4502)
|
|
#define FNEG_S OPC_2R(0x4505)
|
|
#define FNEG_D OPC_2R(0x4506)
|
|
#define FMOV_S OPC_2R(0x4525)
|
|
#define FMOV_D OPC_2R(0x4526)
|
|
|
|
/* Floating-Point Conversion Instructions */
|
|
#define FCVT_S_D OPC_2R(0x4646)
|
|
#define FCVT_D_S OPC_2R(0x4649)
|
|
#define FTINTRZ_W_S OPC_2R(0x46a1)
|
|
#define FTINTRZ_W_D OPC_2R(0x46a2)
|
|
#define FTINTRZ_L_S OPC_2R(0x46a9)
|
|
#define FTINTRZ_L_D OPC_2R(0x46aa)
|
|
#define FFINT_S_W OPC_2R(0x4744)
|
|
#define FFINT_S_L OPC_2R(0x4746)
|
|
#define FFINT_D_W OPC_2R(0x4748)
|
|
#define FFINT_D_L OPC_2R(0x474a)
|
|
|
|
/* Floating-Point Move Instructions */
|
|
#define FMOV_S OPC_2R(0x4525)
|
|
#define FMOV_D OPC_2R(0x4526)
|
|
#define MOVGR2FR_W OPC_2R(0x4529)
|
|
#define MOVGR2FR_D OPC_2R(0x452a)
|
|
#define MOVGR2FRH_W OPC_2R(0x452b)
|
|
#define MOVFR2GR_S OPC_2R(0x452d)
|
|
#define MOVFR2GR_D OPC_2R(0x452e)
|
|
#define MOVFRH2GR_S OPC_2R(0x452f)
|
|
#define MOVGR2FCSR OPC_2R(0x4530)
|
|
#define MOVFCSR2GR OPC_2R(0x4532)
|
|
#define MOVFR2CF OPC_2R(0x4534)
|
|
#define MOVCF2FR OPC_2R(0x4535)
|
|
#define MOVGR2CF OPC_2R(0x4536)
|
|
#define MOVCF2GR OPC_2R(0x4537)
|
|
|
|
/* Floating-Point Branch Instructions */
|
|
#define BCEQZ OPC_I26(0x12)
|
|
#define BCNEZ OPC_I26(0x12)
|
|
|
|
/* Floating-Point Common Memory Access Instructions */
|
|
#define FLD_S OPC_2RI12(0xac)
|
|
#define FLD_D OPC_2RI12(0xae)
|
|
#define FST_S OPC_2RI12(0xad)
|
|
#define FST_D OPC_2RI12(0xaf)
|
|
|
|
#define FLDX_S OPC_3R(0x7060)
|
|
#define FLDX_D OPC_3R(0x7068)
|
|
#define FSTX_S OPC_3R(0x7070)
|
|
#define FSTX_D OPC_3R(0x7078)
|
|
|
|
/* Vector Instructions */
|
|
|
|
/* Vector Arithmetic Instructions */
|
|
#define VOR_V OPC_3R(0xe24d)
|
|
#define VXOR_V OPC_3R(0xe24e)
|
|
#define VAND_V OPC_3R(0xe24c)
|
|
#define VMSKLTZ OPC_2R(0x1ca710)
|
|
|
|
/* Vector Memory Access Instructions */
|
|
#define VLD OPC_2RI12(0xb0)
|
|
#define VST OPC_2RI12(0xb1)
|
|
#define XVLD OPC_2RI12(0xb2)
|
|
#define XVST OPC_2RI12(0xb3)
|
|
#define VSTELM OPC_2RI8(0xc40)
|
|
|
|
/* Vector Float Conversion Instructions */
|
|
#define VFCVTL_D_S OPC_2R(0x1ca77c)
|
|
|
|
/* Vector Bit Manipulate Instructions */
|
|
#define VSLLWIL OPC_2R(0x1cc200)
|
|
|
|
/* Vector Move And Shuffle Instructions */
|
|
#define VLDREPL OPC_2R(0xc0000)
|
|
#define VINSGR2VR OPC_2R(0x1cbac0)
|
|
#define VPICKVE2GR_U OPC_2R(0x1cbce0)
|
|
#define VREPLGR2VR OPC_2R(0x1ca7c0)
|
|
#define VREPLVE OPC_3R(0xe244)
|
|
#define VREPLVEI OPC_2R(0x1cbde0)
|
|
#define VSHUF_B OPC_4R(0xd5)
|
|
#define XVPERMI OPC_2RI8(0x1dfa)
|
|
|
|
#define I12_MAX (0x7ff)
|
|
#define I12_MIN (-0x800)
|
|
#define BRANCH16_MAX (0x7fff << 2)
|
|
#define BRANCH16_MIN (-(0x8000 << 2))
|
|
#define BRANCH21_MAX (0xfffff << 2)
|
|
#define BRANCH21_MIN (-(0x100000 << 2))
|
|
#define JUMP_MAX (0x1ffffff << 2)
|
|
#define JUMP_MIN (-(0x2000000 << 2))
|
|
#define JIRL_MAX (0x7fff << 2)
|
|
#define JIRL_MIN (-(0x8000 << 2))
|
|
|
|
#define S32_MAX (0x7fffffffl)
|
|
#define S32_MIN (-0x80000000l)
|
|
#define S52_MAX (0x7ffffffffffffl)
|
|
|
|
#define INST(inst, type) ((sljit_ins)((type & SLJIT_32) ? inst##_W : inst##_D))
|
|
|
|
/* LoongArch CPUCFG register for feature detection */
|
|
#define LOONGARCH_CFG2 0x02
|
|
#define LOONGARCH_CFG2_LAMCAS (1 << 28)
|
|
|
|
static sljit_u32 cfg2_feature_list = 0;
|
|
|
|
/* According to Software Development and Build Convention for LoongArch Architectures,
|
|
+ the status of LSX and LASX extension must be checked through HWCAP */
|
|
#include <sys/auxv.h>
|
|
|
|
#define LOONGARCH_HWCAP_LSX (1 << 4)
|
|
#define LOONGARCH_HWCAP_LASX (1 << 5)
|
|
|
|
static sljit_u32 hwcap_feature_list = 0;
|
|
|
|
/* Feature type */
|
|
#define GET_CFG2 0
|
|
#define GET_HWCAP 1
|
|
|
|
#define LOONGARCH_SUPPORT_AMCAS (LOONGARCH_CFG2_LAMCAS & get_cpu_features(GET_CFG2))
|
|
|
|
static SLJIT_INLINE sljit_u32 get_cpu_features(sljit_u32 feature_type)
|
|
{
|
|
if (cfg2_feature_list == 0)
|
|
__asm__ ("cpucfg %0, %1" : "+&r"(cfg2_feature_list) : "r"(LOONGARCH_CFG2));
|
|
if (hwcap_feature_list == 0)
|
|
hwcap_feature_list = (sljit_u32)getauxval(AT_HWCAP);
|
|
|
|
return feature_type ? hwcap_feature_list : cfg2_feature_list;
|
|
}
|
|
|
|
static sljit_s32 push_inst(struct sljit_compiler *compiler, sljit_ins ins)
|
|
{
|
|
sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
|
|
FAIL_IF(!ptr);
|
|
*ptr = ins;
|
|
compiler->size++;
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
static SLJIT_INLINE sljit_ins* detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code, sljit_sw executable_offset)
|
|
{
|
|
sljit_sw diff;
|
|
sljit_uw target_addr;
|
|
sljit_uw jump_addr = (sljit_uw)code_ptr;
|
|
sljit_uw orig_addr = jump->addr;
|
|
SLJIT_UNUSED_ARG(executable_offset);
|
|
|
|
jump->addr = jump_addr;
|
|
if (jump->flags & SLJIT_REWRITABLE_JUMP)
|
|
goto exit;
|
|
|
|
if (jump->flags & JUMP_ADDR)
|
|
target_addr = jump->u.target;
|
|
else {
|
|
SLJIT_ASSERT(jump->u.label != NULL);
|
|
target_addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code + jump->u.label->size, executable_offset);
|
|
|
|
if (jump->u.label->size > orig_addr)
|
|
jump_addr = (sljit_uw)(code + orig_addr);
|
|
}
|
|
|
|
diff = (sljit_sw)target_addr - (sljit_sw)SLJIT_ADD_EXEC_OFFSET(jump_addr, executable_offset);
|
|
|
|
if (jump->flags & IS_COND) {
|
|
diff += SSIZE_OF(ins);
|
|
|
|
if (diff >= BRANCH16_MIN && diff <= BRANCH16_MAX) {
|
|
code_ptr--;
|
|
code_ptr[0] = (code_ptr[0] & 0xfc0003ff) ^ 0x4000000;
|
|
jump->flags |= PATCH_B;
|
|
jump->addr = (sljit_uw)code_ptr;
|
|
return code_ptr;
|
|
}
|
|
|
|
diff -= SSIZE_OF(ins);
|
|
}
|
|
|
|
if (diff >= JUMP_MIN && diff <= JUMP_MAX) {
|
|
if (jump->flags & IS_COND) {
|
|
code_ptr[-1] |= (sljit_ins)IMM_I16(2);
|
|
}
|
|
|
|
jump->flags |= PATCH_J;
|
|
return code_ptr;
|
|
}
|
|
|
|
if (diff >= S32_MIN && diff <= S32_MAX) {
|
|
if (jump->flags & IS_COND)
|
|
code_ptr[-1] |= (sljit_ins)IMM_I16(3);
|
|
|
|
jump->flags |= PATCH_REL32;
|
|
code_ptr[1] = code_ptr[0];
|
|
return code_ptr + 1;
|
|
}
|
|
|
|
if (target_addr <= (sljit_uw)S32_MAX) {
|
|
if (jump->flags & IS_COND)
|
|
code_ptr[-1] |= (sljit_ins)IMM_I16(3);
|
|
|
|
jump->flags |= PATCH_ABS32;
|
|
code_ptr[1] = code_ptr[0];
|
|
return code_ptr + 1;
|
|
}
|
|
|
|
if (target_addr <= S52_MAX) {
|
|
if (jump->flags & IS_COND)
|
|
code_ptr[-1] |= (sljit_ins)IMM_I16(4);
|
|
|
|
jump->flags |= PATCH_ABS52;
|
|
code_ptr[2] = code_ptr[0];
|
|
return code_ptr + 2;
|
|
}
|
|
|
|
exit:
|
|
if (jump->flags & IS_COND)
|
|
code_ptr[-1] |= (sljit_ins)IMM_I16(5);
|
|
code_ptr[3] = code_ptr[0];
|
|
return code_ptr + 3;
|
|
}
|
|
|
|
static SLJIT_INLINE sljit_sw mov_addr_get_length(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code, sljit_sw executable_offset)
|
|
{
|
|
sljit_uw addr;
|
|
sljit_uw jump_addr = (sljit_uw)code_ptr;
|
|
sljit_sw diff;
|
|
SLJIT_UNUSED_ARG(executable_offset);
|
|
|
|
SLJIT_ASSERT(jump->flags < ((sljit_uw)6 << JUMP_SIZE_SHIFT));
|
|
if (jump->flags & JUMP_ADDR)
|
|
addr = jump->u.target;
|
|
else {
|
|
addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code + jump->u.label->size, executable_offset);
|
|
|
|
if (jump->u.label->size > jump->addr)
|
|
jump_addr = (sljit_uw)(code + jump->addr);
|
|
}
|
|
|
|
diff = (sljit_sw)addr - (sljit_sw)SLJIT_ADD_EXEC_OFFSET(jump_addr, executable_offset);
|
|
|
|
if (diff >= S32_MIN && diff <= S32_MAX) {
|
|
SLJIT_ASSERT(jump->flags >= ((sljit_uw)1 << JUMP_SIZE_SHIFT));
|
|
jump->flags |= PATCH_REL32;
|
|
return 1;
|
|
}
|
|
|
|
if (addr <= S32_MAX) {
|
|
SLJIT_ASSERT(jump->flags >= ((sljit_uw)1 << JUMP_SIZE_SHIFT));
|
|
jump->flags |= PATCH_ABS32;
|
|
return 1;
|
|
}
|
|
|
|
if (addr <= S52_MAX) {
|
|
SLJIT_ASSERT(jump->flags >= ((sljit_uw)2 << JUMP_SIZE_SHIFT));
|
|
jump->flags |= PATCH_ABS52;
|
|
return 2;
|
|
}
|
|
|
|
SLJIT_ASSERT(jump->flags >= ((sljit_uw)3 << JUMP_SIZE_SHIFT));
|
|
return 3;
|
|
}
|
|
|
|
static SLJIT_INLINE void load_addr_to_reg(struct sljit_jump *jump, sljit_sw executable_offset)
|
|
{
|
|
sljit_uw flags = jump->flags;
|
|
sljit_uw addr = (flags & JUMP_ADDR) ? jump->u.target : jump->u.label->u.addr;
|
|
sljit_ins *ins = (sljit_ins*)jump->addr;
|
|
sljit_u32 reg = (flags & JUMP_MOV_ADDR) ? *ins : TMP_REG1;
|
|
SLJIT_UNUSED_ARG(executable_offset);
|
|
|
|
if (flags & PATCH_REL32) {
|
|
addr -= (sljit_uw)SLJIT_ADD_EXEC_OFFSET(ins, executable_offset);
|
|
|
|
SLJIT_ASSERT((sljit_sw)addr >= S32_MIN && (sljit_sw)addr <= S32_MAX);
|
|
|
|
if ((addr & 0x800) != 0)
|
|
addr += 0x1000;
|
|
|
|
ins[0] = PCADDU12I | RD(reg) | IMM_I20(addr);
|
|
|
|
if (!(flags & JUMP_MOV_ADDR)) {
|
|
SLJIT_ASSERT((ins[1] & OPC_2RI16(0x3f)) == JIRL);
|
|
ins[1] = (ins[1] & (OPC_2RI16(0x3f) | 0x3ff)) | IMM_I16((addr & 0xfff) >> 2);
|
|
} else
|
|
ins[1] = ADDI_D | RD(reg) | RJ(reg) | IMM_I12(addr);
|
|
return;
|
|
}
|
|
|
|
if (flags & PATCH_ABS32) {
|
|
SLJIT_ASSERT(addr <= S32_MAX);
|
|
ins[0] = LU12I_W | RD(reg) | (sljit_ins)(((addr & 0xffffffff) >> 12) << 5);
|
|
} else if (flags & PATCH_ABS52) {
|
|
ins[0] = LU12I_W | RD(reg) | (sljit_ins)(((addr & 0xffffffff) >> 12) << 5);
|
|
ins[1] = LU32I_D | RD(reg) | (sljit_ins)(((addr >> 32) & 0xfffff) << 5);
|
|
ins += 1;
|
|
} else {
|
|
ins[0] = LU12I_W | RD(reg) | (sljit_ins)(((addr & 0xffffffff) >> 12) << 5);
|
|
ins[1] = LU32I_D | RD(reg) | (sljit_ins)(((addr >> 32) & 0xfffff) << 5);
|
|
ins[2] = LU52I_D | RD(reg) | RJ(reg) | IMM_I12(addr >> 52);
|
|
ins += 2;
|
|
}
|
|
|
|
if (!(flags & JUMP_MOV_ADDR)) {
|
|
SLJIT_ASSERT((ins[1] & OPC_2RI16(0x3f)) == JIRL);
|
|
ins[1] = (ins[1] & (OPC_2RI16(0x3f) | 0x3ff)) | IMM_I16((addr & 0xfff) >> 2);
|
|
} else
|
|
ins[1] = ORI | RD(reg) | RJ(reg) | IMM_I12(addr);
|
|
}
|
|
|
|
static void reduce_code_size(struct sljit_compiler *compiler)
|
|
{
|
|
struct sljit_label *label;
|
|
struct sljit_jump *jump;
|
|
struct sljit_const *const_;
|
|
SLJIT_NEXT_DEFINE_TYPES;
|
|
sljit_uw total_size;
|
|
sljit_uw size_reduce = 0;
|
|
sljit_sw diff;
|
|
|
|
label = compiler->labels;
|
|
jump = compiler->jumps;
|
|
const_ = compiler->consts;
|
|
|
|
SLJIT_NEXT_INIT_TYPES();
|
|
|
|
while (1) {
|
|
SLJIT_GET_NEXT_MIN();
|
|
|
|
if (next_min_addr == SLJIT_MAX_ADDRESS)
|
|
break;
|
|
|
|
if (next_min_addr == next_label_size) {
|
|
label->size -= size_reduce;
|
|
|
|
label = label->next;
|
|
next_label_size = SLJIT_GET_NEXT_SIZE(label);
|
|
}
|
|
|
|
if (next_min_addr == next_const_addr) {
|
|
const_->addr -= size_reduce;
|
|
const_ = const_->next;
|
|
next_const_addr = SLJIT_GET_NEXT_ADDRESS(const_);
|
|
continue;
|
|
}
|
|
|
|
if (next_min_addr != next_jump_addr)
|
|
continue;
|
|
|
|
jump->addr -= size_reduce;
|
|
if (!(jump->flags & JUMP_MOV_ADDR)) {
|
|
total_size = JUMP_MAX_SIZE;
|
|
|
|
if (!(jump->flags & SLJIT_REWRITABLE_JUMP)) {
|
|
if (jump->flags & JUMP_ADDR) {
|
|
if (jump->u.target <= S32_MAX)
|
|
total_size = 2;
|
|
else if (jump->u.target <= S52_MAX)
|
|
total_size = 3;
|
|
} else {
|
|
/* Unit size: instruction. */
|
|
diff = (sljit_sw)jump->u.label->size - (sljit_sw)jump->addr;
|
|
if (jump->u.label->size > jump->addr) {
|
|
SLJIT_ASSERT(jump->u.label->size - size_reduce >= jump->addr);
|
|
diff -= (sljit_sw)size_reduce;
|
|
}
|
|
|
|
if ((jump->flags & IS_COND) && (diff + 1) <= (BRANCH16_MAX / SSIZE_OF(ins)) && (diff + 1) >= (BRANCH16_MIN / SSIZE_OF(ins)))
|
|
total_size = 0;
|
|
else if (diff >= (JUMP_MIN / SSIZE_OF(ins)) && diff <= (JUMP_MAX / SSIZE_OF(ins)))
|
|
total_size = 1;
|
|
else if (diff >= (S32_MIN / SSIZE_OF(ins)) && diff <= (S32_MAX / SSIZE_OF(ins)))
|
|
total_size = 2;
|
|
}
|
|
}
|
|
|
|
size_reduce += JUMP_MAX_SIZE - total_size;
|
|
jump->flags |= total_size << JUMP_SIZE_SHIFT;
|
|
} else {
|
|
total_size = 3;
|
|
|
|
if (!(jump->flags & JUMP_ADDR)) {
|
|
/* Real size minus 1. Unit size: instruction. */
|
|
diff = (sljit_sw)jump->u.label->size - (sljit_sw)jump->addr;
|
|
if (jump->u.label->size > jump->addr) {
|
|
SLJIT_ASSERT(jump->u.label->size - size_reduce >= jump->addr);
|
|
diff -= (sljit_sw)size_reduce;
|
|
}
|
|
|
|
if (diff >= (S32_MIN / SSIZE_OF(ins)) && diff <= (S32_MAX / SSIZE_OF(ins)))
|
|
total_size = 1;
|
|
} else if (jump->u.target < S32_MAX)
|
|
total_size = 1;
|
|
else if (jump->u.target <= S52_MAX)
|
|
total_size = 2;
|
|
|
|
size_reduce += 3 - total_size;
|
|
jump->flags |= total_size << JUMP_SIZE_SHIFT;
|
|
}
|
|
|
|
jump = jump->next;
|
|
next_jump_addr = SLJIT_GET_NEXT_ADDRESS(jump);
|
|
}
|
|
|
|
compiler->size -= size_reduce;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler, sljit_s32 options, void *exec_allocator_data)
|
|
{
|
|
struct sljit_memory_fragment *buf;
|
|
sljit_ins *code;
|
|
sljit_ins *code_ptr;
|
|
sljit_ins *buf_ptr;
|
|
sljit_ins *buf_end;
|
|
sljit_uw word_count;
|
|
SLJIT_NEXT_DEFINE_TYPES;
|
|
sljit_sw executable_offset;
|
|
sljit_uw addr;
|
|
|
|
struct sljit_label *label;
|
|
struct sljit_jump *jump;
|
|
struct sljit_const *const_;
|
|
|
|
CHECK_ERROR_PTR();
|
|
CHECK_PTR(check_sljit_generate_code(compiler));
|
|
|
|
reduce_code_size(compiler);
|
|
|
|
code = (sljit_ins*)allocate_executable_memory(compiler->size * sizeof(sljit_ins), options, exec_allocator_data, &executable_offset);
|
|
PTR_FAIL_WITH_EXEC_IF(code);
|
|
|
|
reverse_buf(compiler);
|
|
buf = compiler->buf;
|
|
|
|
code_ptr = code;
|
|
word_count = 0;
|
|
label = compiler->labels;
|
|
jump = compiler->jumps;
|
|
const_ = compiler->consts;
|
|
SLJIT_NEXT_INIT_TYPES();
|
|
SLJIT_GET_NEXT_MIN();
|
|
|
|
do {
|
|
buf_ptr = (sljit_ins*)buf->memory;
|
|
buf_end = buf_ptr + (buf->used_size >> 2);
|
|
do {
|
|
*code_ptr = *buf_ptr++;
|
|
if (next_min_addr == word_count) {
|
|
SLJIT_ASSERT(!label || label->size >= word_count);
|
|
SLJIT_ASSERT(!jump || jump->addr >= word_count);
|
|
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
|
|
|
|
/* These structures are ordered by their address. */
|
|
if (next_min_addr == next_label_size) {
|
|
label->u.addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
|
|
label->size = (sljit_uw)(code_ptr - code);
|
|
label = label->next;
|
|
next_label_size = SLJIT_GET_NEXT_SIZE(label);
|
|
}
|
|
|
|
if (next_min_addr == next_jump_addr) {
|
|
if (!(jump->flags & JUMP_MOV_ADDR)) {
|
|
word_count = word_count - 1 + (jump->flags >> JUMP_SIZE_SHIFT);
|
|
code_ptr = detect_jump_type(jump, code_ptr, code, executable_offset);
|
|
SLJIT_ASSERT((jump->flags & PATCH_B) || ((sljit_uw)code_ptr - jump->addr < (jump->flags >> JUMP_SIZE_SHIFT) * sizeof(sljit_ins)));
|
|
} else {
|
|
word_count += jump->flags >> JUMP_SIZE_SHIFT;
|
|
addr = (sljit_uw)code_ptr;
|
|
code_ptr += mov_addr_get_length(jump, code_ptr, code, executable_offset);
|
|
jump->addr = addr;
|
|
}
|
|
jump = jump->next;
|
|
next_jump_addr = SLJIT_GET_NEXT_ADDRESS(jump);
|
|
} else if (next_min_addr == next_const_addr) {
|
|
const_->addr = (sljit_uw)code_ptr;
|
|
const_ = const_->next;
|
|
next_const_addr = SLJIT_GET_NEXT_ADDRESS(const_);
|
|
}
|
|
|
|
SLJIT_GET_NEXT_MIN();
|
|
}
|
|
code_ptr++;
|
|
word_count++;
|
|
} while (buf_ptr < buf_end);
|
|
|
|
buf = buf->next;
|
|
} while (buf);
|
|
|
|
if (label && label->size == word_count) {
|
|
label->u.addr = (sljit_uw)code_ptr;
|
|
label->size = (sljit_uw)(code_ptr - code);
|
|
label = label->next;
|
|
}
|
|
|
|
SLJIT_ASSERT(!label);
|
|
SLJIT_ASSERT(!jump);
|
|
SLJIT_ASSERT(!const_);
|
|
SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
|
|
|
|
jump = compiler->jumps;
|
|
while (jump) {
|
|
do {
|
|
if (!(jump->flags & (PATCH_B | PATCH_J)) || (jump->flags & JUMP_MOV_ADDR)) {
|
|
load_addr_to_reg(jump, executable_offset);
|
|
break;
|
|
}
|
|
|
|
addr = (jump->flags & JUMP_ADDR) ? jump->u.target : jump->u.label->u.addr;
|
|
buf_ptr = (sljit_ins *)jump->addr;
|
|
addr -= (sljit_uw)SLJIT_ADD_EXEC_OFFSET(buf_ptr, executable_offset);
|
|
|
|
if (jump->flags & PATCH_B) {
|
|
SLJIT_ASSERT((sljit_sw)addr >= BRANCH16_MIN && (sljit_sw)addr <= BRANCH16_MAX);
|
|
buf_ptr[0] |= (sljit_ins)IMM_I16(addr >> 2);
|
|
break;
|
|
}
|
|
|
|
SLJIT_ASSERT((sljit_sw)addr >= JUMP_MIN && (sljit_sw)addr <= JUMP_MAX);
|
|
if (jump->flags & IS_CALL)
|
|
buf_ptr[0] = BL | (sljit_ins)IMM_I26(addr >> 2);
|
|
else
|
|
buf_ptr[0] = B | (sljit_ins)IMM_I26(addr >> 2);
|
|
} while (0);
|
|
jump = jump->next;
|
|
}
|
|
|
|
compiler->error = SLJIT_ERR_COMPILED;
|
|
compiler->executable_offset = executable_offset;
|
|
compiler->executable_size = (sljit_uw)(code_ptr - code) * sizeof(sljit_ins);
|
|
|
|
code = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(code, executable_offset);
|
|
code_ptr = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
|
|
|
|
SLJIT_CACHE_FLUSH(code, code_ptr);
|
|
SLJIT_UPDATE_WX_FLAGS(code, code_ptr, 1);
|
|
return code;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type)
|
|
{
|
|
switch (feature_type)
|
|
{
|
|
case SLJIT_HAS_FPU:
|
|
#ifdef SLJIT_IS_FPU_AVAILABLE
|
|
return (SLJIT_IS_FPU_AVAILABLE) != 0;
|
|
#else
|
|
/* Available by default. */
|
|
return 1;
|
|
#endif
|
|
|
|
case SLJIT_HAS_LASX:
|
|
return (LOONGARCH_HWCAP_LASX & get_cpu_features(GET_HWCAP));
|
|
|
|
case SLJIT_HAS_SIMD:
|
|
return (LOONGARCH_HWCAP_LSX & get_cpu_features(GET_HWCAP));
|
|
|
|
case SLJIT_HAS_CLZ:
|
|
case SLJIT_HAS_CTZ:
|
|
case SLJIT_HAS_REV:
|
|
case SLJIT_HAS_ROT:
|
|
case SLJIT_HAS_PREFETCH:
|
|
case SLJIT_HAS_COPY_F32:
|
|
case SLJIT_HAS_COPY_F64:
|
|
case SLJIT_HAS_ATOMIC:
|
|
case SLJIT_HAS_MEMORY_BARRIER:
|
|
return 1;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_cmp_info(sljit_s32 type)
|
|
{
|
|
SLJIT_UNUSED_ARG(type);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
/* Entry, exit */
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
/* Creates an index in data_transfer_insts array. */
|
|
#define LOAD_DATA 0x01
|
|
#define WORD_DATA 0x00
|
|
#define BYTE_DATA 0x02
|
|
#define HALF_DATA 0x04
|
|
#define INT_DATA 0x06
|
|
#define SIGNED_DATA 0x08
|
|
/* Separates integer and floating point registers */
|
|
#define GPR_REG 0x0f
|
|
#define DOUBLE_DATA 0x10
|
|
#define SINGLE_DATA 0x12
|
|
|
|
#define MEM_MASK 0x1f
|
|
|
|
#define ARG_TEST 0x00020
|
|
#define ALT_KEEP_CACHE 0x00040
|
|
#define CUMULATIVE_OP 0x00080
|
|
#define IMM_OP 0x00100
|
|
#define MOVE_OP 0x00200
|
|
#define SRC2_IMM 0x00400
|
|
|
|
#define UNUSED_DEST 0x00800
|
|
#define REG_DEST 0x01000
|
|
#define REG1_SOURCE 0x02000
|
|
#define REG2_SOURCE 0x04000
|
|
#define SLOW_SRC1 0x08000
|
|
#define SLOW_SRC2 0x10000
|
|
#define SLOW_DEST 0x20000
|
|
#define MEM_USE_TMP2 0x40000
|
|
|
|
#define STACK_STORE ST_D
|
|
#define STACK_LOAD LD_D
|
|
|
|
static sljit_s32 load_immediate(struct sljit_compiler *compiler, sljit_s32 dst_r, sljit_sw imm)
|
|
{
|
|
if (imm <= I12_MAX && imm >= I12_MIN)
|
|
return push_inst(compiler, ADDI_D | RD(dst_r) | RJ(TMP_ZERO) | IMM_I12(imm));
|
|
|
|
if (imm <= 0x7fffffffl && imm >= -0x80000000l) {
|
|
FAIL_IF(push_inst(compiler, LU12I_W | RD(dst_r) | (sljit_ins)(((imm & 0xffffffff) >> 12) << 5)));
|
|
return push_inst(compiler, ORI | RD(dst_r) | RJ(dst_r) | IMM_I12(imm));
|
|
} else if (imm <= 0x7ffffffffffffl && imm >= -0x8000000000000l) {
|
|
FAIL_IF(push_inst(compiler, LU12I_W | RD(dst_r) | (sljit_ins)(((imm & 0xffffffff) >> 12) << 5)));
|
|
FAIL_IF(push_inst(compiler, ORI | RD(dst_r) | RJ(dst_r) | IMM_I12(imm)));
|
|
return push_inst(compiler, LU32I_D | RD(dst_r) | (sljit_ins)(((imm >> 32) & 0xfffff) << 5));
|
|
}
|
|
FAIL_IF(push_inst(compiler, LU12I_W | RD(dst_r) | (sljit_ins)(((imm & 0xffffffff) >> 12) << 5)));
|
|
FAIL_IF(push_inst(compiler, ORI | RD(dst_r) | RJ(dst_r) | IMM_I12(imm)));
|
|
FAIL_IF(push_inst(compiler, LU32I_D | RD(dst_r) | (sljit_ins)(((imm >> 32) & 0xfffff) << 5)));
|
|
return push_inst(compiler, LU52I_D | RD(dst_r) | RJ(dst_r) | IMM_I12(imm >> 52));
|
|
}
|
|
|
|
#define STACK_MAX_DISTANCE (-I12_MIN)
|
|
|
|
static sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw);
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_enter(struct sljit_compiler *compiler,
|
|
sljit_s32 options, sljit_s32 arg_types,
|
|
sljit_s32 scratches, sljit_s32 saveds, sljit_s32 local_size)
|
|
{
|
|
sljit_s32 fscratches;
|
|
sljit_s32 fsaveds;
|
|
sljit_s32 i, tmp, offset;
|
|
sljit_s32 saved_arg_count = SLJIT_KEPT_SAVEDS_COUNT(options);
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_enter(compiler, options, arg_types, scratches, saveds, local_size));
|
|
set_emit_enter(compiler, options, arg_types, scratches, saveds, local_size);
|
|
|
|
scratches = ENTER_GET_REGS(scratches);
|
|
saveds = ENTER_GET_REGS(saveds);
|
|
fscratches = compiler->fscratches;
|
|
fsaveds = compiler->fsaveds;
|
|
local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds - saved_arg_count, 1);
|
|
local_size += GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, f64);
|
|
|
|
local_size = (local_size + SLJIT_LOCALS_OFFSET + 15) & ~0xf;
|
|
compiler->local_size = local_size;
|
|
|
|
if (local_size <= STACK_MAX_DISTANCE) {
|
|
/* Frequent case. */
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(SLJIT_SP) | RJ(SLJIT_SP) | IMM_I12(-local_size)));
|
|
offset = local_size - SSIZE_OF(sw);
|
|
local_size = 0;
|
|
} else {
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(SLJIT_SP) | RJ(SLJIT_SP) | IMM_I12(STACK_MAX_DISTANCE)));
|
|
local_size -= STACK_MAX_DISTANCE;
|
|
|
|
if (local_size > STACK_MAX_DISTANCE)
|
|
FAIL_IF(load_immediate(compiler, TMP_REG1, local_size));
|
|
offset = STACK_MAX_DISTANCE - SSIZE_OF(sw);
|
|
}
|
|
|
|
FAIL_IF(push_inst(compiler, STACK_STORE | RD(RETURN_ADDR_REG) | RJ(SLJIT_SP) | IMM_I12(offset)));
|
|
|
|
tmp = SLJIT_S0 - saveds;
|
|
for (i = SLJIT_S0 - saved_arg_count; i > tmp; i--) {
|
|
offset -= SSIZE_OF(sw);
|
|
FAIL_IF(push_inst(compiler, STACK_STORE | RD(i) | RJ(SLJIT_SP) | IMM_I12(offset)));
|
|
}
|
|
|
|
for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
|
|
offset -= SSIZE_OF(sw);
|
|
FAIL_IF(push_inst(compiler, STACK_STORE | RD(i) | RJ(SLJIT_SP) | IMM_I12(offset)));
|
|
}
|
|
|
|
tmp = SLJIT_FS0 - fsaveds;
|
|
for (i = SLJIT_FS0; i > tmp; i--) {
|
|
offset -= SSIZE_OF(f64);
|
|
FAIL_IF(push_inst(compiler, FST_D | FRD(i) | RJ(SLJIT_SP) | IMM_I12(offset)));
|
|
}
|
|
|
|
for (i = fscratches; i >= SLJIT_FIRST_SAVED_FLOAT_REG; i--) {
|
|
offset -= SSIZE_OF(f64);
|
|
FAIL_IF(push_inst(compiler, FST_D | FRD(i) | RJ(SLJIT_SP) | IMM_I12(offset)));
|
|
}
|
|
|
|
if (local_size > STACK_MAX_DISTANCE)
|
|
FAIL_IF(push_inst(compiler, SUB_D | RD(SLJIT_SP) | RJ(SLJIT_SP) | RK(TMP_REG1)));
|
|
else if (local_size > 0)
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(SLJIT_SP) | RJ(SLJIT_SP) | IMM_I12(-local_size)));
|
|
|
|
if (options & SLJIT_ENTER_REG_ARG)
|
|
return SLJIT_SUCCESS;
|
|
|
|
arg_types >>= SLJIT_ARG_SHIFT;
|
|
saved_arg_count = 0;
|
|
tmp = SLJIT_R0;
|
|
|
|
while (arg_types > 0) {
|
|
if ((arg_types & SLJIT_ARG_MASK) < SLJIT_ARG_TYPE_F64) {
|
|
if (!(arg_types & SLJIT_ARG_TYPE_SCRATCH_REG)) {
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(SLJIT_S0 - saved_arg_count) | RJ(tmp) | IMM_I12(0)));
|
|
saved_arg_count++;
|
|
}
|
|
tmp++;
|
|
}
|
|
|
|
arg_types >>= SLJIT_ARG_SHIFT;
|
|
}
|
|
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
#undef STACK_MAX_DISTANCE
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_set_context(struct sljit_compiler *compiler,
|
|
sljit_s32 options, sljit_s32 arg_types,
|
|
sljit_s32 scratches, sljit_s32 saveds, sljit_s32 local_size)
|
|
{
|
|
sljit_s32 fscratches;
|
|
sljit_s32 fsaveds;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_set_context(compiler, options, arg_types, scratches, saveds, local_size));
|
|
set_emit_enter(compiler, options, arg_types, scratches, saveds, local_size);
|
|
|
|
scratches = ENTER_GET_REGS(scratches);
|
|
saveds = ENTER_GET_REGS(saveds);
|
|
fscratches = compiler->fscratches;
|
|
fsaveds = compiler->fsaveds;
|
|
local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds - SLJIT_KEPT_SAVEDS_COUNT(options), 1);
|
|
local_size += GET_SAVED_FLOAT_REGISTERS_SIZE(fscratches, fsaveds, f64);
|
|
|
|
compiler->local_size = (local_size + SLJIT_LOCALS_OFFSET + 15) & ~0xf;
|
|
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
#define STACK_MAX_DISTANCE (-I12_MIN - 16)
|
|
|
|
static sljit_s32 emit_stack_frame_release(struct sljit_compiler *compiler, sljit_s32 is_return_to)
|
|
{
|
|
sljit_s32 i, tmp, offset;
|
|
sljit_s32 local_size = compiler->local_size;
|
|
|
|
if (local_size > STACK_MAX_DISTANCE) {
|
|
local_size -= STACK_MAX_DISTANCE;
|
|
|
|
if (local_size > STACK_MAX_DISTANCE) {
|
|
FAIL_IF(load_immediate(compiler, TMP_REG2, local_size));
|
|
FAIL_IF(push_inst(compiler, ADD_D | RD(SLJIT_SP) | RJ(SLJIT_SP) | RK(TMP_REG2)));
|
|
} else
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(SLJIT_SP) | RJ(SLJIT_SP) | IMM_I12(local_size)));
|
|
|
|
local_size = STACK_MAX_DISTANCE;
|
|
}
|
|
|
|
SLJIT_ASSERT(local_size > 0);
|
|
|
|
offset = local_size - SSIZE_OF(sw);
|
|
if (!is_return_to)
|
|
FAIL_IF(push_inst(compiler, STACK_LOAD | RD(RETURN_ADDR_REG) | RJ(SLJIT_SP) | IMM_I12(offset)));
|
|
|
|
tmp = SLJIT_S0 - compiler->saveds;
|
|
for (i = SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options); i > tmp; i--) {
|
|
offset -= SSIZE_OF(sw);
|
|
FAIL_IF(push_inst(compiler, STACK_LOAD | RD(i) | RJ(SLJIT_SP) | IMM_I12(offset)));
|
|
}
|
|
|
|
for (i = compiler->scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
|
|
offset -= SSIZE_OF(sw);
|
|
FAIL_IF(push_inst(compiler, STACK_LOAD | RD(i) | RJ(SLJIT_SP) | IMM_I12(offset)));
|
|
}
|
|
|
|
tmp = SLJIT_FS0 - compiler->fsaveds;
|
|
for (i = SLJIT_FS0; i > tmp; i--) {
|
|
offset -= SSIZE_OF(f64);
|
|
FAIL_IF(push_inst(compiler, FLD_D | FRD(i) | RJ(SLJIT_SP) | IMM_I12(offset)));
|
|
}
|
|
|
|
for (i = compiler->fscratches; i >= SLJIT_FIRST_SAVED_FLOAT_REG; i--) {
|
|
offset -= SSIZE_OF(f64);
|
|
FAIL_IF(push_inst(compiler, FLD_D | FRD(i) | RJ(SLJIT_SP) | IMM_I12(offset)));
|
|
}
|
|
|
|
return push_inst(compiler, ADDI_D | RD(SLJIT_SP) | RJ(SLJIT_SP) | IMM_I12(local_size));
|
|
}
|
|
|
|
#undef STACK_MAX_DISTANCE
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_void(struct sljit_compiler *compiler)
|
|
{
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_return_void(compiler));
|
|
|
|
FAIL_IF(emit_stack_frame_release(compiler, 0));
|
|
return push_inst(compiler, JIRL | RD(TMP_ZERO) | RJ(RETURN_ADDR_REG) | IMM_I12(0));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_return_to(struct sljit_compiler *compiler,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_return_to(compiler, src, srcw));
|
|
|
|
if (src & SLJIT_MEM) {
|
|
ADJUST_LOCAL_OFFSET(src, srcw);
|
|
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, TMP_REG1, src, srcw));
|
|
src = TMP_REG1;
|
|
srcw = 0;
|
|
} else if (src >= SLJIT_FIRST_SAVED_REG && src <= (SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options))) {
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(TMP_REG1) | RJ(src) | IMM_I12(0)));
|
|
src = TMP_REG1;
|
|
srcw = 0;
|
|
}
|
|
|
|
FAIL_IF(emit_stack_frame_release(compiler, 1));
|
|
|
|
SLJIT_SKIP_CHECKS(compiler);
|
|
return sljit_emit_ijump(compiler, SLJIT_JUMP, src, srcw);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
/* Operators */
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
static const sljit_ins data_transfer_insts[16 + 4] = {
|
|
/* u w s */ ST_D /* st.d */,
|
|
/* u w l */ LD_D /* ld.d */,
|
|
/* u b s */ ST_B /* st.b */,
|
|
/* u b l */ LD_BU /* ld.bu */,
|
|
/* u h s */ ST_H /* st.h */,
|
|
/* u h l */ LD_HU /* ld.hu */,
|
|
/* u i s */ ST_W /* st.w */,
|
|
/* u i l */ LD_WU /* ld.wu */,
|
|
|
|
/* s w s */ ST_D /* st.d */,
|
|
/* s w l */ LD_D /* ld.d */,
|
|
/* s b s */ ST_B /* st.b */,
|
|
/* s b l */ LD_B /* ld.b */,
|
|
/* s h s */ ST_H /* st.h */,
|
|
/* s h l */ LD_H /* ld.h */,
|
|
/* s i s */ ST_W /* st.w */,
|
|
/* s i l */ LD_W /* ld.w */,
|
|
|
|
/* d s */ FST_D /* fst.d */,
|
|
/* d l */ FLD_D /* fld.d */,
|
|
/* s s */ FST_S /* fst.s */,
|
|
/* s l */ FLD_S /* fld.s */,
|
|
};
|
|
|
|
static const sljit_ins data_transfer_insts_x[16 + 4] = {
|
|
/* u w s */ STX_D /* stx.d */,
|
|
/* u w l */ LDX_D /* ldx.d */,
|
|
/* u b s */ STX_B /* stx.b */,
|
|
/* u b l */ LDX_BU /* ldx.bu */,
|
|
/* u h s */ STX_H /* stx.h */,
|
|
/* u h l */ LDX_HU /* ldx.hu */,
|
|
/* u i s */ STX_W /* stx.w */,
|
|
/* u i l */ LDX_WU /* ldx.wu */,
|
|
|
|
/* s w s */ STX_D /* stx.d */,
|
|
/* s w l */ LDX_D /* ldx.d */,
|
|
/* s b s */ STX_B /* stx.b */,
|
|
/* s b l */ LDX_B /* ldx.b */,
|
|
/* s h s */ STX_H /* stx.h */,
|
|
/* s h l */ LDX_H /* ldx.h */,
|
|
/* s i s */ STX_W /* stx.w */,
|
|
/* s i l */ LDX_W /* ldx.w */,
|
|
|
|
/* d s */ FSTX_D /* fstx.d */,
|
|
/* d l */ FLDX_D /* fldx.d */,
|
|
/* s s */ FSTX_S /* fstx.s */,
|
|
/* s l */ FLDX_S /* fldx.s */,
|
|
};
|
|
|
|
static sljit_s32 push_mem_inst(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw)
|
|
{
|
|
sljit_ins ins;
|
|
sljit_s32 base = arg & REG_MASK;
|
|
|
|
SLJIT_ASSERT(arg & SLJIT_MEM);
|
|
|
|
if (arg & OFFS_REG_MASK) {
|
|
sljit_s32 offs = OFFS_REG(arg);
|
|
|
|
SLJIT_ASSERT(!argw);
|
|
ins = data_transfer_insts_x[flags & MEM_MASK] |
|
|
((flags & MEM_MASK) <= GPR_REG ? RD(reg) : FRD(reg)) |
|
|
RJ(base) | RK(offs);
|
|
} else {
|
|
SLJIT_ASSERT(argw <= 0xfff && argw >= I12_MIN);
|
|
|
|
ins = data_transfer_insts[flags & MEM_MASK] |
|
|
((flags & MEM_MASK) <= GPR_REG ? RD(reg) : FRD(reg)) |
|
|
RJ(base) | IMM_I12(argw);
|
|
}
|
|
return push_inst(compiler, ins);
|
|
}
|
|
|
|
/* Can perform an operation using at most 1 instruction. */
|
|
static sljit_s32 getput_arg_fast(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw)
|
|
{
|
|
SLJIT_ASSERT(arg & SLJIT_MEM);
|
|
|
|
/* argw == 0 (ldx/stx rd, rj, rk) can be used.
|
|
* argw in [-2048, 2047] (ld/st rd, rj, imm) can be used. */
|
|
if (!argw || (!(arg & OFFS_REG_MASK) && (argw <= I12_MAX && argw >= I12_MIN))) {
|
|
/* Works for both absolute and relative addresses. */
|
|
if (SLJIT_UNLIKELY(flags & ARG_TEST))
|
|
return 1;
|
|
|
|
FAIL_IF(push_mem_inst(compiler, flags, reg, arg, argw));
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define TO_ARGW_HI(argw) (((argw) & ~0xfff) + (((argw) & 0x800) ? 0x1000 : 0))
|
|
|
|
/* See getput_arg below.
|
|
Note: can_cache is called only for binary operators. */
|
|
static sljit_s32 can_cache(sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
|
|
{
|
|
SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
|
|
|
|
if (arg & OFFS_REG_MASK)
|
|
return 0;
|
|
|
|
if (arg == next_arg) {
|
|
if (((next_argw - argw) <= I12_MAX && (next_argw - argw) >= I12_MIN)
|
|
|| TO_ARGW_HI(argw) == TO_ARGW_HI(next_argw))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Emit the necessary instructions. See can_cache above. */
|
|
static sljit_s32 getput_arg(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw, sljit_s32 next_arg, sljit_sw next_argw)
|
|
{
|
|
sljit_s32 base = arg & REG_MASK;
|
|
sljit_s32 tmp_r = (flags & MEM_USE_TMP2) ? TMP_REG2 : TMP_REG1;
|
|
sljit_sw offset;
|
|
|
|
SLJIT_ASSERT(arg & SLJIT_MEM);
|
|
if (!(next_arg & SLJIT_MEM)) {
|
|
next_arg = 0;
|
|
next_argw = 0;
|
|
}
|
|
|
|
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
|
|
argw &= 0x3;
|
|
|
|
if (SLJIT_UNLIKELY(argw))
|
|
FAIL_IF(push_inst(compiler, SLLI_D | RD(TMP_REG3) | RJ(OFFS_REG(arg)) | IMM_I12(argw)));
|
|
return push_mem_inst(compiler, flags, reg, SLJIT_MEM2(base, TMP_REG3), 0);
|
|
}
|
|
|
|
if (compiler->cache_arg == arg && argw - compiler->cache_argw <= I12_MAX && argw - compiler->cache_argw >= I12_MIN)
|
|
return push_mem_inst(compiler, flags, reg, SLJIT_MEM1(TMP_REG3), argw - compiler->cache_argw);
|
|
|
|
if (compiler->cache_arg == SLJIT_MEM && (argw - compiler->cache_argw <= I12_MAX) && (argw - compiler->cache_argw >= I12_MIN)) {
|
|
offset = argw - compiler->cache_argw;
|
|
} else {
|
|
sljit_sw argw_hi=TO_ARGW_HI(argw);
|
|
compiler->cache_arg = SLJIT_MEM;
|
|
|
|
if (next_arg && next_argw - argw <= I12_MAX && next_argw - argw >= I12_MIN && argw_hi != TO_ARGW_HI(next_argw)) {
|
|
FAIL_IF(load_immediate(compiler, TMP_REG3, argw));
|
|
compiler->cache_argw = argw;
|
|
offset = 0;
|
|
} else {
|
|
FAIL_IF(load_immediate(compiler, TMP_REG3, argw_hi));
|
|
compiler->cache_argw = argw_hi;
|
|
offset = argw & 0xfff;
|
|
argw = argw_hi;
|
|
}
|
|
}
|
|
|
|
if (!base)
|
|
return push_mem_inst(compiler, flags, reg, SLJIT_MEM1(TMP_REG3), offset);
|
|
|
|
if (arg == next_arg && next_argw - argw <= I12_MAX && next_argw - argw >= I12_MIN) {
|
|
compiler->cache_arg = arg;
|
|
FAIL_IF(push_inst(compiler, ADD_D | RD(TMP_REG3) | RJ(TMP_REG3) | RK(base)));
|
|
return push_mem_inst(compiler, flags, reg, SLJIT_MEM1(TMP_REG3), offset);
|
|
}
|
|
|
|
if (!offset)
|
|
return push_mem_inst(compiler, flags, reg, SLJIT_MEM2(base, TMP_REG3), 0);
|
|
|
|
FAIL_IF(push_inst(compiler, ADD_D | RD(tmp_r) | RJ(TMP_REG3) | RK(base)));
|
|
return push_mem_inst(compiler, flags, reg, SLJIT_MEM1(tmp_r), offset);
|
|
}
|
|
|
|
static sljit_s32 emit_op_mem(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg, sljit_sw argw)
|
|
{
|
|
sljit_s32 base = arg & REG_MASK;
|
|
sljit_s32 tmp_r = TMP_REG1;
|
|
|
|
if (getput_arg_fast(compiler, flags, reg, arg, argw))
|
|
return compiler->error;
|
|
|
|
if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA))
|
|
tmp_r = reg;
|
|
|
|
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
|
|
argw &= 0x3;
|
|
|
|
if (SLJIT_UNLIKELY(argw))
|
|
FAIL_IF(push_inst(compiler, SLLI_D | RD(tmp_r) | RJ(OFFS_REG(arg)) | IMM_I12(argw)));
|
|
return push_mem_inst(compiler, flags, reg, SLJIT_MEM2(base, tmp_r), 0);
|
|
} else {
|
|
FAIL_IF(load_immediate(compiler, tmp_r, argw));
|
|
|
|
if (base != 0)
|
|
return push_mem_inst(compiler, flags, reg, SLJIT_MEM2(base, tmp_r), 0);
|
|
return push_mem_inst(compiler, flags, reg, SLJIT_MEM1(tmp_r), 0);
|
|
}
|
|
}
|
|
|
|
static SLJIT_INLINE sljit_s32 emit_op_mem2(struct sljit_compiler *compiler, sljit_s32 flags, sljit_s32 reg, sljit_s32 arg1, sljit_sw arg1w, sljit_s32 arg2, sljit_sw arg2w)
|
|
{
|
|
if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
|
|
return compiler->error;
|
|
return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
|
|
}
|
|
|
|
#define IMM_EXTEND(v) (IMM_I12((op & SLJIT_32) ? (v) : (32 + (v))))
|
|
|
|
/* andi/ori/xori are zero-extended */
|
|
#define EMIT_LOGICAL(op_imm, op_reg) \
|
|
if (flags & SRC2_IMM) { \
|
|
if (op & SLJIT_SET_Z) {\
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(EQUAL_FLAG) | RJ(TMP_ZERO) | IMM_I12(src2))); \
|
|
FAIL_IF(push_inst(compiler, op_reg | RD(EQUAL_FLAG) | RJ(src1) | RK(EQUAL_FLAG))); \
|
|
} \
|
|
if (!(flags & UNUSED_DEST)) { \
|
|
if (dst == src1) { \
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(TMP_REG1) | RJ(TMP_ZERO) | IMM_I12(src2))); \
|
|
FAIL_IF(push_inst(compiler, op_reg | RD(dst) | RJ(src1) | RK(TMP_REG1))); \
|
|
} else { \
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(dst) | RJ(TMP_ZERO) | IMM_I12(src2))); \
|
|
FAIL_IF(push_inst(compiler, op_reg | RD(dst) | RJ(src1) | RK(dst))); \
|
|
} \
|
|
} \
|
|
} else { \
|
|
if (op & SLJIT_SET_Z) \
|
|
FAIL_IF(push_inst(compiler, op_reg | RD(EQUAL_FLAG) | RJ(src1) | RK(src2))); \
|
|
if (!(flags & UNUSED_DEST)) \
|
|
FAIL_IF(push_inst(compiler, op_reg | RD(dst) | RJ(src1) | RK(src2))); \
|
|
} \
|
|
while (0)
|
|
|
|
#define EMIT_SHIFT(imm, reg) \
|
|
op_imm = (imm); \
|
|
op_reg = (reg)
|
|
|
|
static SLJIT_INLINE sljit_s32 emit_single_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
|
|
sljit_s32 dst, sljit_s32 src1, sljit_sw src2)
|
|
{
|
|
sljit_s32 is_overflow, is_carry, carry_src_r, is_handled, reg;
|
|
sljit_ins op_imm, op_reg;
|
|
sljit_ins word_size = ((op & SLJIT_32) ? 32 : 64);
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_MOV:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
if (dst != src2)
|
|
return push_inst(compiler, INST(ADD, op) | RD(dst) | RJ(src2) | IMM_I12(0));
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_MOV_U8:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE))
|
|
return push_inst(compiler, ANDI | RD(dst) | RJ(src2) | IMM_I12(0xff));
|
|
SLJIT_ASSERT(dst == src2);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_MOV_S8:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE))
|
|
return push_inst(compiler, EXT_W_B | RD(dst) | RJ(src2));
|
|
SLJIT_ASSERT(dst == src2);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_MOV_U16:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE))
|
|
return push_inst(compiler, INST(BSTRPICK, op) | RD(dst) | RJ(src2) | (15 << 16));
|
|
SLJIT_ASSERT(dst == src2);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_MOV_S16:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE))
|
|
return push_inst(compiler, EXT_W_H | RD(dst) | RJ(src2));
|
|
SLJIT_ASSERT(dst == src2);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_MOV_U32:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE))
|
|
return push_inst(compiler, BSTRPICK_D | RD(dst) | RJ(src2) | (31 << 16));
|
|
SLJIT_ASSERT(dst == src2);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_MOV_S32:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
if ((flags & (REG_DEST | REG2_SOURCE)) == (REG_DEST | REG2_SOURCE))
|
|
return push_inst(compiler, SLLI_W | RD(dst) | RJ(src2) | IMM_I12(0));
|
|
SLJIT_ASSERT(dst == src2);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_CLZ:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
return push_inst(compiler, INST(CLZ, op) | RD(dst) | RJ(src2));
|
|
|
|
case SLJIT_CTZ:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
return push_inst(compiler, INST(CTZ, op) | RD(dst) | RJ(src2));
|
|
|
|
case SLJIT_REV:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
return push_inst(compiler, ((op & SLJIT_32) ? REVB_2W : REVB_D) | RD(dst) | RJ(src2));
|
|
|
|
case SLJIT_REV_S16:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
FAIL_IF(push_inst(compiler, REVB_2H | RD(dst) | RJ(src2)));
|
|
return push_inst(compiler, EXT_W_H | RD(dst) | RJ(dst));
|
|
|
|
case SLJIT_REV_U16:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM));
|
|
FAIL_IF(push_inst(compiler, REVB_2H | RD(dst) | RJ(src2)));
|
|
return push_inst(compiler, INST(BSTRPICK, op) | RD(dst) | RJ(dst) | (15 << 16));
|
|
|
|
case SLJIT_REV_S32:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM) && dst != TMP_REG1);
|
|
FAIL_IF(push_inst(compiler, REVB_2W | RD(dst) | RJ(src2)));
|
|
return push_inst(compiler, SLLI_W | RD(dst) | RJ(dst) | IMM_I12(0));
|
|
|
|
case SLJIT_REV_U32:
|
|
SLJIT_ASSERT(src1 == TMP_ZERO && !(flags & SRC2_IMM) && dst != TMP_REG1);
|
|
FAIL_IF(push_inst(compiler, REVB_2W | RD(dst) | RJ(src2)));
|
|
return push_inst(compiler, BSTRPICK_D | RD(dst) | RJ(dst) | (31 << 16));
|
|
|
|
case SLJIT_ADD:
|
|
/* Overflow computation (both add and sub): overflow = src1_sign ^ src2_sign ^ result_sign ^ carry_flag */
|
|
is_overflow = GET_FLAG_TYPE(op) == SLJIT_OVERFLOW;
|
|
carry_src_r = GET_FLAG_TYPE(op) == SLJIT_CARRY;
|
|
|
|
if (flags & SRC2_IMM) {
|
|
if (is_overflow) {
|
|
if (src2 >= 0)
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(EQUAL_FLAG) | RJ(src1) | IMM_I12(0)));
|
|
else {
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(EQUAL_FLAG) | RJ(TMP_ZERO) | IMM_I12(-1)));
|
|
FAIL_IF(push_inst(compiler, XOR | RD(EQUAL_FLAG) | RJ(src1) | RK(EQUAL_FLAG)));
|
|
}
|
|
} else if (op & SLJIT_SET_Z)
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(EQUAL_FLAG) | RJ(src1) | IMM_I12(src2)));
|
|
|
|
/* Only the zero flag is needed. */
|
|
if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(dst) | RJ(src1) | IMM_I12(src2)));
|
|
} else {
|
|
if (is_overflow)
|
|
FAIL_IF(push_inst(compiler, XOR | RD(EQUAL_FLAG) | RJ(src1) | RK(src2)));
|
|
else if (op & SLJIT_SET_Z)
|
|
FAIL_IF(push_inst(compiler, INST(ADD, op) | RD(EQUAL_FLAG) | RJ(src1) | RK(src2)));
|
|
|
|
if (is_overflow || carry_src_r != 0) {
|
|
if (src1 != dst)
|
|
carry_src_r = (sljit_s32)src1;
|
|
else if (src2 != dst)
|
|
carry_src_r = (sljit_s32)src2;
|
|
else {
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(OTHER_FLAG) | RJ(src1) | IMM_I12(0)));
|
|
carry_src_r = OTHER_FLAG;
|
|
}
|
|
}
|
|
|
|
/* Only the zero flag is needed. */
|
|
if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
|
|
FAIL_IF(push_inst(compiler, INST(ADD, op) | RD(dst) | RJ(src1) | RK(src2)));
|
|
}
|
|
|
|
/* Carry is zero if a + b >= a or a + b >= b, otherwise it is 1. */
|
|
if (is_overflow || carry_src_r != 0) {
|
|
if (flags & SRC2_IMM)
|
|
FAIL_IF(push_inst(compiler, SLTUI | RD(OTHER_FLAG) | RJ(dst) | IMM_I12(src2)));
|
|
else
|
|
FAIL_IF(push_inst(compiler, SLTU | RD(OTHER_FLAG) | RJ(dst) | RK(carry_src_r)));
|
|
}
|
|
|
|
if (!is_overflow)
|
|
return SLJIT_SUCCESS;
|
|
|
|
FAIL_IF(push_inst(compiler, XOR | RD(TMP_REG1) | RJ(dst) | RK(EQUAL_FLAG)));
|
|
if (op & SLJIT_SET_Z)
|
|
FAIL_IF(push_inst(compiler, INST(ADD, op) | RD(EQUAL_FLAG) | RJ(dst) | IMM_I12(0)));
|
|
FAIL_IF(push_inst(compiler, INST(SRLI, op) | RD(TMP_REG1) | RJ(TMP_REG1) | IMM_EXTEND(31)));
|
|
return push_inst(compiler, XOR | RD(OTHER_FLAG) | RJ(TMP_REG1) | RK(OTHER_FLAG));
|
|
|
|
case SLJIT_ADDC:
|
|
carry_src_r = GET_FLAG_TYPE(op) == SLJIT_CARRY;
|
|
|
|
if (flags & SRC2_IMM) {
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(dst) | RJ(src1) | IMM_I12(src2)));
|
|
} else {
|
|
if (carry_src_r != 0) {
|
|
if (src1 != dst)
|
|
carry_src_r = (sljit_s32)src1;
|
|
else if (src2 != dst)
|
|
carry_src_r = (sljit_s32)src2;
|
|
else {
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(EQUAL_FLAG) | RJ(src1) | IMM_I12(0)));
|
|
carry_src_r = EQUAL_FLAG;
|
|
}
|
|
}
|
|
|
|
FAIL_IF(push_inst(compiler, ADD_D | RD(dst) | RJ(src1) | RK(src2)));
|
|
}
|
|
|
|
/* Carry is zero if a + b >= a or a + b >= b, otherwise it is 1. */
|
|
if (carry_src_r != 0) {
|
|
if (flags & SRC2_IMM)
|
|
FAIL_IF(push_inst(compiler, SLTUI | RD(EQUAL_FLAG) | RJ(dst) | IMM_I12(src2)));
|
|
else
|
|
FAIL_IF(push_inst(compiler, SLTU | RD(EQUAL_FLAG) | RJ(dst) | RK(carry_src_r)));
|
|
}
|
|
|
|
FAIL_IF(push_inst(compiler, ADD_D | RD(dst) | RJ(dst) | RK(OTHER_FLAG)));
|
|
|
|
if (carry_src_r == 0)
|
|
return SLJIT_SUCCESS;
|
|
|
|
/* Set ULESS_FLAG (dst == 0) && (OTHER_FLAG == 1). */
|
|
FAIL_IF(push_inst(compiler, SLTU | RD(OTHER_FLAG) | RJ(dst) | RK(OTHER_FLAG)));
|
|
/* Set carry flag. */
|
|
return push_inst(compiler, OR | RD(OTHER_FLAG) | RJ(OTHER_FLAG) | RK(EQUAL_FLAG));
|
|
|
|
case SLJIT_SUB:
|
|
if ((flags & SRC2_IMM) && src2 == I12_MIN) {
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(TMP_REG2) | RJ(TMP_ZERO) | IMM_I12(src2)));
|
|
src2 = TMP_REG2;
|
|
flags &= ~SRC2_IMM;
|
|
}
|
|
|
|
is_handled = 0;
|
|
|
|
if (flags & SRC2_IMM) {
|
|
if (GET_FLAG_TYPE(op) == SLJIT_LESS) {
|
|
FAIL_IF(push_inst(compiler, SLTUI | RD(OTHER_FLAG) | RJ(src1) | IMM_I12(src2)));
|
|
is_handled = 1;
|
|
} else if (GET_FLAG_TYPE(op) == SLJIT_SIG_LESS) {
|
|
FAIL_IF(push_inst(compiler, SLTI | RD(OTHER_FLAG) | RJ(src1) | IMM_I12(src2)));
|
|
is_handled = 1;
|
|
}
|
|
}
|
|
|
|
if (!is_handled && GET_FLAG_TYPE(op) >= SLJIT_LESS && GET_FLAG_TYPE(op) <= SLJIT_SIG_LESS_EQUAL) {
|
|
is_handled = 1;
|
|
|
|
if (flags & SRC2_IMM) {
|
|
reg = (src1 == TMP_REG1) ? TMP_REG2 : TMP_REG1;
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(reg) | RJ(TMP_ZERO) | IMM_I12(src2)));
|
|
src2 = reg;
|
|
flags &= ~SRC2_IMM;
|
|
}
|
|
|
|
switch (GET_FLAG_TYPE(op)) {
|
|
case SLJIT_LESS:
|
|
FAIL_IF(push_inst(compiler, SLTU | RD(OTHER_FLAG) | RJ(src1) | RK(src2)));
|
|
break;
|
|
case SLJIT_GREATER:
|
|
FAIL_IF(push_inst(compiler, SLTU | RD(OTHER_FLAG) | RJ(src2) | RK(src1)));
|
|
break;
|
|
case SLJIT_SIG_LESS:
|
|
FAIL_IF(push_inst(compiler, SLT | RD(OTHER_FLAG) | RJ(src1) | RK(src2)));
|
|
break;
|
|
case SLJIT_SIG_GREATER:
|
|
FAIL_IF(push_inst(compiler, SLT | RD(OTHER_FLAG) | RJ(src2) | RK(src1)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (is_handled) {
|
|
if (flags & SRC2_IMM) {
|
|
if (op & SLJIT_SET_Z)
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(EQUAL_FLAG) | RJ(src1) | IMM_I12(-src2)));
|
|
if (!(flags & UNUSED_DEST))
|
|
return push_inst(compiler, INST(ADDI, op) | RD(dst) | RJ(src1) | IMM_I12(-src2));
|
|
} else {
|
|
if (op & SLJIT_SET_Z)
|
|
FAIL_IF(push_inst(compiler, INST(SUB, op) | RD(EQUAL_FLAG) | RJ(src1) | RK(src2)));
|
|
if (!(flags & UNUSED_DEST))
|
|
return push_inst(compiler, INST(SUB, op) | RD(dst) | RJ(src1) | RK(src2));
|
|
}
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
is_overflow = GET_FLAG_TYPE(op) == SLJIT_OVERFLOW;
|
|
is_carry = GET_FLAG_TYPE(op) == SLJIT_CARRY;
|
|
|
|
if (flags & SRC2_IMM) {
|
|
if (is_overflow) {
|
|
if (src2 >= 0)
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(EQUAL_FLAG) | RJ(src1) | IMM_I12(0)));
|
|
else {
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(EQUAL_FLAG) | RJ(src1) | IMM_I12(-1)));
|
|
FAIL_IF(push_inst(compiler, XOR | RD(EQUAL_FLAG) | RJ(src1) | RK(EQUAL_FLAG)));
|
|
}
|
|
} else if (op & SLJIT_SET_Z)
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(EQUAL_FLAG) | RJ(src1) | IMM_I12(-src2)));
|
|
|
|
if (is_overflow || is_carry)
|
|
FAIL_IF(push_inst(compiler, SLTUI | RD(OTHER_FLAG) | RJ(src1) | IMM_I12(src2)));
|
|
|
|
/* Only the zero flag is needed. */
|
|
if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(dst) | RJ(src1) | IMM_I12(-src2)));
|
|
} else {
|
|
if (is_overflow)
|
|
FAIL_IF(push_inst(compiler, XOR | RD(EQUAL_FLAG) | RJ(src1) | RK(src2)));
|
|
else if (op & SLJIT_SET_Z)
|
|
FAIL_IF(push_inst(compiler, INST(SUB, op) | RD(EQUAL_FLAG) | RJ(src1) | RK(src2)));
|
|
|
|
if (is_overflow || is_carry)
|
|
FAIL_IF(push_inst(compiler, SLTU | RD(OTHER_FLAG) | RJ(src1) | RK(src2)));
|
|
|
|
/* Only the zero flag is needed. */
|
|
if (!(flags & UNUSED_DEST) || (op & VARIABLE_FLAG_MASK))
|
|
FAIL_IF(push_inst(compiler, INST(SUB, op) | RD(dst) | RJ(src1) | RK(src2)));
|
|
}
|
|
|
|
if (!is_overflow)
|
|
return SLJIT_SUCCESS;
|
|
|
|
FAIL_IF(push_inst(compiler, XOR | RD(TMP_REG1) | RJ(dst) | RK(EQUAL_FLAG)));
|
|
if (op & SLJIT_SET_Z)
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(EQUAL_FLAG) | RJ(dst) | IMM_I12(0)));
|
|
FAIL_IF(push_inst(compiler, INST(SRLI, op) | RD(TMP_REG1) | RJ(TMP_REG1) | IMM_EXTEND(31)));
|
|
return push_inst(compiler, XOR | RD(OTHER_FLAG) | RJ(TMP_REG1) | RK(OTHER_FLAG));
|
|
|
|
case SLJIT_SUBC:
|
|
if ((flags & SRC2_IMM) && src2 == I12_MIN) {
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(TMP_REG2) | RJ(TMP_ZERO) | IMM_I12(src2)));
|
|
src2 = TMP_REG2;
|
|
flags &= ~SRC2_IMM;
|
|
}
|
|
|
|
is_carry = GET_FLAG_TYPE(op) == SLJIT_CARRY;
|
|
|
|
if (flags & SRC2_IMM) {
|
|
if (is_carry)
|
|
FAIL_IF(push_inst(compiler, SLTUI | RD(EQUAL_FLAG) | RJ(src1) | IMM_I12(src2)));
|
|
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(dst) | RJ(src1) | IMM_I12(-src2)));
|
|
} else {
|
|
if (is_carry)
|
|
FAIL_IF(push_inst(compiler, SLTU | RD(EQUAL_FLAG) | RJ(src1) | RK(src2)));
|
|
|
|
FAIL_IF(push_inst(compiler, INST(SUB, op) | RD(dst) | RJ(src1) | RK(src2)));
|
|
}
|
|
|
|
if (is_carry)
|
|
FAIL_IF(push_inst(compiler, SLTU | RD(TMP_REG1) | RJ(dst) | RK(OTHER_FLAG)));
|
|
|
|
FAIL_IF(push_inst(compiler, INST(SUB, op) | RD(dst) | RJ(dst) | RK(OTHER_FLAG)));
|
|
|
|
if (!is_carry)
|
|
return SLJIT_SUCCESS;
|
|
|
|
return push_inst(compiler, OR | RD(OTHER_FLAG) | RJ(EQUAL_FLAG) | RK(TMP_REG1));
|
|
|
|
case SLJIT_MUL:
|
|
SLJIT_ASSERT(!(flags & SRC2_IMM));
|
|
|
|
if (GET_FLAG_TYPE(op) != SLJIT_OVERFLOW)
|
|
return push_inst(compiler, INST(MUL, op) | RD(dst) | RJ(src1) | RK(src2));
|
|
|
|
if (op & SLJIT_32) {
|
|
FAIL_IF(push_inst(compiler, MUL_D | RD(OTHER_FLAG) | RJ(src1) | RK(src2)));
|
|
FAIL_IF(push_inst(compiler, MUL_W | RD(dst) | RJ(src1) | RK(src2)));
|
|
return push_inst(compiler, SUB_D | RD(OTHER_FLAG) | RJ(dst) | RK(OTHER_FLAG));
|
|
}
|
|
|
|
FAIL_IF(push_inst(compiler, MULH_D | RD(EQUAL_FLAG) | RJ(src1) | RK(src2)));
|
|
FAIL_IF(push_inst(compiler, MUL_D | RD(dst) | RJ(src1) | RK(src2)));
|
|
FAIL_IF(push_inst(compiler, SRAI_D | RD(OTHER_FLAG) | RJ(dst) | IMM_I12((63))));
|
|
return push_inst(compiler, SUB_D | RD(OTHER_FLAG) | RJ(EQUAL_FLAG) | RK(OTHER_FLAG));
|
|
|
|
case SLJIT_AND:
|
|
EMIT_LOGICAL(ANDI, AND);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_OR:
|
|
EMIT_LOGICAL(ORI, OR);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_XOR:
|
|
EMIT_LOGICAL(XORI, XOR);
|
|
return SLJIT_SUCCESS;
|
|
|
|
case SLJIT_SHL:
|
|
case SLJIT_MSHL:
|
|
if (op & SLJIT_32) {
|
|
EMIT_SHIFT(SLLI_W, SLL_W);
|
|
} else {
|
|
EMIT_SHIFT(SLLI_D, SLL_D);
|
|
}
|
|
break;
|
|
|
|
case SLJIT_LSHR:
|
|
case SLJIT_MLSHR:
|
|
if (op & SLJIT_32) {
|
|
EMIT_SHIFT(SRLI_W, SRL_W);
|
|
} else {
|
|
EMIT_SHIFT(SRLI_D, SRL_D);
|
|
}
|
|
break;
|
|
|
|
case SLJIT_ASHR:
|
|
case SLJIT_MASHR:
|
|
if (op & SLJIT_32) {
|
|
EMIT_SHIFT(SRAI_W, SRA_W);
|
|
} else {
|
|
EMIT_SHIFT(SRAI_D, SRA_D);
|
|
}
|
|
break;
|
|
|
|
case SLJIT_ROTL:
|
|
case SLJIT_ROTR:
|
|
if (flags & SRC2_IMM) {
|
|
SLJIT_ASSERT(src2 != 0);
|
|
|
|
if (GET_OPCODE(op) == SLJIT_ROTL)
|
|
src2 = word_size - src2;
|
|
return push_inst(compiler, INST(ROTRI, op) | RD(dst) | RJ(src1) | IMM_I12(src2));
|
|
}
|
|
|
|
if (src2 == TMP_ZERO) {
|
|
if (dst != src1)
|
|
return push_inst(compiler, INST(ADDI, op) | RD(dst) | RJ(src1) | IMM_I12(0));
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
if (GET_OPCODE(op) == SLJIT_ROTL) {
|
|
FAIL_IF(push_inst(compiler, INST(SUB, op)| RD(OTHER_FLAG) | RJ(TMP_ZERO) | RK(src2)));
|
|
src2 = OTHER_FLAG;
|
|
}
|
|
return push_inst(compiler, INST(ROTR, op) | RD(dst) | RJ(src1) | RK(src2));
|
|
|
|
default:
|
|
SLJIT_UNREACHABLE();
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
if (flags & SRC2_IMM) {
|
|
if (op & SLJIT_SET_Z)
|
|
FAIL_IF(push_inst(compiler, op_imm | RD(EQUAL_FLAG) | RJ(src1) | IMM_I12(src2)));
|
|
|
|
if (flags & UNUSED_DEST)
|
|
return SLJIT_SUCCESS;
|
|
return push_inst(compiler, op_imm | RD(dst) | RJ(src1) | IMM_I12(src2));
|
|
}
|
|
|
|
if (op & SLJIT_SET_Z)
|
|
FAIL_IF(push_inst(compiler, op_reg | RD(EQUAL_FLAG) | RJ(src1) | RK(src2)));
|
|
|
|
if (flags & UNUSED_DEST)
|
|
return SLJIT_SUCCESS;
|
|
return push_inst(compiler, op_reg | RD(dst) | RJ(src1) | RK(src2));
|
|
}
|
|
|
|
#undef IMM_EXTEND
|
|
|
|
static sljit_s32 emit_op(struct sljit_compiler *compiler, sljit_s32 op, sljit_s32 flags,
|
|
sljit_s32 dst, sljit_sw dstw,
|
|
sljit_s32 src1, sljit_sw src1w,
|
|
sljit_s32 src2, sljit_sw src2w)
|
|
{
|
|
/* arg1 goes to TMP_REG1 or src reg
|
|
arg2 goes to TMP_REG2, imm or src reg
|
|
TMP_REG3 can be used for caching
|
|
result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
|
|
sljit_s32 dst_r = TMP_REG2;
|
|
sljit_s32 src1_r;
|
|
sljit_sw src2_r = 0;
|
|
sljit_s32 src2_tmp_reg = (GET_OPCODE(op) >= SLJIT_OP2_BASE && FAST_IS_REG(src1)) ? TMP_REG1 : TMP_REG2;
|
|
|
|
if (!(flags & ALT_KEEP_CACHE)) {
|
|
compiler->cache_arg = 0;
|
|
compiler->cache_argw = 0;
|
|
}
|
|
|
|
if (dst == 0) {
|
|
SLJIT_ASSERT(HAS_FLAGS(op));
|
|
flags |= UNUSED_DEST;
|
|
dst = TMP_REG2;
|
|
} else if (FAST_IS_REG(dst)) {
|
|
dst_r = dst;
|
|
flags |= REG_DEST;
|
|
if (flags & MOVE_OP)
|
|
src2_tmp_reg = dst_r;
|
|
} else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, TMP_REG1, dst, dstw))
|
|
flags |= SLOW_DEST;
|
|
|
|
if (flags & IMM_OP) {
|
|
if (src2 == SLJIT_IMM && src2w != 0 && src2w <= I12_MAX && src2w >= I12_MIN) {
|
|
flags |= SRC2_IMM;
|
|
src2_r = src2w;
|
|
} else if ((flags & CUMULATIVE_OP) && src1 == SLJIT_IMM && src1w != 0 && src1w <= I12_MAX && src1w >= I12_MIN) {
|
|
flags |= SRC2_IMM;
|
|
src2_r = src1w;
|
|
|
|
/* And swap arguments. */
|
|
src1 = src2;
|
|
src1w = src2w;
|
|
src2 = SLJIT_IMM;
|
|
/* src2w = src2_r unneeded. */
|
|
}
|
|
}
|
|
|
|
/* Source 1. */
|
|
if (FAST_IS_REG(src1)) {
|
|
src1_r = src1;
|
|
flags |= REG1_SOURCE;
|
|
} else if (src1 == SLJIT_IMM) {
|
|
if (src1w) {
|
|
FAIL_IF(load_immediate(compiler, TMP_REG1, src1w));
|
|
src1_r = TMP_REG1;
|
|
}
|
|
else
|
|
src1_r = TMP_ZERO;
|
|
} else {
|
|
if (getput_arg_fast(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w))
|
|
FAIL_IF(compiler->error);
|
|
else
|
|
flags |= SLOW_SRC1;
|
|
src1_r = TMP_REG1;
|
|
}
|
|
|
|
/* Source 2. */
|
|
if (FAST_IS_REG(src2)) {
|
|
src2_r = src2;
|
|
flags |= REG2_SOURCE;
|
|
if ((flags & (REG_DEST | MOVE_OP)) == MOVE_OP)
|
|
dst_r = (sljit_s32)src2_r;
|
|
} else if (src2 == SLJIT_IMM) {
|
|
if (!(flags & SRC2_IMM)) {
|
|
if (src2w) {
|
|
FAIL_IF(load_immediate(compiler, src2_tmp_reg, src2w));
|
|
src2_r = src2_tmp_reg;
|
|
} else {
|
|
src2_r = TMP_ZERO;
|
|
if (flags & MOVE_OP) {
|
|
if (dst & SLJIT_MEM)
|
|
dst_r = 0;
|
|
else
|
|
op = SLJIT_MOV;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (getput_arg_fast(compiler, flags | LOAD_DATA, src2_tmp_reg, src2, src2w))
|
|
FAIL_IF(compiler->error);
|
|
else
|
|
flags |= SLOW_SRC2;
|
|
|
|
src2_r = src2_tmp_reg;
|
|
}
|
|
|
|
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
|
|
SLJIT_ASSERT(src2_r == TMP_REG2);
|
|
if ((flags & SLOW_DEST) && !can_cache(src2, src2w, src1, src1w) && can_cache(src2, src2w, dst, dstw)) {
|
|
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, src2, src2w));
|
|
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA | MEM_USE_TMP2, TMP_REG2, src2, src2w, dst, dstw));
|
|
} else {
|
|
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG2, src2, src2w, src1, src1w));
|
|
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
|
|
}
|
|
}
|
|
else if (flags & SLOW_SRC1)
|
|
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, TMP_REG1, src1, src1w, dst, dstw));
|
|
else if (flags & SLOW_SRC2)
|
|
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA | ((src1_r == TMP_REG1) ? MEM_USE_TMP2 : 0), src2_tmp_reg, src2, src2w, dst, dstw));
|
|
|
|
FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
|
|
|
|
if (dst & SLJIT_MEM) {
|
|
if (!(flags & SLOW_DEST)) {
|
|
getput_arg_fast(compiler, flags, dst_r, dst, dstw);
|
|
return compiler->error;
|
|
}
|
|
return getput_arg(compiler, flags, dst_r, dst, dstw, 0, 0);
|
|
}
|
|
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op)
|
|
{
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_op0(compiler, op));
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_BREAKPOINT:
|
|
return push_inst(compiler, BREAK);
|
|
case SLJIT_NOP:
|
|
return push_inst(compiler, ANDI | RD(TMP_ZERO) | RJ(TMP_ZERO) | IMM_I12(0));
|
|
case SLJIT_LMUL_UW:
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(TMP_REG1) | RJ(SLJIT_R1) | IMM_I12(0)));
|
|
FAIL_IF(push_inst(compiler, MULH_DU | RD(SLJIT_R1) | RJ(SLJIT_R0) | RK(SLJIT_R1)));
|
|
return push_inst(compiler, MUL_D | RD(SLJIT_R0) | RJ(SLJIT_R0) | RK(TMP_REG1));
|
|
case SLJIT_LMUL_SW:
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(TMP_REG1) | RJ(SLJIT_R1) | IMM_I12(0)));
|
|
FAIL_IF(push_inst(compiler, MULH_D | RD(SLJIT_R1) | RJ(SLJIT_R0) | RK(SLJIT_R1)));
|
|
return push_inst(compiler, MUL_D | RD(SLJIT_R0) | RJ(SLJIT_R0) | RK(TMP_REG1));
|
|
case SLJIT_DIVMOD_UW:
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(TMP_REG1) | RJ(SLJIT_R0) | IMM_I12(0)));
|
|
FAIL_IF(push_inst(compiler, ((op & SLJIT_32)? DIV_WU: DIV_DU) | RD(SLJIT_R0) | RJ(SLJIT_R0) | RK(SLJIT_R1)));
|
|
return push_inst(compiler, ((op & SLJIT_32)? MOD_WU: MOD_DU) | RD(SLJIT_R1) | RJ(TMP_REG1) | RK(SLJIT_R1));
|
|
case SLJIT_DIVMOD_SW:
|
|
FAIL_IF(push_inst(compiler, INST(ADDI, op) | RD(TMP_REG1) | RJ(SLJIT_R0) | IMM_I12(0)));
|
|
FAIL_IF(push_inst(compiler, INST(DIV, op) | RD(SLJIT_R0) | RJ(SLJIT_R0) | RK(SLJIT_R1)));
|
|
return push_inst(compiler, INST(MOD, op) | RD(SLJIT_R1) | RJ(TMP_REG1) | RK(SLJIT_R1));
|
|
case SLJIT_DIV_UW:
|
|
return push_inst(compiler, ((op & SLJIT_32)? DIV_WU: DIV_DU) | RD(SLJIT_R0) | RJ(SLJIT_R0) | RK(SLJIT_R1));
|
|
case SLJIT_DIV_SW:
|
|
return push_inst(compiler, INST(DIV, op) | RD(SLJIT_R0) | RJ(SLJIT_R0) | RK(SLJIT_R1));
|
|
case SLJIT_MEMORY_BARRIER:
|
|
return push_inst(compiler, DBAR);
|
|
case SLJIT_ENDBR:
|
|
case SLJIT_SKIP_FRAMES_BEFORE_RETURN:
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_UNREACHABLE();
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst, sljit_sw dstw,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
sljit_s32 flags = 0;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
|
|
ADJUST_LOCAL_OFFSET(dst, dstw);
|
|
ADJUST_LOCAL_OFFSET(src, srcw);
|
|
|
|
if (op & SLJIT_32)
|
|
flags = INT_DATA | SIGNED_DATA;
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_MOV:
|
|
case SLJIT_MOV_P:
|
|
return emit_op(compiler, SLJIT_MOV, WORD_DATA | MOVE_OP, dst, dstw, TMP_ZERO, 0, src, srcw);
|
|
|
|
case SLJIT_MOV_U32:
|
|
return emit_op(compiler, SLJIT_MOV_U32, INT_DATA | MOVE_OP, dst, dstw, TMP_ZERO, 0, src, (src == SLJIT_IMM) ? (sljit_u32)srcw : srcw);
|
|
|
|
case SLJIT_MOV_S32:
|
|
/* Logical operators have no W variant, so sign extended input is necessary for them. */
|
|
case SLJIT_MOV32:
|
|
return emit_op(compiler, SLJIT_MOV_S32, INT_DATA | SIGNED_DATA | MOVE_OP, dst, dstw, TMP_ZERO, 0, src, (src == SLJIT_IMM) ? (sljit_s32)srcw : srcw);
|
|
|
|
case SLJIT_MOV_U8:
|
|
return emit_op(compiler, op, BYTE_DATA | MOVE_OP, dst, dstw, TMP_ZERO, 0, src, (src == SLJIT_IMM) ? (sljit_u8)srcw : srcw);
|
|
|
|
case SLJIT_MOV_S8:
|
|
return emit_op(compiler, op, BYTE_DATA | SIGNED_DATA | MOVE_OP, dst, dstw, TMP_ZERO, 0, src, (src == SLJIT_IMM) ? (sljit_s8)srcw : srcw);
|
|
|
|
case SLJIT_MOV_U16:
|
|
return emit_op(compiler, op, HALF_DATA | MOVE_OP, dst, dstw, TMP_ZERO, 0, src, (src == SLJIT_IMM) ? (sljit_u16)srcw : srcw);
|
|
|
|
case SLJIT_MOV_S16:
|
|
return emit_op(compiler, op, HALF_DATA | SIGNED_DATA | MOVE_OP, dst, dstw, TMP_ZERO, 0, src, (src == SLJIT_IMM) ? (sljit_s16)srcw : srcw);
|
|
|
|
case SLJIT_CLZ:
|
|
case SLJIT_CTZ:
|
|
case SLJIT_REV:
|
|
return emit_op(compiler, op, flags, dst, dstw, TMP_ZERO, 0, src, srcw);
|
|
|
|
case SLJIT_REV_U16:
|
|
case SLJIT_REV_S16:
|
|
return emit_op(compiler, op, HALF_DATA, dst, dstw, TMP_ZERO, 0, src, srcw);
|
|
|
|
case SLJIT_REV_U32:
|
|
case SLJIT_REV_S32:
|
|
return emit_op(compiler, op | SLJIT_32, INT_DATA, dst, dstw, TMP_ZERO, 0, src, srcw);
|
|
}
|
|
|
|
SLJIT_UNREACHABLE();
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst, sljit_sw dstw,
|
|
sljit_s32 src1, sljit_sw src1w,
|
|
sljit_s32 src2, sljit_sw src2w)
|
|
{
|
|
sljit_s32 flags = 0;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_op2(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w));
|
|
ADJUST_LOCAL_OFFSET(dst, dstw);
|
|
ADJUST_LOCAL_OFFSET(src1, src1w);
|
|
ADJUST_LOCAL_OFFSET(src2, src2w);
|
|
|
|
if (op & SLJIT_32) {
|
|
flags |= INT_DATA | SIGNED_DATA;
|
|
if (src1 == SLJIT_IMM)
|
|
src1w = (sljit_s32)src1w;
|
|
if (src2 == SLJIT_IMM)
|
|
src2w = (sljit_s32)src2w;
|
|
}
|
|
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_ADD:
|
|
case SLJIT_ADDC:
|
|
compiler->status_flags_state = SLJIT_CURRENT_FLAGS_ADD;
|
|
return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
|
|
|
|
case SLJIT_SUB:
|
|
case SLJIT_SUBC:
|
|
compiler->status_flags_state = SLJIT_CURRENT_FLAGS_SUB;
|
|
return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
|
|
|
|
case SLJIT_MUL:
|
|
compiler->status_flags_state = 0;
|
|
return emit_op(compiler, op, flags | CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
|
|
|
|
case SLJIT_AND:
|
|
case SLJIT_OR:
|
|
case SLJIT_XOR:
|
|
return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
|
|
|
|
case SLJIT_SHL:
|
|
case SLJIT_MSHL:
|
|
case SLJIT_LSHR:
|
|
case SLJIT_MLSHR:
|
|
case SLJIT_ASHR:
|
|
case SLJIT_MASHR:
|
|
case SLJIT_ROTL:
|
|
case SLJIT_ROTR:
|
|
if (src2 == SLJIT_IMM) {
|
|
if (op & SLJIT_32)
|
|
src2w &= 0x1f;
|
|
else
|
|
src2w &= 0x3f;
|
|
}
|
|
|
|
return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
|
|
}
|
|
|
|
SLJIT_UNREACHABLE();
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 src1, sljit_sw src1w,
|
|
sljit_s32 src2, sljit_sw src2w)
|
|
{
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_op2(compiler, op, 1, 0, 0, src1, src1w, src2, src2w));
|
|
|
|
SLJIT_SKIP_CHECKS(compiler);
|
|
return sljit_emit_op2(compiler, op, 0, 0, src1, src1w, src2, src2w);
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2r(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst_reg,
|
|
sljit_s32 src1, sljit_sw src1w,
|
|
sljit_s32 src2, sljit_sw src2w)
|
|
{
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_op2r(compiler, op, dst_reg, src1, src1w, src2, src2w));
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_MULADD:
|
|
SLJIT_SKIP_CHECKS(compiler);
|
|
FAIL_IF(sljit_emit_op2(compiler, SLJIT_MUL | (op & SLJIT_32), TMP_REG2, 0, src1, src1w, src2, src2w));
|
|
return push_inst(compiler, ADD_D | RD(dst_reg) | RJ(dst_reg) | RK(TMP_REG2));
|
|
}
|
|
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_shift_into(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst_reg,
|
|
sljit_s32 src1_reg,
|
|
sljit_s32 src2_reg,
|
|
sljit_s32 src3, sljit_sw src3w)
|
|
{
|
|
sljit_s32 is_left;
|
|
sljit_ins ins1, ins2, ins3;
|
|
sljit_s32 inp_flags = ((op & SLJIT_32) ? INT_DATA : WORD_DATA) | LOAD_DATA;
|
|
sljit_sw bit_length = (op & SLJIT_32) ? 32 : 64;
|
|
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_shift_into(compiler, op, dst_reg, src1_reg, src2_reg, src3, src3w));
|
|
|
|
is_left = (GET_OPCODE(op) == SLJIT_SHL || GET_OPCODE(op) == SLJIT_MSHL);
|
|
|
|
if (src1_reg == src2_reg) {
|
|
SLJIT_SKIP_CHECKS(compiler);
|
|
return sljit_emit_op2(compiler, (is_left ? SLJIT_ROTL : SLJIT_ROTR) | (op & SLJIT_32), dst_reg, 0, src1_reg, 0, src3, src3w);
|
|
}
|
|
|
|
ADJUST_LOCAL_OFFSET(src3, src3w);
|
|
|
|
if (src3 == SLJIT_IMM) {
|
|
src3w &= bit_length - 1;
|
|
|
|
if (src3w == 0)
|
|
return SLJIT_SUCCESS;
|
|
|
|
if (is_left) {
|
|
ins1 = INST(SLLI, op) | IMM_I12(src3w);
|
|
src3w = bit_length - src3w;
|
|
ins2 = INST(SRLI, op) | IMM_I12(src3w);
|
|
} else {
|
|
ins1 = INST(SRLI, op) | IMM_I12(src3w);
|
|
src3w = bit_length - src3w;
|
|
ins2 = INST(SLLI, op) | IMM_I12(src3w);
|
|
}
|
|
|
|
FAIL_IF(push_inst(compiler, ins1 | RD(dst_reg) | RJ(src1_reg)));
|
|
FAIL_IF(push_inst(compiler, ins2 | RD(TMP_REG1) | RJ(src2_reg)));
|
|
return push_inst(compiler, OR | RD(dst_reg) | RJ(dst_reg) | RK(TMP_REG1));
|
|
}
|
|
|
|
if (src3 & SLJIT_MEM) {
|
|
FAIL_IF(emit_op_mem(compiler, inp_flags, TMP_REG2, src3, src3w));
|
|
src3 = TMP_REG2;
|
|
} else if (dst_reg == src3) {
|
|
push_inst(compiler, INST(ADDI, op) | RD(TMP_REG2) | RJ(src3) | IMM_I12(0));
|
|
src3 = TMP_REG2;
|
|
}
|
|
|
|
if (is_left) {
|
|
ins1 = INST(SLL, op);
|
|
ins2 = INST(SRLI, op);
|
|
ins3 = INST(SRL, op);
|
|
} else {
|
|
ins1 = INST(SRL, op);
|
|
ins2 = INST(SLLI, op);
|
|
ins3 = INST(SLL, op);
|
|
}
|
|
|
|
FAIL_IF(push_inst(compiler, ins1 | RD(dst_reg) | RJ(src1_reg) | RK(src3)));
|
|
|
|
if (!(op & SLJIT_SHIFT_INTO_NON_ZERO)) {
|
|
FAIL_IF(push_inst(compiler, ins2 | RD(TMP_REG1) | RJ(src2_reg) | IMM_I12(1)));
|
|
FAIL_IF(push_inst(compiler, XORI | RD(TMP_REG2) | RJ(src3) | IMM_I12((sljit_ins)bit_length - 1)));
|
|
src2_reg = TMP_REG1;
|
|
} else
|
|
FAIL_IF(push_inst(compiler, INST(SUB, op) | RD(TMP_REG2) | RJ(TMP_ZERO) | RK(src3)));
|
|
|
|
FAIL_IF(push_inst(compiler, ins3 | RD(TMP_REG1) | RJ(src2_reg) | RK(TMP_REG2)));
|
|
return push_inst(compiler, OR | RD(dst_reg) | RJ(dst_reg) | RK(TMP_REG1));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
sljit_s32 base = src & REG_MASK;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_op_src(compiler, op, src, srcw));
|
|
ADJUST_LOCAL_OFFSET(src, srcw);
|
|
|
|
switch (op) {
|
|
case SLJIT_FAST_RETURN:
|
|
if (FAST_IS_REG(src))
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(RETURN_ADDR_REG) | RJ(src) | IMM_I12(0)));
|
|
else
|
|
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RETURN_ADDR_REG, src, srcw));
|
|
|
|
return push_inst(compiler, JIRL | RD(TMP_ZERO) | RJ(RETURN_ADDR_REG) | IMM_I12(0));
|
|
case SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN:
|
|
return SLJIT_SUCCESS;
|
|
case SLJIT_PREFETCH_L1:
|
|
case SLJIT_PREFETCH_L2:
|
|
case SLJIT_PREFETCH_L3:
|
|
case SLJIT_PREFETCH_ONCE:
|
|
if (SLJIT_UNLIKELY(src & OFFS_REG_MASK)) {
|
|
srcw &= 0x3;
|
|
if (SLJIT_UNLIKELY(srcw))
|
|
FAIL_IF(push_inst(compiler, SLLI_D | RD(TMP_REG1) | RJ(OFFS_REG(src)) | IMM_I12(srcw)));
|
|
FAIL_IF(push_inst(compiler, ADD_D | RD(TMP_REG1) | RJ(base) | RK(TMP_REG1)));
|
|
} else {
|
|
if (base && srcw <= I12_MAX && srcw >= I12_MIN)
|
|
return push_inst(compiler,PRELD | RJ(base) | IMM_I12(srcw));
|
|
|
|
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
|
|
if (base != 0)
|
|
FAIL_IF(push_inst(compiler, ADD_D | RD(TMP_REG1) | RJ(base) | RK(TMP_REG1)));
|
|
}
|
|
return push_inst(compiler, PRELD | RD(0) | RJ(TMP_REG1));
|
|
}
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_dst(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst, sljit_sw dstw)
|
|
{
|
|
sljit_s32 dst_r;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_op_dst(compiler, op, dst, dstw));
|
|
ADJUST_LOCAL_OFFSET(dst, dstw);
|
|
|
|
switch (op) {
|
|
case SLJIT_FAST_ENTER:
|
|
if (FAST_IS_REG(dst))
|
|
return push_inst(compiler, ADDI_D | RD(dst) | RJ(RETURN_ADDR_REG) | IMM_I12(0));
|
|
|
|
SLJIT_ASSERT(RETURN_ADDR_REG == TMP_REG2);
|
|
break;
|
|
case SLJIT_GET_RETURN_ADDRESS:
|
|
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2;
|
|
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, dst_r, SLJIT_MEM1(SLJIT_SP), compiler->local_size - SSIZE_OF(sw)));
|
|
break;
|
|
}
|
|
|
|
if (dst & SLJIT_MEM)
|
|
return emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw);
|
|
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 type, sljit_s32 reg)
|
|
{
|
|
CHECK_REG_INDEX(check_sljit_get_register_index(type, reg));
|
|
|
|
if (type == SLJIT_GP_REGISTER)
|
|
return reg_map[reg];
|
|
|
|
if (type != SLJIT_FLOAT_REGISTER && type != SLJIT_SIMD_REG_128 && type != SLJIT_SIMD_REG_256)
|
|
return -1;
|
|
|
|
return freg_map[reg];
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
|
|
void *instruction, sljit_u32 size)
|
|
{
|
|
SLJIT_UNUSED_ARG(size);
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
|
|
|
|
return push_inst(compiler, *(sljit_ins*)instruction);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
/* Floating point operators */
|
|
/* --------------------------------------------------------------------- */
|
|
#define SET_COND(cond) (sljit_ins)(cond << 15)
|
|
|
|
#define COND_CUN SET_COND(0x8) /* UN */
|
|
#define COND_CEQ SET_COND(0x4) /* EQ */
|
|
#define COND_CUEQ SET_COND(0xc) /* UN EQ */
|
|
#define COND_CLT SET_COND(0x2) /* LT */
|
|
#define COND_CULT SET_COND(0xa) /* UN LT */
|
|
#define COND_CLE SET_COND(0x6) /* LT EQ */
|
|
#define COND_CULE SET_COND(0xe) /* UN LT EQ */
|
|
#define COND_CNE SET_COND(0x10) /* GT LT */
|
|
#define COND_CUNE SET_COND(0x18) /* UN GT LT */
|
|
#define COND_COR SET_COND(0x14) /* GT LT EQ */
|
|
|
|
#define FINST(inst, type) (sljit_ins)((type & SLJIT_32) ? inst##_S : inst##_D)
|
|
#define FCD(cd) (sljit_ins)(cd & 0x7)
|
|
#define FCJ(cj) (sljit_ins)((cj & 0x7) << 5)
|
|
#define FCA(ca) (sljit_ins)((ca & 0x7) << 15)
|
|
#define F_OTHER_FLAG 1
|
|
|
|
#define FLOAT_DATA(op) (DOUBLE_DATA | ((op & SLJIT_32) >> 7))
|
|
|
|
/* convert to inter exact toward zero */
|
|
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst, sljit_sw dstw,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
sljit_ins inst;
|
|
sljit_u32 word_data = 0;
|
|
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2;
|
|
|
|
switch (GET_OPCODE(op))
|
|
{
|
|
case SLJIT_CONV_SW_FROM_F64:
|
|
word_data = 1;
|
|
inst = FINST(FTINTRZ_L, op);
|
|
break;
|
|
case SLJIT_CONV_S32_FROM_F64:
|
|
inst = FINST(FTINTRZ_W, op);
|
|
break;
|
|
default:
|
|
inst = BREAK;
|
|
SLJIT_UNREACHABLE();
|
|
}
|
|
|
|
if (src & SLJIT_MEM) {
|
|
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
|
|
src = TMP_FREG1;
|
|
}
|
|
|
|
FAIL_IF(push_inst(compiler, inst | FRD(TMP_FREG1) | FRJ(src)));
|
|
FAIL_IF(push_inst(compiler, FINST(MOVFR2GR, word_data) | RD(dst_r) | FRJ(TMP_FREG1)));
|
|
|
|
if (dst & SLJIT_MEM)
|
|
return emit_op_mem2(compiler, word_data ? WORD_DATA : INT_DATA, TMP_REG2, dst, dstw, 0, 0);
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_w(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst, sljit_sw dstw,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
sljit_ins inst;
|
|
sljit_u32 word_data = 0;
|
|
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
|
|
|
|
switch (GET_OPCODE(op))
|
|
{
|
|
case SLJIT_CONV_F64_FROM_SW:
|
|
word_data = 1;
|
|
inst = (sljit_ins)((op & SLJIT_32) ? FFINT_S_L : FFINT_D_L);
|
|
break;
|
|
case SLJIT_CONV_F64_FROM_S32:
|
|
inst = (sljit_ins)((op & SLJIT_32) ? FFINT_S_W : FFINT_D_W);
|
|
break;
|
|
default:
|
|
inst = BREAK;
|
|
SLJIT_UNREACHABLE();
|
|
}
|
|
|
|
if (src & SLJIT_MEM) {
|
|
FAIL_IF(emit_op_mem2(compiler, (word_data ? WORD_DATA : INT_DATA) | LOAD_DATA, TMP_REG1, src, srcw, dst, dstw));
|
|
src = TMP_REG1;
|
|
} else if (src == SLJIT_IMM) {
|
|
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_S32)
|
|
srcw = (sljit_s32)srcw;
|
|
|
|
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
|
|
src = TMP_REG1;
|
|
}
|
|
FAIL_IF(push_inst(compiler, (word_data ? MOVGR2FR_D : MOVGR2FR_W) | FRD(dst_r) | RJ(src)));
|
|
FAIL_IF(push_inst(compiler, inst | FRD(dst_r) | FRJ(dst_r)));
|
|
|
|
if (dst & SLJIT_MEM)
|
|
return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0);
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst, sljit_sw dstw,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
return sljit_emit_fop1_conv_f64_from_w(compiler, op, dst, dstw, src, srcw);
|
|
}
|
|
|
|
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_uw(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst, sljit_sw dstw,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
sljit_ins inst;
|
|
sljit_u32 word_data = 0;
|
|
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
|
|
|
|
switch (GET_OPCODE(op))
|
|
{
|
|
case SLJIT_CONV_F64_FROM_UW:
|
|
word_data = 1;
|
|
inst = (sljit_ins)((op & SLJIT_32) ? FFINT_S_L : FFINT_D_L);
|
|
break;
|
|
case SLJIT_CONV_F64_FROM_U32:
|
|
inst = (sljit_ins)((op & SLJIT_32) ? FFINT_S_W : FFINT_D_W);
|
|
break;
|
|
default:
|
|
inst = BREAK;
|
|
SLJIT_UNREACHABLE();
|
|
}
|
|
|
|
if (src & SLJIT_MEM) {
|
|
FAIL_IF(emit_op_mem2(compiler, (word_data ? WORD_DATA : INT_DATA) | LOAD_DATA, TMP_REG1, src, srcw, dst, dstw));
|
|
src = TMP_REG1;
|
|
} else if (src == SLJIT_IMM) {
|
|
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_U32)
|
|
srcw = (sljit_u32)srcw;
|
|
|
|
FAIL_IF(load_immediate(compiler, TMP_REG1, srcw));
|
|
src = TMP_REG1;
|
|
}
|
|
|
|
if (!word_data)
|
|
FAIL_IF(push_inst(compiler, SRLI_W | RD(src) | RJ(src) | IMM_I12(0)));
|
|
|
|
FAIL_IF(push_inst(compiler, BLT | RJ(src) | RD(TMP_ZERO) | IMM_I16(4)));
|
|
|
|
FAIL_IF(push_inst(compiler, (word_data ? MOVGR2FR_D : MOVGR2FR_W) | FRD(dst_r) | RJ(src)));
|
|
FAIL_IF(push_inst(compiler, inst | FRD(dst_r) | FRJ(dst_r)));
|
|
FAIL_IF(push_inst(compiler, B | IMM_I26(7)));
|
|
|
|
FAIL_IF(push_inst(compiler, ANDI | RD(TMP_REG2) | RJ(src) | IMM_I12(1)));
|
|
FAIL_IF(push_inst(compiler, (word_data ? SRLI_D : SRLI_W) | RD(TMP_REG1) | RJ(src) | IMM_I12(1)));
|
|
FAIL_IF(push_inst(compiler, OR | RD(TMP_REG1) | RJ(TMP_REG1) | RK(TMP_REG2)));
|
|
FAIL_IF(push_inst(compiler, INST(MOVGR2FR, (!word_data)) | FRD(dst_r) | RJ(TMP_REG1)));
|
|
FAIL_IF(push_inst(compiler, inst | FRD(dst_r) | FRJ(dst_r)));
|
|
FAIL_IF(push_inst(compiler, FINST(FADD, op) | FRD(dst_r) | FRJ(dst_r) | FRK(dst_r)));
|
|
|
|
if (dst & SLJIT_MEM)
|
|
return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0);
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 src1, sljit_sw src1w,
|
|
sljit_s32 src2, sljit_sw src2w)
|
|
{
|
|
if (src1 & SLJIT_MEM) {
|
|
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
|
|
src1 = TMP_FREG1;
|
|
}
|
|
|
|
if (src2 & SLJIT_MEM) {
|
|
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, 0, 0));
|
|
src2 = TMP_FREG2;
|
|
}
|
|
|
|
FAIL_IF(push_inst(compiler, XOR | RD(OTHER_FLAG) | RJ(OTHER_FLAG) | RK(OTHER_FLAG)));
|
|
|
|
switch (GET_FLAG_TYPE(op)) {
|
|
case SLJIT_F_EQUAL:
|
|
case SLJIT_ORDERED_EQUAL:
|
|
FAIL_IF(push_inst(compiler, FINST(FCMP_COND, op) | COND_CEQ | FCD(F_OTHER_FLAG) | FRJ(src1) | FRK(src2)));
|
|
break;
|
|
case SLJIT_F_LESS:
|
|
case SLJIT_ORDERED_LESS:
|
|
FAIL_IF(push_inst(compiler, FINST(FCMP_COND, op) | COND_CLT | FCD(F_OTHER_FLAG) | FRJ(src1) | FRK(src2)));
|
|
break;
|
|
case SLJIT_F_GREATER:
|
|
case SLJIT_ORDERED_GREATER:
|
|
FAIL_IF(push_inst(compiler, FINST(FCMP_COND, op) | COND_CLT | FCD(F_OTHER_FLAG) | FRJ(src2) | FRK(src1)));
|
|
break;
|
|
case SLJIT_UNORDERED_OR_GREATER:
|
|
FAIL_IF(push_inst(compiler, FINST(FCMP_COND, op) | COND_CULT | FCD(F_OTHER_FLAG) | FRJ(src2) | FRK(src1)));
|
|
break;
|
|
case SLJIT_UNORDERED_OR_LESS:
|
|
FAIL_IF(push_inst(compiler, FINST(FCMP_COND, op) | COND_CULT | FCD(F_OTHER_FLAG) | FRJ(src1) | FRK(src2)));
|
|
break;
|
|
case SLJIT_UNORDERED_OR_EQUAL:
|
|
FAIL_IF(push_inst(compiler, FINST(FCMP_COND, op) | COND_CUEQ | FCD(F_OTHER_FLAG) | FRJ(src1) | FRK(src2)));
|
|
break;
|
|
default: /* SLJIT_UNORDERED */
|
|
FAIL_IF(push_inst(compiler, FINST(FCMP_COND, op) | COND_CUN | FCD(F_OTHER_FLAG) | FRJ(src1) | FRK(src2)));
|
|
}
|
|
return push_inst(compiler, MOVCF2GR | RD(OTHER_FLAG) | FCJ(F_OTHER_FLAG));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst, sljit_sw dstw,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
sljit_s32 dst_r;
|
|
|
|
CHECK_ERROR();
|
|
compiler->cache_arg = 0;
|
|
compiler->cache_argw = 0;
|
|
|
|
SLJIT_COMPILE_ASSERT((SLJIT_32 == 0x100) && !(DOUBLE_DATA & 0x2), float_transfer_bit_error);
|
|
SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);
|
|
|
|
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_F32)
|
|
op ^= SLJIT_32;
|
|
|
|
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG1;
|
|
|
|
if (src & SLJIT_MEM) {
|
|
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, dst_r, src, srcw, dst, dstw));
|
|
src = dst_r;
|
|
}
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_MOV_F64:
|
|
if (src != dst_r) {
|
|
if (!(dst & SLJIT_MEM))
|
|
FAIL_IF(push_inst(compiler, FINST(FMOV, op) | FRD(dst_r) | FRJ(src)));
|
|
else
|
|
dst_r = src;
|
|
}
|
|
break;
|
|
case SLJIT_NEG_F64:
|
|
FAIL_IF(push_inst(compiler, FINST(FNEG, op) | FRD(dst_r) | FRJ(src)));
|
|
break;
|
|
case SLJIT_ABS_F64:
|
|
FAIL_IF(push_inst(compiler, FINST(FABS, op) | FRD(dst_r) | FRJ(src)));
|
|
break;
|
|
case SLJIT_CONV_F64_FROM_F32:
|
|
/* The SLJIT_32 bit is inverted because sljit_f32 needs to be loaded from the memory. */
|
|
FAIL_IF(push_inst(compiler, ((op & SLJIT_32) ? FCVT_D_S : FCVT_S_D) | FRD(dst_r) | FRJ(src)));
|
|
op ^= SLJIT_32;
|
|
break;
|
|
}
|
|
|
|
if (dst & SLJIT_MEM)
|
|
return emit_op_mem2(compiler, FLOAT_DATA(op), dst_r, dst, dstw, 0, 0);
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst, sljit_sw dstw,
|
|
sljit_s32 src1, sljit_sw src1w,
|
|
sljit_s32 src2, sljit_sw src2w)
|
|
{
|
|
sljit_s32 dst_r, flags = 0;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
|
|
ADJUST_LOCAL_OFFSET(dst, dstw);
|
|
ADJUST_LOCAL_OFFSET(src1, src1w);
|
|
ADJUST_LOCAL_OFFSET(src2, src2w);
|
|
|
|
compiler->cache_arg = 0;
|
|
compiler->cache_argw = 0;
|
|
|
|
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG2;
|
|
|
|
if (src1 & SLJIT_MEM) {
|
|
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w)) {
|
|
FAIL_IF(compiler->error);
|
|
src1 = TMP_FREG1;
|
|
} else
|
|
flags |= SLOW_SRC1;
|
|
}
|
|
|
|
if (src2 & SLJIT_MEM) {
|
|
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w)) {
|
|
FAIL_IF(compiler->error);
|
|
src2 = TMP_FREG2;
|
|
} else
|
|
flags |= SLOW_SRC2;
|
|
}
|
|
|
|
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
|
|
if ((dst & SLJIT_MEM) && !can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
|
|
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, src1, src1w));
|
|
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
|
|
} else {
|
|
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
|
|
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
|
|
}
|
|
}
|
|
else if (flags & SLOW_SRC1)
|
|
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
|
|
else if (flags & SLOW_SRC2)
|
|
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
|
|
|
|
if (flags & SLOW_SRC1)
|
|
src1 = TMP_FREG1;
|
|
if (flags & SLOW_SRC2)
|
|
src2 = TMP_FREG2;
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_ADD_F64:
|
|
FAIL_IF(push_inst(compiler, FINST(FADD, op) | FRD(dst_r) | FRJ(src1) | FRK(src2)));
|
|
break;
|
|
case SLJIT_SUB_F64:
|
|
FAIL_IF(push_inst(compiler, FINST(FSUB, op) | FRD(dst_r) | FRJ(src1) | FRK(src2)));
|
|
break;
|
|
case SLJIT_MUL_F64:
|
|
FAIL_IF(push_inst(compiler, FINST(FMUL, op) | FRD(dst_r) | FRJ(src1) | FRK(src2)));
|
|
break;
|
|
case SLJIT_DIV_F64:
|
|
FAIL_IF(push_inst(compiler, FINST(FDIV, op) | FRD(dst_r) | FRJ(src1) | FRK(src2)));
|
|
break;
|
|
}
|
|
|
|
if (dst_r != dst)
|
|
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG2, dst, dstw, 0, 0));
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2r(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst_freg,
|
|
sljit_s32 src1, sljit_sw src1w,
|
|
sljit_s32 src2, sljit_sw src2w)
|
|
{
|
|
sljit_s32 reg;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_fop2r(compiler, op, dst_freg, src1, src1w, src2, src2w));
|
|
ADJUST_LOCAL_OFFSET(src1, src1w);
|
|
ADJUST_LOCAL_OFFSET(src2, src2w);
|
|
|
|
if (src2 & SLJIT_MEM) {
|
|
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src2, src2w, 0, 0));
|
|
src2 = TMP_FREG1;
|
|
}
|
|
|
|
if (src1 & SLJIT_MEM) {
|
|
reg = (dst_freg == src2) ? TMP_FREG1 : dst_freg;
|
|
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, reg, src1, src1w, 0, 0));
|
|
src1 = reg;
|
|
}
|
|
|
|
return push_inst(compiler, FINST(FCOPYSIGN, op) | FRD(dst_freg) | FRJ(src1) | FRK(src2));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset32(struct sljit_compiler *compiler,
|
|
sljit_s32 freg, sljit_f32 value)
|
|
{
|
|
union {
|
|
sljit_s32 imm;
|
|
sljit_f32 value;
|
|
} u;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_fset32(compiler, freg, value));
|
|
|
|
u.value = value;
|
|
|
|
if (u.imm == 0)
|
|
return push_inst(compiler, MOVGR2FR_W | RJ(TMP_ZERO) | FRD(freg));
|
|
|
|
FAIL_IF(load_immediate(compiler, TMP_REG1, u.imm));
|
|
return push_inst(compiler, MOVGR2FR_W | RJ(TMP_REG1) | FRD(freg));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fset64(struct sljit_compiler *compiler,
|
|
sljit_s32 freg, sljit_f64 value)
|
|
{
|
|
union {
|
|
sljit_sw imm;
|
|
sljit_f64 value;
|
|
} u;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_fset64(compiler, freg, value));
|
|
|
|
u.value = value;
|
|
|
|
if (u.imm == 0)
|
|
return push_inst(compiler, MOVGR2FR_D | RJ(TMP_ZERO) | FRD(freg));
|
|
|
|
FAIL_IF(load_immediate(compiler, TMP_REG1, u.imm));
|
|
return push_inst(compiler, MOVGR2FR_D | RJ(TMP_REG1) | FRD(freg));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fcopy(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 freg, sljit_s32 reg)
|
|
{
|
|
sljit_ins inst;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_fcopy(compiler, op, freg, reg));
|
|
|
|
if (GET_OPCODE(op) == SLJIT_COPY_TO_F64)
|
|
inst = ((op & SLJIT_32) ? MOVGR2FR_W : MOVGR2FR_D) | FRD(freg) | RJ(reg);
|
|
else
|
|
inst = ((op & SLJIT_32) ? MOVFR2GR_S : MOVFR2GR_D) | RD(reg) | FRJ(freg);
|
|
return push_inst(compiler, inst);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------- */
|
|
/* Conditional instructions */
|
|
/* --------------------------------------------------------------------- */
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
|
|
{
|
|
struct sljit_label *label;
|
|
|
|
CHECK_ERROR_PTR();
|
|
CHECK_PTR(check_sljit_emit_label(compiler));
|
|
|
|
if (compiler->last_label && compiler->last_label->size == compiler->size)
|
|
return compiler->last_label;
|
|
|
|
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
|
|
PTR_FAIL_IF(!label);
|
|
set_label(label, compiler);
|
|
return label;
|
|
}
|
|
|
|
static sljit_ins get_jump_instruction(sljit_s32 type)
|
|
{
|
|
switch (type) {
|
|
case SLJIT_EQUAL:
|
|
return BNE | RJ(EQUAL_FLAG) | RD(TMP_ZERO);
|
|
case SLJIT_NOT_EQUAL:
|
|
return BEQ | RJ(EQUAL_FLAG) | RD(TMP_ZERO);
|
|
case SLJIT_LESS:
|
|
case SLJIT_GREATER:
|
|
case SLJIT_SIG_LESS:
|
|
case SLJIT_SIG_GREATER:
|
|
case SLJIT_OVERFLOW:
|
|
case SLJIT_CARRY:
|
|
case SLJIT_ATOMIC_STORED:
|
|
return BEQ | RJ(OTHER_FLAG) | RD(TMP_ZERO);
|
|
case SLJIT_GREATER_EQUAL:
|
|
case SLJIT_LESS_EQUAL:
|
|
case SLJIT_SIG_GREATER_EQUAL:
|
|
case SLJIT_SIG_LESS_EQUAL:
|
|
case SLJIT_NOT_OVERFLOW:
|
|
case SLJIT_NOT_CARRY:
|
|
case SLJIT_ATOMIC_NOT_STORED:
|
|
return BNE | RJ(OTHER_FLAG) | RD(TMP_ZERO);
|
|
case SLJIT_F_EQUAL:
|
|
case SLJIT_ORDERED_EQUAL:
|
|
case SLJIT_F_LESS:
|
|
case SLJIT_ORDERED_LESS:
|
|
case SLJIT_ORDERED_GREATER:
|
|
case SLJIT_UNORDERED_OR_GREATER:
|
|
case SLJIT_F_GREATER:
|
|
case SLJIT_UNORDERED_OR_LESS:
|
|
case SLJIT_UNORDERED_OR_EQUAL:
|
|
case SLJIT_UNORDERED:
|
|
return BEQ | RJ(OTHER_FLAG) | RD(TMP_ZERO);
|
|
case SLJIT_ORDERED_NOT_EQUAL:
|
|
case SLJIT_ORDERED_LESS_EQUAL:
|
|
case SLJIT_ORDERED_GREATER_EQUAL:
|
|
case SLJIT_F_NOT_EQUAL:
|
|
case SLJIT_UNORDERED_OR_NOT_EQUAL:
|
|
case SLJIT_UNORDERED_OR_GREATER_EQUAL:
|
|
case SLJIT_UNORDERED_OR_LESS_EQUAL:
|
|
case SLJIT_F_LESS_EQUAL:
|
|
case SLJIT_F_GREATER_EQUAL:
|
|
case SLJIT_ORDERED:
|
|
return BNE | RJ(OTHER_FLAG) | RD(TMP_ZERO);
|
|
default:
|
|
/* Not conditional branch. */
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
|
|
{
|
|
struct sljit_jump *jump;
|
|
sljit_ins inst;
|
|
|
|
CHECK_ERROR_PTR();
|
|
CHECK_PTR(check_sljit_emit_jump(compiler, type));
|
|
|
|
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
|
|
PTR_FAIL_IF(!jump);
|
|
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
|
|
type &= 0xff;
|
|
|
|
inst = get_jump_instruction(type);
|
|
|
|
if (inst != 0) {
|
|
PTR_FAIL_IF(push_inst(compiler, inst));
|
|
jump->flags |= IS_COND;
|
|
}
|
|
|
|
jump->addr = compiler->size;
|
|
inst = JIRL | RJ(TMP_REG1) | IMM_I16(0);
|
|
|
|
if (type >= SLJIT_FAST_CALL) {
|
|
jump->flags |= IS_CALL;
|
|
inst |= RD(RETURN_ADDR_REG);
|
|
}
|
|
|
|
PTR_FAIL_IF(push_inst(compiler, inst));
|
|
|
|
/* Maximum number of instructions required for generating a constant. */
|
|
compiler->size += JUMP_MAX_SIZE - 1;
|
|
return jump;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_call(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 arg_types)
|
|
{
|
|
SLJIT_UNUSED_ARG(arg_types);
|
|
CHECK_ERROR_PTR();
|
|
CHECK_PTR(check_sljit_emit_call(compiler, type, arg_types));
|
|
|
|
if (type & SLJIT_CALL_RETURN) {
|
|
PTR_FAIL_IF(emit_stack_frame_release(compiler, 0));
|
|
type = SLJIT_JUMP | (type & SLJIT_REWRITABLE_JUMP);
|
|
}
|
|
|
|
SLJIT_SKIP_CHECKS(compiler);
|
|
return sljit_emit_jump(compiler, type);
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 src1, sljit_sw src1w,
|
|
sljit_s32 src2, sljit_sw src2w)
|
|
{
|
|
struct sljit_jump *jump;
|
|
sljit_s32 flags;
|
|
sljit_ins inst;
|
|
sljit_s32 src2_tmp_reg = FAST_IS_REG(src1) ? TMP_REG1 : TMP_REG2;
|
|
|
|
CHECK_ERROR_PTR();
|
|
CHECK_PTR(check_sljit_emit_cmp(compiler, type, src1, src1w, src2, src2w));
|
|
ADJUST_LOCAL_OFFSET(src1, src1w);
|
|
ADJUST_LOCAL_OFFSET(src2, src2w);
|
|
|
|
compiler->cache_arg = 0;
|
|
compiler->cache_argw = 0;
|
|
|
|
flags = ((type & SLJIT_32) ? INT_DATA : WORD_DATA) | LOAD_DATA;
|
|
|
|
if (src1 & SLJIT_MEM) {
|
|
PTR_FAIL_IF(emit_op_mem2(compiler, flags, TMP_REG1, src1, src1w, src2, src2w));
|
|
src1 = TMP_REG1;
|
|
}
|
|
|
|
if (src2 & SLJIT_MEM) {
|
|
PTR_FAIL_IF(emit_op_mem2(compiler, flags, src2_tmp_reg, src2, src2w, 0, 0));
|
|
src2 = src2_tmp_reg;
|
|
}
|
|
|
|
if (src1 == SLJIT_IMM) {
|
|
if (src1w != 0) {
|
|
PTR_FAIL_IF(load_immediate(compiler, TMP_REG1, src1w));
|
|
src1 = TMP_REG1;
|
|
}
|
|
else
|
|
src1 = TMP_ZERO;
|
|
}
|
|
|
|
if (src2 == SLJIT_IMM) {
|
|
if (src2w != 0) {
|
|
PTR_FAIL_IF(load_immediate(compiler, src2_tmp_reg, src2w));
|
|
src2 = src2_tmp_reg;
|
|
}
|
|
else
|
|
src2 = TMP_ZERO;
|
|
}
|
|
|
|
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
|
|
PTR_FAIL_IF(!jump);
|
|
set_jump(jump, compiler, (sljit_u32)((type & SLJIT_REWRITABLE_JUMP) | IS_COND));
|
|
type &= 0xff;
|
|
|
|
switch (type) {
|
|
case SLJIT_EQUAL:
|
|
inst = BNE | RJ(src1) | RD(src2);
|
|
break;
|
|
case SLJIT_NOT_EQUAL:
|
|
inst = BEQ | RJ(src1) | RD(src2);
|
|
break;
|
|
case SLJIT_LESS:
|
|
inst = BGEU | RJ(src1) | RD(src2);
|
|
break;
|
|
case SLJIT_GREATER_EQUAL:
|
|
inst = BLTU | RJ(src1) | RD(src2);
|
|
break;
|
|
case SLJIT_GREATER:
|
|
inst = BGEU | RJ(src2) | RD(src1);
|
|
break;
|
|
case SLJIT_LESS_EQUAL:
|
|
inst = BLTU | RJ(src2) | RD(src1);
|
|
break;
|
|
case SLJIT_SIG_LESS:
|
|
inst = BGE | RJ(src1) | RD(src2);
|
|
break;
|
|
case SLJIT_SIG_GREATER_EQUAL:
|
|
inst = BLT | RJ(src1) | RD(src2);
|
|
break;
|
|
case SLJIT_SIG_GREATER:
|
|
inst = BGE | RJ(src2) | RD(src1);
|
|
break;
|
|
case SLJIT_SIG_LESS_EQUAL:
|
|
inst = BLT | RJ(src2) | RD(src1);
|
|
break;
|
|
default:
|
|
inst = BREAK;
|
|
SLJIT_UNREACHABLE();
|
|
}
|
|
|
|
PTR_FAIL_IF(push_inst(compiler, inst));
|
|
|
|
jump->addr = compiler->size;
|
|
PTR_FAIL_IF(push_inst(compiler, JIRL | RD(TMP_ZERO) | RJ(TMP_REG1) | IMM_I12(0)));
|
|
|
|
/* Maximum number of instructions required for generating a constant. */
|
|
compiler->size += JUMP_MAX_SIZE - 1;
|
|
|
|
return jump;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
struct sljit_jump *jump;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
|
|
|
|
if (src != SLJIT_IMM) {
|
|
if (src & SLJIT_MEM) {
|
|
ADJUST_LOCAL_OFFSET(src, srcw);
|
|
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, TMP_REG1, src, srcw));
|
|
src = TMP_REG1;
|
|
}
|
|
return push_inst(compiler, JIRL | RD((type >= SLJIT_FAST_CALL) ? RETURN_ADDR_REG : TMP_ZERO) | RJ(src) | IMM_I12(0));
|
|
}
|
|
|
|
/* These jumps are converted to jump/call instructions when possible. */
|
|
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
|
|
FAIL_IF(!jump);
|
|
set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_CALL : 0));
|
|
jump->u.target = (sljit_uw)srcw;
|
|
|
|
jump->addr = compiler->size;
|
|
FAIL_IF(push_inst(compiler, JIRL | RD((type >= SLJIT_FAST_CALL) ? RETURN_ADDR_REG : TMP_ZERO) | RJ(TMP_REG1) | IMM_I12(0)));
|
|
|
|
/* Maximum number of instructions required for generating a constant. */
|
|
compiler->size += JUMP_MAX_SIZE - 1;
|
|
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_icall(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 arg_types,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
SLJIT_UNUSED_ARG(arg_types);
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_icall(compiler, type, arg_types, src, srcw));
|
|
|
|
if (src & SLJIT_MEM) {
|
|
ADJUST_LOCAL_OFFSET(src, srcw);
|
|
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, TMP_REG1, src, srcw));
|
|
src = TMP_REG1;
|
|
}
|
|
|
|
if (type & SLJIT_CALL_RETURN) {
|
|
if (src >= SLJIT_FIRST_SAVED_REG && src <= (SLJIT_S0 - SLJIT_KEPT_SAVEDS_COUNT(compiler->options))) {
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(TMP_REG1) | RJ(src) | IMM_I12(0)));
|
|
src = TMP_REG1;
|
|
}
|
|
|
|
FAIL_IF(emit_stack_frame_release(compiler, 0));
|
|
type = SLJIT_JUMP;
|
|
}
|
|
|
|
SLJIT_SKIP_CHECKS(compiler);
|
|
return sljit_emit_ijump(compiler, type, src, srcw);
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
|
|
sljit_s32 dst, sljit_sw dstw,
|
|
sljit_s32 type)
|
|
{
|
|
sljit_s32 src_r, dst_r, invert;
|
|
sljit_s32 saved_op = op;
|
|
sljit_s32 mem_type = ((op & SLJIT_32) || op == SLJIT_MOV32) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type));
|
|
ADJUST_LOCAL_OFFSET(dst, dstw);
|
|
|
|
op = GET_OPCODE(op);
|
|
dst_r = (op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2;
|
|
|
|
compiler->cache_arg = 0;
|
|
compiler->cache_argw = 0;
|
|
|
|
if (op >= SLJIT_ADD && (dst & SLJIT_MEM))
|
|
FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, TMP_REG1, dst, dstw, dst, dstw));
|
|
|
|
if (type < SLJIT_F_EQUAL) {
|
|
src_r = OTHER_FLAG;
|
|
invert = type & 0x1;
|
|
|
|
switch (type) {
|
|
case SLJIT_EQUAL:
|
|
case SLJIT_NOT_EQUAL:
|
|
FAIL_IF(push_inst(compiler, SLTUI | RD(dst_r) | RJ(EQUAL_FLAG) | IMM_I12(1)));
|
|
src_r = dst_r;
|
|
break;
|
|
case SLJIT_ATOMIC_STORED:
|
|
case SLJIT_ATOMIC_NOT_STORED:
|
|
FAIL_IF(push_inst(compiler, SLTUI | RD(dst_r) | RJ(OTHER_FLAG) | IMM_I12(1)));
|
|
src_r = dst_r;
|
|
invert ^= 0x1;
|
|
break;
|
|
case SLJIT_OVERFLOW:
|
|
case SLJIT_NOT_OVERFLOW:
|
|
if (compiler->status_flags_state & (SLJIT_CURRENT_FLAGS_ADD | SLJIT_CURRENT_FLAGS_SUB)) {
|
|
src_r = OTHER_FLAG;
|
|
break;
|
|
}
|
|
FAIL_IF(push_inst(compiler, SLTUI | RD(dst_r) | RJ(OTHER_FLAG) | IMM_I12(1)));
|
|
src_r = dst_r;
|
|
invert ^= 0x1;
|
|
break;
|
|
}
|
|
} else {
|
|
invert = 0;
|
|
src_r = OTHER_FLAG;
|
|
|
|
switch (type) {
|
|
case SLJIT_ORDERED_NOT_EQUAL:
|
|
case SLJIT_ORDERED_LESS_EQUAL:
|
|
case SLJIT_ORDERED_GREATER_EQUAL:
|
|
case SLJIT_F_NOT_EQUAL:
|
|
case SLJIT_UNORDERED_OR_NOT_EQUAL:
|
|
case SLJIT_UNORDERED_OR_GREATER_EQUAL:
|
|
case SLJIT_UNORDERED_OR_LESS_EQUAL:
|
|
case SLJIT_F_LESS_EQUAL:
|
|
case SLJIT_F_GREATER_EQUAL:
|
|
case SLJIT_ORDERED:
|
|
invert = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (invert) {
|
|
FAIL_IF(push_inst(compiler, XORI | RD(dst_r) | RJ(src_r) | IMM_I12(1)));
|
|
src_r = dst_r;
|
|
}
|
|
|
|
if (op < SLJIT_ADD) {
|
|
if (dst & SLJIT_MEM)
|
|
return emit_op_mem(compiler, mem_type, src_r, dst, dstw);
|
|
|
|
if (src_r != dst_r)
|
|
return push_inst(compiler, ADDI_D | RD(dst_r) | RJ(src_r) | IMM_I12(0));
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
mem_type |= CUMULATIVE_OP | IMM_OP | ALT_KEEP_CACHE;
|
|
|
|
if (dst & SLJIT_MEM)
|
|
return emit_op(compiler, saved_op, mem_type, dst, dstw, TMP_REG1, 0, src_r, 0);
|
|
return emit_op(compiler, saved_op, mem_type, dst, dstw, dst, dstw, src_r, 0);
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_select(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 dst_reg,
|
|
sljit_s32 src1, sljit_sw src1w,
|
|
sljit_s32 src2_reg)
|
|
{
|
|
sljit_ins *ptr;
|
|
sljit_uw size;
|
|
sljit_s32 inp_flags = ((type & SLJIT_32) ? INT_DATA : WORD_DATA) | LOAD_DATA;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_select(compiler, type, dst_reg, src1, src1w, src2_reg));
|
|
ADJUST_LOCAL_OFFSET(src1, src1w);
|
|
|
|
if (dst_reg != src2_reg) {
|
|
if (dst_reg == src1) {
|
|
src1 = src2_reg;
|
|
src1w = 0;
|
|
type ^= 0x1;
|
|
} else {
|
|
if (ADDRESSING_DEPENDS_ON(src1, dst_reg)) {
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(TMP_REG1) | RJ(dst_reg) | IMM_I12(0)));
|
|
|
|
if ((src1 & REG_MASK) == dst_reg)
|
|
src1 = (src1 & ~REG_MASK) | TMP_REG1;
|
|
|
|
if (OFFS_REG(src1) == dst_reg)
|
|
src1 = (src1 & ~OFFS_REG_MASK) | TO_OFFS_REG(TMP_REG1);
|
|
}
|
|
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(dst_reg) | RJ(src2_reg) | IMM_I12(0)));
|
|
}
|
|
}
|
|
|
|
size = compiler->size;
|
|
|
|
ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
|
|
FAIL_IF(!ptr);
|
|
compiler->size++;
|
|
|
|
if (src1 & SLJIT_MEM) {
|
|
FAIL_IF(emit_op_mem(compiler, inp_flags, dst_reg, src1, src1w));
|
|
} else if (src1 == SLJIT_IMM) {
|
|
if (type & SLJIT_32)
|
|
src1w = (sljit_s32)src1w;
|
|
FAIL_IF(load_immediate(compiler, dst_reg, src1w));
|
|
} else
|
|
FAIL_IF(push_inst(compiler, ADDI_D | RD(dst_reg) | RJ(src1) | IMM_I12(0)));
|
|
|
|
*ptr = get_jump_instruction(type & ~SLJIT_32) | IMM_I16(compiler->size - size);
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fselect(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 dst_freg,
|
|
sljit_s32 src1, sljit_sw src1w,
|
|
sljit_s32 src2_freg)
|
|
{
|
|
sljit_s32 invert = 0;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_fselect(compiler, type, dst_freg, src1, src1w, src2_freg));
|
|
|
|
ADJUST_LOCAL_OFFSET(src1, src1w);
|
|
|
|
if ((type & ~SLJIT_32) == SLJIT_EQUAL || (type & ~SLJIT_32) == SLJIT_NOT_EQUAL) {
|
|
if ((type & ~SLJIT_32) == SLJIT_EQUAL)
|
|
invert = 1;
|
|
FAIL_IF(push_inst(compiler, MOVGR2CF | FCD(F_OTHER_FLAG) | RJ(EQUAL_FLAG)));
|
|
} else {
|
|
if (get_jump_instruction(type & ~SLJIT_32) == (BNE | RJ(OTHER_FLAG) | RD(TMP_ZERO)))
|
|
invert = 1;
|
|
FAIL_IF(push_inst(compiler, MOVGR2CF | FCD(F_OTHER_FLAG) | RJ(OTHER_FLAG)));
|
|
}
|
|
|
|
if (src1 & SLJIT_MEM) {
|
|
FAIL_IF(emit_op_mem(compiler, FLOAT_DATA(type) | LOAD_DATA, TMP_FREG2, src1, src1w));
|
|
if (invert)
|
|
return push_inst(compiler, FSEL | FRD(dst_freg) | FRJ(TMP_FREG2) | FRK(src2_freg) | FCA(F_OTHER_FLAG));
|
|
return push_inst(compiler, FSEL | FRD(dst_freg) | FRJ(src2_freg) | FRK(TMP_FREG2) | FCA(F_OTHER_FLAG));
|
|
} else {
|
|
if (invert)
|
|
return push_inst(compiler, FSEL | FRD(dst_freg) | FRJ(src1) | FRK(src2_freg) | FCA(F_OTHER_FLAG));
|
|
return push_inst(compiler, FSEL | FRD(dst_freg) | FRJ(src2_freg) | FRK(src1) | FCA(F_OTHER_FLAG));
|
|
}
|
|
}
|
|
|
|
#undef FLOAT_DATA
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_mem(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 reg,
|
|
sljit_s32 mem, sljit_sw memw)
|
|
{
|
|
sljit_s32 flags;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_mem(compiler, type, reg, mem, memw));
|
|
|
|
if (!(reg & REG_PAIR_MASK))
|
|
return sljit_emit_mem_unaligned(compiler, type, reg, mem, memw);
|
|
|
|
if (SLJIT_UNLIKELY(mem & OFFS_REG_MASK)) {
|
|
memw &= 0x3;
|
|
|
|
if (SLJIT_UNLIKELY(memw != 0)) {
|
|
FAIL_IF(push_inst(compiler, SLLI_D | RD(TMP_REG1) | RJ(OFFS_REG(mem)) | IMM_I12(memw)));
|
|
FAIL_IF(push_inst(compiler, ADD_D| RD(TMP_REG1) | RJ(TMP_REG1) | RK(mem & REG_MASK)));
|
|
} else
|
|
FAIL_IF(push_inst(compiler, ADD_D| RD(TMP_REG1) | RJ(mem & REG_MASK) | RK(OFFS_REG(mem))));
|
|
|
|
mem = TMP_REG1;
|
|
memw = 0;
|
|
} else if (memw > I12_MAX - SSIZE_OF(sw) || memw < I12_MIN) {
|
|
if (((memw + 0x800) & 0xfff) <= 0xfff - SSIZE_OF(sw)) {
|
|
FAIL_IF(load_immediate(compiler, TMP_REG1, TO_ARGW_HI(memw)));
|
|
memw &= 0xfff;
|
|
} else {
|
|
FAIL_IF(load_immediate(compiler, TMP_REG1, memw));
|
|
memw = 0;
|
|
}
|
|
|
|
if (mem & REG_MASK)
|
|
FAIL_IF(push_inst(compiler, ADD_D| RD(TMP_REG1) | RJ(TMP_REG1) | RK(mem & REG_MASK)));
|
|
|
|
mem = TMP_REG1;
|
|
} else {
|
|
mem &= REG_MASK;
|
|
memw &= 0xfff;
|
|
}
|
|
|
|
SLJIT_ASSERT((memw >= 0 && memw <= I12_MAX - SSIZE_OF(sw)) || (memw > I12_MAX && memw <= 0xfff));
|
|
|
|
if (!(type & SLJIT_MEM_STORE) && mem == REG_PAIR_FIRST(reg)) {
|
|
FAIL_IF(push_mem_inst(compiler, WORD_DATA | LOAD_DATA, REG_PAIR_SECOND(reg), SLJIT_MEM1(mem), (memw + SSIZE_OF(sw)) & 0xfff));
|
|
return push_mem_inst(compiler, WORD_DATA | LOAD_DATA, REG_PAIR_FIRST(reg), SLJIT_MEM1(mem), memw);
|
|
}
|
|
|
|
flags = WORD_DATA | (!(type & SLJIT_MEM_STORE) ? LOAD_DATA : 0);
|
|
|
|
FAIL_IF(push_mem_inst(compiler, flags, REG_PAIR_FIRST(reg), SLJIT_MEM1(mem), memw));
|
|
return push_mem_inst(compiler, flags, REG_PAIR_SECOND(reg), SLJIT_MEM1(mem), (memw + SSIZE_OF(sw)) & 0xfff);
|
|
}
|
|
|
|
#undef TO_ARGW_HI
|
|
|
|
static sljit_s32 sljit_emit_simd_mem_offset(struct sljit_compiler *compiler, sljit_s32 *mem_ptr, sljit_sw memw)
|
|
{
|
|
sljit_s32 mem = *mem_ptr;
|
|
|
|
if (SLJIT_UNLIKELY(mem & OFFS_REG_MASK)) {
|
|
*mem_ptr = TMP_REG3;
|
|
FAIL_IF(push_inst(compiler, SLLI_D | RD(TMP_REG3) | RJ(OFFS_REG(mem)) | IMM_I12(memw & 0x3)));
|
|
return push_inst(compiler, ADD_D | RD(TMP_REG3) | RJ(TMP_REG3) | RK(mem & REG_MASK));
|
|
}
|
|
|
|
if (!(mem & REG_MASK)) {
|
|
*mem_ptr = TMP_REG3;
|
|
return load_immediate(compiler, TMP_REG3, memw);
|
|
}
|
|
|
|
mem &= REG_MASK;
|
|
|
|
if (memw == 0) {
|
|
*mem_ptr = mem;
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
*mem_ptr = TMP_REG3;
|
|
|
|
FAIL_IF(load_immediate(compiler, TMP_REG3, memw));
|
|
return push_inst(compiler, ADD_D | RD(TMP_REG3) | RJ(TMP_REG3) | RK(mem));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_mov(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 vreg,
|
|
sljit_s32 srcdst, sljit_sw srcdstw)
|
|
{
|
|
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
|
|
sljit_ins ins = 0;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_simd_mov(compiler, type, vreg, srcdst, srcdstw));
|
|
|
|
ADJUST_LOCAL_OFFSET(srcdst, srcdstw);
|
|
|
|
if (reg_size != 5 && reg_size != 4)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (reg_size == 5 && !(get_cpu_features(GET_HWCAP) & LOONGARCH_HWCAP_LASX))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (type & SLJIT_SIMD_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
if (!(srcdst & SLJIT_MEM)) {
|
|
if (type & SLJIT_SIMD_STORE)
|
|
ins = FRD(srcdst) | FRJ(vreg) | FRK(vreg);
|
|
else
|
|
ins = FRD(vreg) | FRJ(srcdst) | FRK(srcdst);
|
|
|
|
if (reg_size == 5)
|
|
ins |= VOR_V | (sljit_ins)1 << 26;
|
|
else
|
|
ins |= VOR_V;
|
|
|
|
return push_inst(compiler, ins);
|
|
}
|
|
|
|
ins = (type & SLJIT_SIMD_STORE) ? VST : VLD;
|
|
|
|
if (reg_size == 5)
|
|
ins = (type & SLJIT_SIMD_STORE) ? XVST : XVLD;
|
|
|
|
if (FAST_IS_REG(srcdst) && srcdst >= 0 && (srcdstw >= I12_MIN && srcdstw <= I12_MAX))
|
|
return push_inst(compiler, ins | FRD(vreg) | RJ((sljit_u8)srcdst) | IMM_I12(srcdstw));
|
|
else {
|
|
FAIL_IF(sljit_emit_simd_mem_offset(compiler, &srcdst, srcdstw));
|
|
return push_inst(compiler, ins | FRD(vreg) | RJ(srcdst) | IMM_I12(0));
|
|
}
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_replicate(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 vreg,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
|
|
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
|
|
sljit_ins ins = 0;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_simd_replicate(compiler, type, vreg, src, srcw));
|
|
|
|
ADJUST_LOCAL_OFFSET(src, srcw);
|
|
|
|
if (reg_size != 5 && reg_size != 4)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (reg_size == 5 && !(get_cpu_features(GET_HWCAP) & LOONGARCH_HWCAP_LASX))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (type & SLJIT_SIMD_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
if (src & SLJIT_MEM) {
|
|
FAIL_IF(sljit_emit_simd_mem_offset(compiler, &src, srcw));
|
|
|
|
if (reg_size == 5)
|
|
ins = (sljit_ins)1 << 25;
|
|
|
|
return push_inst(compiler, VLDREPL | ins | FRD(vreg) | RJ(src) | (sljit_ins)1 << (23 - elem_size));
|
|
}
|
|
|
|
if (reg_size == 5)
|
|
ins = (sljit_ins)1 << 26;
|
|
|
|
if (type & SLJIT_SIMD_FLOAT) {
|
|
if (src == SLJIT_IMM)
|
|
return push_inst(compiler, VREPLGR2VR | ins | FRD(vreg) | RJ(TMP_ZERO) | (sljit_ins)elem_size << 10);
|
|
|
|
FAIL_IF(push_inst(compiler, VREPLVE | ins | FRD(vreg) | FRJ(src) | RK(TMP_ZERO) | (sljit_ins)elem_size << 15));
|
|
|
|
if (reg_size == 5) {
|
|
ins = (sljit_ins)(0x44 << 10);
|
|
return push_inst(compiler, XVPERMI | ins | FRD(vreg) | FRJ(vreg));
|
|
}
|
|
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
ins |= VREPLGR2VR | (sljit_ins)elem_size << 10;
|
|
|
|
if (src == SLJIT_IMM) {
|
|
FAIL_IF(load_immediate(compiler, TMP_REG2, srcw));
|
|
src = TMP_REG2;
|
|
}
|
|
|
|
return push_inst(compiler, ins | FRD(vreg) | RJ(src));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_mov(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 vreg, sljit_s32 lane_index,
|
|
sljit_s32 srcdst, sljit_sw srcdstw)
|
|
{
|
|
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
|
|
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
|
|
sljit_ins ins = 0;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_simd_lane_mov(compiler, type, vreg, lane_index, srcdst, srcdstw));
|
|
|
|
ADJUST_LOCAL_OFFSET(srcdst, srcdstw);
|
|
|
|
if (reg_size != 5 && reg_size != 4)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (reg_size == 5 && !(get_cpu_features(GET_HWCAP) & LOONGARCH_HWCAP_LASX))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (type & SLJIT_SIMD_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
if (type & SLJIT_SIMD_LANE_ZERO) {
|
|
ins = (reg_size == 5) ? ((sljit_ins)1 << 26) : 0;
|
|
|
|
if ((type & SLJIT_SIMD_FLOAT) && vreg == srcdst) {
|
|
FAIL_IF(push_inst(compiler, VOR_V | ins | FRD(TMP_FREG1) | FRJ(vreg) | FRK(vreg)));
|
|
srcdst = TMP_FREG1;
|
|
srcdstw = 0;
|
|
}
|
|
|
|
FAIL_IF(push_inst(compiler, VXOR_V | ins | FRD(vreg) | FRJ(vreg) | FRK(vreg)));
|
|
}
|
|
|
|
if (srcdst & SLJIT_MEM) {
|
|
FAIL_IF(sljit_emit_simd_mem_offset(compiler, &srcdst, srcdstw));
|
|
|
|
if (reg_size == 5)
|
|
ins = (sljit_ins)1 << 25;
|
|
|
|
if (type & SLJIT_SIMD_STORE) {
|
|
ins |= (sljit_ins)lane_index << 18 | (sljit_ins)(1 << (23 - elem_size));
|
|
return push_inst(compiler, VSTELM | ins | FRD(vreg) | RJ(srcdst));
|
|
} else {
|
|
emit_op_mem(compiler, (elem_size == 3 ? WORD_DATA : (elem_size == 2 ? INT_DATA : (elem_size == 1 ? HALF_DATA : BYTE_DATA))) | LOAD_DATA, TMP_REG1, srcdst | SLJIT_MEM, 0);
|
|
srcdst = TMP_REG1;
|
|
ins = (sljit_ins)(0x3f ^ (0x1f >> elem_size)) << 10;
|
|
|
|
if (reg_size == 5) {
|
|
if (elem_size < 2) {
|
|
FAIL_IF(push_inst(compiler, VOR_V | (sljit_ins)1 << 26 | FRD(TMP_FREG1) | FRJ(vreg) | FRK(vreg)));
|
|
if (lane_index >= (2 << (3 - elem_size))) {
|
|
FAIL_IF(push_inst(compiler, XVPERMI | (sljit_ins)1 << 18 | FRD(TMP_FREG1) | FRJ(vreg) | IMM_I8(1)));
|
|
FAIL_IF(push_inst(compiler, VINSGR2VR | ins | FRD(TMP_FREG1) | RJ(srcdst) | IMM_V(lane_index % (2 << (3 - elem_size)))));
|
|
return push_inst(compiler, XVPERMI | (sljit_ins)1 << 18 | FRD(vreg) | FRJ(TMP_FREG1) | IMM_I8(2));
|
|
} else {
|
|
FAIL_IF(push_inst(compiler, VINSGR2VR | ins | FRD(vreg) | RJ(srcdst) | IMM_V(lane_index)));
|
|
return push_inst(compiler, XVPERMI | (sljit_ins)1 << 18 | FRD(vreg) | FRJ(TMP_FREG1) | IMM_I8(18));
|
|
}
|
|
} else
|
|
ins = (sljit_ins)(0x3f ^ (0x3f >> elem_size)) << 10 | (sljit_ins)1 << 26;
|
|
}
|
|
|
|
return push_inst(compiler, VINSGR2VR | ins | FRD(vreg) | RJ(srcdst) | IMM_V(lane_index));
|
|
}
|
|
}
|
|
|
|
if (type & SLJIT_SIMD_FLOAT) {
|
|
ins = (reg_size == 5) ? (sljit_ins)(0x3f ^ (0x3f >> elem_size)) << 10 | (sljit_ins)1 << 26 : (sljit_ins)(0x3f ^ (0x1f >> elem_size)) << 10;
|
|
|
|
if (type & SLJIT_SIMD_STORE) {
|
|
FAIL_IF(push_inst(compiler, VPICKVE2GR_U | ins | RD(TMP_REG1) | FRJ(vreg) | IMM_V(lane_index)));
|
|
return push_inst(compiler, VINSGR2VR | ins | FRD(srcdst) | RJ(TMP_REG1) | IMM_V(0));
|
|
} else {
|
|
FAIL_IF(push_inst(compiler, VPICKVE2GR_U | ins | RD(TMP_REG1) | FRJ(srcdst) | IMM_V(0)));
|
|
return push_inst(compiler, VINSGR2VR | ins | FRD(vreg) | RJ(TMP_REG1) | IMM_V(lane_index));
|
|
}
|
|
}
|
|
|
|
if (srcdst == SLJIT_IMM) {
|
|
FAIL_IF(load_immediate(compiler, TMP_REG1, srcdstw));
|
|
srcdst = TMP_REG1;
|
|
}
|
|
|
|
if (type & SLJIT_SIMD_STORE) {
|
|
ins = (sljit_ins)(0x3f ^ (0x1f >> elem_size)) << 10;
|
|
|
|
if (type & SLJIT_SIMD_LANE_SIGNED)
|
|
ins |= (sljit_ins)(VPICKVE2GR_U ^ (0x7 << 18));
|
|
else
|
|
ins |= VPICKVE2GR_U;
|
|
|
|
if (reg_size == 5) {
|
|
if (elem_size < 2) {
|
|
if (lane_index >= (2 << (3 - elem_size))) {
|
|
if (type & SLJIT_SIMD_LANE_SIGNED)
|
|
ins |= (sljit_ins)(VPICKVE2GR_U ^ (0x7 << 18));
|
|
else
|
|
ins |= VPICKVE2GR_U;
|
|
|
|
FAIL_IF(push_inst(compiler, VOR_V | (sljit_ins)1 << 26 | FRD(TMP_FREG1) | FRJ(vreg) | FRK(vreg)));
|
|
FAIL_IF(push_inst(compiler, XVPERMI | (sljit_ins)1 << 18 | FRD(TMP_FREG1) | FRJ(vreg) | IMM_I8(1)));
|
|
return push_inst(compiler, ins | RD(srcdst) | FRJ(TMP_FREG1) | IMM_V(lane_index % (2 << (3 - elem_size))));
|
|
}
|
|
} else {
|
|
ins ^= (sljit_ins)1 << (15 - elem_size);
|
|
ins |= (sljit_ins)1 << 26;
|
|
}
|
|
}
|
|
|
|
return push_inst(compiler, ins | RD(srcdst) | FRJ(vreg) | IMM_V(lane_index));
|
|
} else {
|
|
ins = (sljit_ins)(0x3f ^ (0x1f >> elem_size)) << 10;
|
|
|
|
if (reg_size == 5) {
|
|
if (elem_size < 2) {
|
|
FAIL_IF(push_inst(compiler, VOR_V | (sljit_ins)1 << 26 | FRD(TMP_FREG1) | FRJ(vreg) | FRK(vreg)));
|
|
if (lane_index >= (2 << (3 - elem_size))) {
|
|
FAIL_IF(push_inst(compiler, XVPERMI | (sljit_ins)1 << 18 | FRD(TMP_FREG1) | FRJ(vreg) | IMM_I8(1)));
|
|
FAIL_IF(push_inst(compiler, VINSGR2VR | ins | FRD(TMP_FREG1) | RJ(srcdst) | IMM_V(lane_index % (2 << (3 - elem_size)))));
|
|
return push_inst(compiler, XVPERMI | (sljit_ins)1 << 18 | FRD(vreg) | FRJ(TMP_FREG1) | IMM_I8(2));
|
|
} else {
|
|
FAIL_IF(push_inst(compiler, VINSGR2VR | ins | FRD(vreg) | RJ(srcdst) | IMM_V(lane_index)));
|
|
return push_inst(compiler, XVPERMI | (sljit_ins)1 << 18 | FRD(vreg) | FRJ(TMP_FREG1) | IMM_I8(18));
|
|
}
|
|
} else
|
|
ins = (sljit_ins)(0x3f ^ (0x3f >> elem_size)) << 10 | (sljit_ins)1 << 26;
|
|
}
|
|
|
|
return push_inst(compiler, VINSGR2VR | ins | FRD(vreg) | RJ(srcdst) | IMM_V(lane_index));
|
|
}
|
|
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_replicate(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 vreg,
|
|
sljit_s32 src, sljit_s32 src_lane_index)
|
|
{
|
|
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
|
|
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
|
|
sljit_ins ins = 0;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_simd_lane_replicate(compiler, type, vreg, src, src_lane_index));
|
|
|
|
if (reg_size != 5 && reg_size != 4)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (reg_size == 5 && !(get_cpu_features(GET_HWCAP) & LOONGARCH_HWCAP_LASX))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (type & SLJIT_SIMD_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
ins = (sljit_ins)(0x3f ^ (0x1f >> elem_size)) << 10;
|
|
|
|
if (reg_size == 5) {
|
|
FAIL_IF(push_inst(compiler, VREPLVEI | (sljit_ins)1 << 26 | ins | FRD(vreg) | FRJ(src) | IMM_V(src_lane_index % (2 << (3 - elem_size)))));
|
|
|
|
ins = (src_lane_index < (2 << (3 - elem_size))) ? (sljit_ins)(0x44 << 10) : (sljit_ins)(0xee << 10);
|
|
|
|
return push_inst(compiler, XVPERMI | ins | FRD(vreg) | FRJ(vreg));
|
|
}
|
|
|
|
return push_inst(compiler, VREPLVEI | ins | FRD(vreg) | FRJ(src) | IMM_V(src_lane_index));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_extend(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 vreg,
|
|
sljit_s32 src, sljit_sw srcw)
|
|
{
|
|
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
|
|
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
|
|
sljit_s32 elem2_size = SLJIT_SIMD_GET_ELEM2_SIZE(type);
|
|
sljit_ins ins = 0;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_simd_extend(compiler, type, vreg, src, srcw));
|
|
|
|
ADJUST_LOCAL_OFFSET(src, srcw);
|
|
|
|
if (reg_size != 5 && reg_size != 4)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (reg_size == 5 && !(get_cpu_features(GET_HWCAP) & LOONGARCH_HWCAP_LASX))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (type & SLJIT_SIMD_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
if (src & SLJIT_MEM) {
|
|
ins = (type & SLJIT_SIMD_STORE) ? VST : VLD;
|
|
|
|
if (reg_size == 5)
|
|
ins = (type & SLJIT_SIMD_STORE) ? XVST : XVLD;
|
|
|
|
if (FAST_IS_REG(src) && src >= 0 && (srcw >= I12_MIN && srcw <= I12_MAX))
|
|
FAIL_IF(push_inst(compiler, ins | FRD(vreg) | RJ(src) | IMM_I12(srcw)));
|
|
else {
|
|
FAIL_IF(sljit_emit_simd_mem_offset(compiler, &src, srcw));
|
|
FAIL_IF(push_inst(compiler, ins | FRD(vreg) | RJ(src) | IMM_I12(0)));
|
|
}
|
|
src = vreg;
|
|
}
|
|
|
|
if (type & SLJIT_SIMD_FLOAT) {
|
|
if (elem_size != 2 || elem2_size != 3)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
ins = 0;
|
|
if (reg_size == 5) {
|
|
ins = (sljit_ins)1 << 26;
|
|
FAIL_IF(push_inst(compiler, XVPERMI | FRD(src) | FRJ(src) | IMM_I8(16)));
|
|
}
|
|
|
|
return push_inst(compiler, VFCVTL_D_S | ins | FRD(vreg) | FRJ(src));
|
|
}
|
|
|
|
ins = (type & SLJIT_SIMD_EXTEND_SIGNED) ? VSLLWIL : (VSLLWIL | (sljit_ins)1 << 18);
|
|
|
|
if (reg_size == 5)
|
|
ins |= (sljit_ins)1 << 26;
|
|
|
|
do {
|
|
if (reg_size == 5)
|
|
FAIL_IF(push_inst(compiler, XVPERMI | FRD(src) | FRJ(src) | IMM_I8(16)));
|
|
|
|
FAIL_IF(push_inst(compiler, ins | ((sljit_ins)1 << (13 + elem_size)) | FRD(vreg) | FRJ(src)));
|
|
src = vreg;
|
|
} while (++elem_size < elem2_size);
|
|
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_sign(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 vreg,
|
|
sljit_s32 dst, sljit_sw dstw)
|
|
{
|
|
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
|
|
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
|
|
sljit_ins ins = 0;
|
|
sljit_s32 dst_r;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_simd_sign(compiler, type, vreg, dst, dstw));
|
|
|
|
ADJUST_LOCAL_OFFSET(dst, dstw);
|
|
|
|
if (reg_size != 5 && reg_size != 4)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (reg_size == 5 && !(get_cpu_features(GET_HWCAP) & LOONGARCH_HWCAP_LASX))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (elem_size > 3 || ((type & SLJIT_SIMD_FLOAT) && elem_size < 2))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (type & SLJIT_SIMD_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2;
|
|
|
|
if (reg_size == 5)
|
|
ins = (sljit_ins)1 << 26;
|
|
|
|
FAIL_IF(push_inst(compiler, VMSKLTZ | ins | (sljit_ins)(elem_size << 10) | FRD(TMP_FREG1) | FRJ(vreg)));
|
|
|
|
FAIL_IF(push_inst(compiler, VPICKVE2GR_U | (sljit_ins)(0x3c << 10) | RD(dst_r) | FRJ(TMP_FREG1)));
|
|
|
|
if (reg_size == 5) {
|
|
FAIL_IF(push_inst(compiler, VPICKVE2GR_U | (sljit_ins)(0x38 << 10) | ins | RD(TMP_REG3) | FRJ(TMP_FREG1) | IMM_V(2)));
|
|
FAIL_IF(push_inst(compiler, SLLI_W | RD(TMP_REG3) | RJ(TMP_REG3) | IMM_I12(2 << (3 - elem_size))));
|
|
FAIL_IF(push_inst(compiler, OR | RD(dst_r) | RJ(dst_r) | RK(TMP_REG3)));
|
|
}
|
|
|
|
if (dst_r == TMP_REG2)
|
|
return emit_op_mem(compiler, ((type & SLJIT_32) ? INT_DATA : WORD_DATA), TMP_REG2, dst, dstw);
|
|
|
|
return SLJIT_SUCCESS;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_op2(struct sljit_compiler *compiler, sljit_s32 type,
|
|
sljit_s32 dst_vreg, sljit_s32 src1_vreg, sljit_s32 src2, sljit_sw src2w)
|
|
{
|
|
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
|
|
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
|
|
sljit_ins ins = 0;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_simd_op2(compiler, type, dst_vreg, src1_vreg, src2, src2w));
|
|
ADJUST_LOCAL_OFFSET(src2, src2w);
|
|
|
|
if (reg_size != 5 && reg_size != 4)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (reg_size == 5 && !(get_cpu_features(GET_HWCAP) & LOONGARCH_HWCAP_LASX))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3))
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
if (type & SLJIT_SIMD_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
if (src2 & SLJIT_MEM) {
|
|
FAIL_IF(sljit_emit_simd_mem_offset(compiler, &src2, src2w));
|
|
FAIL_IF(push_inst(compiler, (reg_size == 4 ? VLD : XVLD) | FRD(TMP_FREG1) | RJ(src2) | IMM_I12(0)));
|
|
src2 = TMP_FREG1;
|
|
}
|
|
|
|
switch (SLJIT_SIMD_GET_OPCODE(type)) {
|
|
case SLJIT_SIMD_OP2_AND:
|
|
ins = VAND_V;
|
|
break;
|
|
case SLJIT_SIMD_OP2_OR:
|
|
ins = VOR_V;
|
|
break;
|
|
case SLJIT_SIMD_OP2_XOR:
|
|
ins = VXOR_V;
|
|
break;
|
|
case SLJIT_SIMD_OP2_SHUFFLE:
|
|
if (reg_size != 4)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
return push_inst(compiler, VSHUF_B | FRD(dst_vreg) | FRJ(src1_vreg) | FRK(src1_vreg) | FRA(src2));
|
|
}
|
|
|
|
if (reg_size == 5)
|
|
ins |= (sljit_ins)1 << 26;
|
|
|
|
return push_inst(compiler, ins | FRD(dst_vreg) | FRJ(src1_vreg) | FRK(src2));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_load(struct sljit_compiler *compiler,
|
|
sljit_s32 op,
|
|
sljit_s32 dst_reg,
|
|
sljit_s32 mem_reg)
|
|
{
|
|
sljit_ins ins;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_atomic_load(compiler, op, dst_reg, mem_reg));
|
|
|
|
if ((op & SLJIT_ATOMIC_USE_LS) || !LOONGARCH_SUPPORT_AMCAS) {
|
|
if (op & SLJIT_ATOMIC_USE_CAS)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_MOV:
|
|
case SLJIT_MOV_P:
|
|
ins = LL_D;
|
|
break;
|
|
case SLJIT_MOV_S32:
|
|
case SLJIT_MOV32:
|
|
ins = LL_W;
|
|
break;
|
|
|
|
default:
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
}
|
|
|
|
if (op & SLJIT_ATOMIC_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
return push_inst(compiler, ins | RD(dst_reg) | RJ(mem_reg));
|
|
}
|
|
|
|
switch(GET_OPCODE(op)) {
|
|
case SLJIT_MOV_S8:
|
|
ins = LD_B;
|
|
break;
|
|
case SLJIT_MOV_U8:
|
|
ins = LD_BU;
|
|
break;
|
|
case SLJIT_MOV_S16:
|
|
ins = LD_H;
|
|
break;
|
|
case SLJIT_MOV_U16:
|
|
ins = LD_HU;
|
|
break;
|
|
case SLJIT_MOV32:
|
|
case SLJIT_MOV_S32:
|
|
ins = LD_W;
|
|
break;
|
|
case SLJIT_MOV_U32:
|
|
ins = LD_WU;
|
|
break;
|
|
default:
|
|
ins = LD_D;
|
|
break;
|
|
}
|
|
|
|
if (op & SLJIT_ATOMIC_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
return push_inst(compiler, ins | RD(dst_reg) | RJ(mem_reg) | IMM_I12(0));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_store(struct sljit_compiler *compiler,
|
|
sljit_s32 op,
|
|
sljit_s32 src_reg,
|
|
sljit_s32 mem_reg,
|
|
sljit_s32 temp_reg)
|
|
{
|
|
sljit_ins ins = 0;
|
|
sljit_ins unsign = 0;
|
|
sljit_s32 tmp = temp_reg;
|
|
|
|
CHECK_ERROR();
|
|
CHECK(check_sljit_emit_atomic_store(compiler, op, src_reg, mem_reg, temp_reg));
|
|
|
|
if ((op & SLJIT_ATOMIC_USE_LS) || !LOONGARCH_SUPPORT_AMCAS) {
|
|
if (op & SLJIT_ATOMIC_USE_CAS)
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_MOV:
|
|
case SLJIT_MOV_P:
|
|
ins = SC_D;
|
|
break;
|
|
case SLJIT_MOV_S32:
|
|
case SLJIT_MOV32:
|
|
ins = SC_W;
|
|
break;
|
|
|
|
default:
|
|
return SLJIT_ERR_UNSUPPORTED;
|
|
}
|
|
|
|
if (op & SLJIT_ATOMIC_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
FAIL_IF(push_inst(compiler, ADD_D | RD(OTHER_FLAG) | RJ(src_reg) | RK(TMP_ZERO)));
|
|
return push_inst(compiler, ins | RD(OTHER_FLAG) | RJ(mem_reg));
|
|
}
|
|
|
|
switch (GET_OPCODE(op)) {
|
|
case SLJIT_MOV_S8:
|
|
ins = AMCAS_B;
|
|
break;
|
|
case SLJIT_MOV_U8:
|
|
ins = AMCAS_B;
|
|
unsign = BSTRPICK_D | (7 << 16);
|
|
break;
|
|
case SLJIT_MOV_S16:
|
|
ins = AMCAS_H;
|
|
break;
|
|
case SLJIT_MOV_U16:
|
|
ins = AMCAS_H;
|
|
unsign = BSTRPICK_D | (15 << 16);
|
|
break;
|
|
case SLJIT_MOV32:
|
|
case SLJIT_MOV_S32:
|
|
ins = AMCAS_W;
|
|
break;
|
|
case SLJIT_MOV_U32:
|
|
ins = AMCAS_W;
|
|
unsign = BSTRPICK_D | (31 << 16);
|
|
break;
|
|
default:
|
|
ins = AMCAS_D;
|
|
break;
|
|
}
|
|
|
|
if (op & SLJIT_ATOMIC_TEST)
|
|
return SLJIT_SUCCESS;
|
|
|
|
if (op & SLJIT_SET_ATOMIC_STORED) {
|
|
FAIL_IF(push_inst(compiler, XOR | RD(TMP_REG3) | RJ(temp_reg) | RK(TMP_ZERO)));
|
|
tmp = TMP_REG3;
|
|
}
|
|
FAIL_IF(push_inst(compiler, ins | RD(tmp) | RJ(mem_reg) | RK(src_reg)));
|
|
if (!(op & SLJIT_SET_ATOMIC_STORED))
|
|
return SLJIT_SUCCESS;
|
|
|
|
if (unsign)
|
|
FAIL_IF(push_inst(compiler, unsign | RD(tmp) | RJ(tmp)));
|
|
|
|
FAIL_IF(push_inst(compiler, XOR | RD(OTHER_FLAG) | RJ(tmp) | RK(temp_reg)));
|
|
return push_inst(compiler, SLTUI | RD(OTHER_FLAG) | RJ(OTHER_FLAG) | IMM_I12(1));
|
|
}
|
|
|
|
static SLJIT_INLINE sljit_s32 emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw init_value, sljit_ins last_ins)
|
|
{
|
|
SLJIT_UNUSED_ARG(last_ins);
|
|
|
|
FAIL_IF(push_inst(compiler, LU12I_W | RD(dst) | (sljit_ins)(((init_value & 0xffffffff) >> 12) << 5)));
|
|
FAIL_IF(push_inst(compiler, LU32I_D | RD(dst) | (sljit_ins)(((init_value >> 32) & 0xfffff) << 5)));
|
|
FAIL_IF(push_inst(compiler, LU52I_D | RD(dst) | RJ(dst) | (sljit_ins)(IMM_I12(init_value >> 52))));
|
|
return push_inst(compiler, ORI | RD(dst) | RJ(dst) | IMM_I12(init_value));
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
|
|
{
|
|
sljit_ins *inst = (sljit_ins*)addr;
|
|
SLJIT_UNUSED_ARG(executable_offset);
|
|
|
|
SLJIT_UPDATE_WX_FLAGS(inst, inst + 4, 0);
|
|
|
|
SLJIT_ASSERT((inst[0] & OPC_1RI20(0x7f)) == LU12I_W);
|
|
inst[0] = (inst[0] & (OPC_1RI20(0x7f) | 0x1f)) | (sljit_ins)(((new_target & 0xffffffff) >> 12) << 5);
|
|
|
|
SLJIT_ASSERT((inst[1] & OPC_1RI20(0x7f)) == LU32I_D);
|
|
inst[1] = (inst[1] & (OPC_1RI20(0x7f) | 0x1f)) | (sljit_ins)(sljit_ins)(((new_target >> 32) & 0xfffff) << 5);
|
|
|
|
SLJIT_ASSERT((inst[2] & OPC_2RI12(0x3ff)) == LU52I_D);
|
|
inst[2] = (inst[2] & (OPC_2RI12(0x3ff) | 0x3ff)) | IMM_I12(new_target >> 52);
|
|
|
|
SLJIT_ASSERT((inst[3] & OPC_2RI12(0x3ff)) == ORI || (inst[3] & OPC_2RI16(0x3f)) == JIRL);
|
|
if ((inst[3] & OPC_2RI12(0x3ff)) == ORI)
|
|
inst[3] = (inst[3] & (OPC_2RI12(0x3ff) | 0x3ff)) | IMM_I12(new_target);
|
|
else
|
|
inst[3] = (inst[3] & (OPC_2RI16(0x3f) | 0x3ff)) | IMM_I12((new_target & 0xfff) >> 2);
|
|
|
|
SLJIT_UPDATE_WX_FLAGS(inst, inst + 4, 1);
|
|
|
|
inst = (sljit_ins *)SLJIT_ADD_EXEC_OFFSET(inst, executable_offset);
|
|
SLJIT_CACHE_FLUSH(inst, inst + 4);
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
|
|
{
|
|
struct sljit_const *const_;
|
|
sljit_s32 dst_r;
|
|
|
|
CHECK_ERROR_PTR();
|
|
CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
|
|
ADJUST_LOCAL_OFFSET(dst, dstw);
|
|
|
|
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
|
|
PTR_FAIL_IF(!const_);
|
|
set_const(const_, compiler);
|
|
|
|
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2;
|
|
PTR_FAIL_IF(emit_const(compiler, dst_r, init_value, 0));
|
|
|
|
if (dst & SLJIT_MEM)
|
|
PTR_FAIL_IF(emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw));
|
|
|
|
return const_;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_mov_addr(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
|
|
{
|
|
struct sljit_jump *jump;
|
|
sljit_s32 dst_r;
|
|
|
|
CHECK_ERROR_PTR();
|
|
CHECK_PTR(check_sljit_emit_mov_addr(compiler, dst, dstw));
|
|
ADJUST_LOCAL_OFFSET(dst, dstw);
|
|
|
|
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
|
|
PTR_FAIL_IF(!jump);
|
|
set_mov_addr(jump, compiler, 0);
|
|
|
|
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG2;
|
|
PTR_FAIL_IF(push_inst(compiler, (sljit_ins)dst_r));
|
|
|
|
compiler->size += JUMP_MAX_SIZE - 1;
|
|
|
|
if (dst & SLJIT_MEM)
|
|
PTR_FAIL_IF(emit_op_mem(compiler, WORD_DATA, TMP_REG2, dst, dstw));
|
|
|
|
return jump;
|
|
}
|
|
|
|
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset)
|
|
{
|
|
sljit_set_jump_addr(addr, (sljit_uw)new_constant, executable_offset);
|
|
}
|