godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/SliderConstraint.cpp

502 lines
18 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Constraints/SliderConstraint.h>
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
using namespace literals;
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SliderConstraintSettings)
{
JPH_ADD_BASE_CLASS(SliderConstraintSettings, TwoBodyConstraintSettings)
JPH_ADD_ENUM_ATTRIBUTE(SliderConstraintSettings, mSpace)
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mAutoDetectPoint)
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint1)
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis1)
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis1)
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mPoint2)
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mSliderAxis2)
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mNormalAxis2)
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMin)
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mLimitsMax)
JPH_ADD_ENUM_ATTRIBUTE_WITH_ALIAS(SliderConstraintSettings, mLimitsSpringSettings.mMode, "mSpringMode")
JPH_ADD_ATTRIBUTE_WITH_ALIAS(SliderConstraintSettings, mLimitsSpringSettings.mFrequency, "mFrequency") // Renaming attributes to stay compatible with old versions of the library
JPH_ADD_ATTRIBUTE_WITH_ALIAS(SliderConstraintSettings, mLimitsSpringSettings.mDamping, "mDamping")
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMaxFrictionForce)
JPH_ADD_ATTRIBUTE(SliderConstraintSettings, mMotorSettings)
}
void SliderConstraintSettings::SetSliderAxis(Vec3Arg inSliderAxis)
{
JPH_ASSERT(mSpace == EConstraintSpace::WorldSpace);
mSliderAxis1 = mSliderAxis2 = inSliderAxis;
mNormalAxis1 = mNormalAxis2 = inSliderAxis.GetNormalizedPerpendicular();
}
void SliderConstraintSettings::SaveBinaryState(StreamOut &inStream) const
{
ConstraintSettings::SaveBinaryState(inStream);
inStream.Write(mSpace);
inStream.Write(mAutoDetectPoint);
inStream.Write(mPoint1);
inStream.Write(mSliderAxis1);
inStream.Write(mNormalAxis1);
inStream.Write(mPoint2);
inStream.Write(mSliderAxis2);
inStream.Write(mNormalAxis2);
inStream.Write(mLimitsMin);
inStream.Write(mLimitsMax);
inStream.Write(mMaxFrictionForce);
mLimitsSpringSettings.SaveBinaryState(inStream);
mMotorSettings.SaveBinaryState(inStream);
}
void SliderConstraintSettings::RestoreBinaryState(StreamIn &inStream)
{
ConstraintSettings::RestoreBinaryState(inStream);
inStream.Read(mSpace);
inStream.Read(mAutoDetectPoint);
inStream.Read(mPoint1);
inStream.Read(mSliderAxis1);
inStream.Read(mNormalAxis1);
inStream.Read(mPoint2);
inStream.Read(mSliderAxis2);
inStream.Read(mNormalAxis2);
inStream.Read(mLimitsMin);
inStream.Read(mLimitsMax);
inStream.Read(mMaxFrictionForce);
mLimitsSpringSettings.RestoreBinaryState(inStream);
mMotorSettings.RestoreBinaryState(inStream);
}
TwoBodyConstraint *SliderConstraintSettings::Create(Body &inBody1, Body &inBody2) const
{
return new SliderConstraint(inBody1, inBody2, *this);
}
SliderConstraint::SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings) :
TwoBodyConstraint(inBody1, inBody2, inSettings),
mMaxFrictionForce(inSettings.mMaxFrictionForce),
mMotorSettings(inSettings.mMotorSettings)
{
// Store inverse of initial rotation from body 1 to body 2 in body 1 space
mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXY(inSettings.mSliderAxis1, inSettings.mNormalAxis1, inSettings.mSliderAxis2, inSettings.mNormalAxis2);
if (inSettings.mSpace == EConstraintSpace::WorldSpace)
{
RMat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
RMat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
if (inSettings.mAutoDetectPoint)
{
// Determine anchor point: If any of the bodies can never be dynamic use the other body as anchor point
RVec3 anchor;
if (!inBody1.CanBeKinematicOrDynamic())
anchor = inBody2.GetCenterOfMassPosition();
else if (!inBody2.CanBeKinematicOrDynamic())
anchor = inBody1.GetCenterOfMassPosition();
else
{
// Otherwise use weighted anchor point towards the lightest body
Real inv_m1 = Real(inBody1.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked());
Real inv_m2 = Real(inBody2.GetMotionPropertiesUnchecked()->GetInverseMassUnchecked());
Real total_inv_mass = inv_m1 + inv_m2;
if (total_inv_mass != 0.0_r)
anchor = (inv_m1 * inBody1.GetCenterOfMassPosition() + inv_m2 * inBody2.GetCenterOfMassPosition()) / total_inv_mass;
else
anchor = inBody1.GetCenterOfMassPosition();
}
// Store local positions
mLocalSpacePosition1 = Vec3(inv_transform1 * anchor);
mLocalSpacePosition2 = Vec3(inv_transform2 * anchor);
}
else
{
// Store local positions
mLocalSpacePosition1 = Vec3(inv_transform1 * inSettings.mPoint1);
mLocalSpacePosition2 = Vec3(inv_transform2 * inSettings.mPoint2);
}
// If all properties were specified in world space, take them to local space now
mLocalSpaceSliderAxis1 = inv_transform1.Multiply3x3(inSettings.mSliderAxis1).Normalized();
mLocalSpaceNormal1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
// Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
// => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
}
else
{
// Store local positions
mLocalSpacePosition1 = Vec3(inSettings.mPoint1);
mLocalSpacePosition2 = Vec3(inSettings.mPoint2);
// Store local space axis
mLocalSpaceSliderAxis1 = inSettings.mSliderAxis1;
mLocalSpaceNormal1 = inSettings.mNormalAxis1;
}
// Calculate 2nd local space normal
mLocalSpaceNormal2 = mLocalSpaceSliderAxis1.Cross(mLocalSpaceNormal1);
// Store limits
JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax || inSettings.mLimitsSpringSettings.mFrequency > 0.0f, "Better use a fixed constraint");
SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
// Store spring settings
SetLimitsSpringSettings(inSettings.mLimitsSpringSettings);
}
void SliderConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
{
if (mBody1->GetID() == inBodyID)
mLocalSpacePosition1 -= inDeltaCOM;
else if (mBody2->GetID() == inBodyID)
mLocalSpacePosition2 -= inDeltaCOM;
}
float SliderConstraint::GetCurrentPosition() const
{
// See: CalculateR1R2U and CalculateSlidingAxisAndPosition
Vec3 r1 = mBody1->GetRotation() * mLocalSpacePosition1;
Vec3 r2 = mBody2->GetRotation() * mLocalSpacePosition2;
Vec3 u = Vec3(mBody2->GetCenterOfMassPosition() - mBody1->GetCenterOfMassPosition()) + r2 - r1;
return u.Dot(mBody1->GetRotation() * mLocalSpaceSliderAxis1);
}
void SliderConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
{
JPH_ASSERT(inLimitsMin <= 0.0f);
JPH_ASSERT(inLimitsMax >= 0.0f);
mLimitsMin = inLimitsMin;
mLimitsMax = inLimitsMax;
mHasLimits = mLimitsMin != -FLT_MAX || mLimitsMax != FLT_MAX;
}
void SliderConstraint::CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2)
{
// Calculate points relative to body
mR1 = inRotation1 * mLocalSpacePosition1;
mR2 = inRotation2 * mLocalSpacePosition2;
// Calculate X2 + R2 - X1 - R1
mU = Vec3(mBody2->GetCenterOfMassPosition() - mBody1->GetCenterOfMassPosition()) + mR2 - mR1;
}
void SliderConstraint::CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
{
// Calculate world space normals
mN1 = inRotation1 * mLocalSpaceNormal1;
mN2 = inRotation1 * mLocalSpaceNormal2;
mPositionConstraintPart.CalculateConstraintProperties(*mBody1, inRotation1, mR1 + mU, *mBody2, inRotation2, mR2, mN1, mN2);
}
void SliderConstraint::CalculateSlidingAxisAndPosition(Mat44Arg inRotation1)
{
if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionForce > 0.0f)
{
// Calculate world space slider axis
mWorldSpaceSliderAxis = inRotation1 * mLocalSpaceSliderAxis1;
// Calculate slide distance along axis
mD = mU.Dot(mWorldSpaceSliderAxis);
}
}
void SliderConstraint::CalculatePositionLimitsConstraintProperties(float inDeltaTime)
{
// Check if distance is within limits
bool below_min = mD <= mLimitsMin;
if (mHasLimits && (below_min || mD >= mLimitsMax))
mPositionLimitsConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - (below_min? mLimitsMin : mLimitsMax), mLimitsSpringSettings);
else
mPositionLimitsConstraintPart.Deactivate();
}
void SliderConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
{
switch (mMotorState)
{
case EMotorState::Off:
if (mMaxFrictionForce > 0.0f)
mMotorConstraintPart.CalculateConstraintProperties(*mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis);
else
mMotorConstraintPart.Deactivate();
break;
case EMotorState::Velocity:
mMotorConstraintPart.CalculateConstraintProperties(*mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, -mTargetVelocity);
break;
case EMotorState::Position:
if (mMotorSettings.mSpringSettings.HasStiffness())
mMotorConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, mR1 + mU, *mBody2, mR2, mWorldSpaceSliderAxis, 0.0f, mD - mTargetPosition, mMotorSettings.mSpringSettings);
else
mMotorConstraintPart.Deactivate();
break;
}
}
void SliderConstraint::SetupVelocityConstraint(float inDeltaTime)
{
// Calculate constraint properties that are constant while bodies don't move
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
CalculateR1R2U(rotation1, rotation2);
CalculatePositionConstraintProperties(rotation1, rotation2);
mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, *mBody2, rotation2);
CalculateSlidingAxisAndPosition(rotation1);
CalculatePositionLimitsConstraintProperties(inDeltaTime);
CalculateMotorConstraintProperties(inDeltaTime);
}
void SliderConstraint::ResetWarmStart()
{
mMotorConstraintPart.Deactivate();
mPositionConstraintPart.Deactivate();
mRotationConstraintPart.Deactivate();
mPositionLimitsConstraintPart.Deactivate();
}
void SliderConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
{
// Warm starting: Apply previous frame impulse
mMotorConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
mPositionConstraintPart.WarmStart(*mBody1, *mBody2, mN1, mN2, inWarmStartImpulseRatio);
mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
mPositionLimitsConstraintPart.WarmStart(*mBody1, *mBody2, mWorldSpaceSliderAxis, inWarmStartImpulseRatio);
}
bool SliderConstraint::SolveVelocityConstraint(float inDeltaTime)
{
// Solve motor
bool motor = false;
if (mMotorConstraintPart.IsActive())
{
switch (mMotorState)
{
case EMotorState::Off:
{
float max_lambda = mMaxFrictionForce * inDeltaTime;
motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, -max_lambda, max_lambda);
break;
}
case EMotorState::Velocity:
case EMotorState::Position:
motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, inDeltaTime * mMotorSettings.mMinForceLimit, inDeltaTime * mMotorSettings.mMaxForceLimit);
break;
}
}
// Solve position constraint along 2 axis
bool pos = mPositionConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mN1, mN2);
// Solve rotation constraint
bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
// Solve limits along slider axis
bool limit = false;
if (mPositionLimitsConstraintPart.IsActive())
{
float min_lambda, max_lambda;
if (mLimitsMin == mLimitsMax)
{
min_lambda = -FLT_MAX;
max_lambda = FLT_MAX;
}
else if (mD <= mLimitsMin)
{
min_lambda = 0.0f;
max_lambda = FLT_MAX;
}
else
{
min_lambda = -FLT_MAX;
max_lambda = 0.0f;
}
limit = mPositionLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, min_lambda, max_lambda);
}
return motor || pos || rot || limit;
}
bool SliderConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
{
// Motor operates on velocities only, don't call SolvePositionConstraint
// Solve position constraint along 2 axis
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
CalculateR1R2U(rotation1, rotation2);
CalculatePositionConstraintProperties(rotation1, rotation2);
bool pos = mPositionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mU, mN1, mN2, inBaumgarte);
// Solve rotation constraint
mRotationConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), *mBody2, Mat44::sRotation(mBody2->GetRotation()));
bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mInvInitialOrientation, inBaumgarte);
// Solve limits along slider axis
bool limit = false;
if (mHasLimits && mLimitsSpringSettings.mFrequency <= 0.0f)
{
rotation1 = Mat44::sRotation(mBody1->GetRotation());
rotation2 = Mat44::sRotation(mBody2->GetRotation());
CalculateR1R2U(rotation1, rotation2);
CalculateSlidingAxisAndPosition(rotation1);
CalculatePositionLimitsConstraintProperties(inDeltaTime);
if (mPositionLimitsConstraintPart.IsActive())
{
if (mD <= mLimitsMin)
limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMin, inBaumgarte);
else
{
JPH_ASSERT(mD >= mLimitsMax);
limit = mPositionLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, mWorldSpaceSliderAxis, mD - mLimitsMax, inBaumgarte);
}
}
}
return pos || rot || limit;
}
#ifdef JPH_DEBUG_RENDERER
void SliderConstraint::DrawConstraint(DebugRenderer *inRenderer) const
{
RMat44 transform1 = mBody1->GetCenterOfMassTransform();
RMat44 transform2 = mBody2->GetCenterOfMassTransform();
// Transform the local positions into world space
Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
RVec3 position1 = transform1 * mLocalSpacePosition1;
RVec3 position2 = transform2 * mLocalSpacePosition2;
// Draw constraint
inRenderer->DrawMarker(position1, Color::sRed, 0.1f);
inRenderer->DrawMarker(position2, Color::sGreen, 0.1f);
inRenderer->DrawLine(position1, position2, Color::sGreen);
// Draw motor
switch (mMotorState)
{
case EMotorState::Position:
inRenderer->DrawMarker(position1 + mTargetPosition * slider_axis, Color::sYellow, 1.0f);
break;
case EMotorState::Velocity:
{
Vec3 cur_vel = (mBody2->GetLinearVelocity() - mBody1->GetLinearVelocity()).Dot(slider_axis) * slider_axis;
inRenderer->DrawLine(position2, position2 + cur_vel, Color::sBlue);
inRenderer->DrawArrow(position2 + cur_vel, position2 + mTargetVelocity * slider_axis, Color::sRed, 0.1f);
break;
}
case EMotorState::Off:
break;
}
}
void SliderConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
{
if (mHasLimits)
{
RMat44 transform1 = mBody1->GetCenterOfMassTransform();
RMat44 transform2 = mBody2->GetCenterOfMassTransform();
// Transform the local positions into world space
Vec3 slider_axis = transform1.Multiply3x3(mLocalSpaceSliderAxis1);
RVec3 position1 = transform1 * mLocalSpacePosition1;
RVec3 position2 = transform2 * mLocalSpacePosition2;
// Calculate the limits in world space
RVec3 limits_min = position1 + mLimitsMin * slider_axis;
RVec3 limits_max = position1 + mLimitsMax * slider_axis;
inRenderer->DrawLine(limits_min, position1, Color::sWhite);
inRenderer->DrawLine(position2, limits_max, Color::sWhite);
inRenderer->DrawMarker(limits_min, Color::sWhite, 0.1f);
inRenderer->DrawMarker(limits_max, Color::sWhite, 0.1f);
}
}
#endif // JPH_DEBUG_RENDERER
void SliderConstraint::SaveState(StateRecorder &inStream) const
{
TwoBodyConstraint::SaveState(inStream);
mMotorConstraintPart.SaveState(inStream);
mPositionConstraintPart.SaveState(inStream);
mRotationConstraintPart.SaveState(inStream);
mPositionLimitsConstraintPart.SaveState(inStream);
inStream.Write(mMotorState);
inStream.Write(mTargetVelocity);
inStream.Write(mTargetPosition);
}
void SliderConstraint::RestoreState(StateRecorder &inStream)
{
TwoBodyConstraint::RestoreState(inStream);
mMotorConstraintPart.RestoreState(inStream);
mPositionConstraintPart.RestoreState(inStream);
mRotationConstraintPart.RestoreState(inStream);
mPositionLimitsConstraintPart.RestoreState(inStream);
inStream.Read(mMotorState);
inStream.Read(mTargetVelocity);
inStream.Read(mTargetPosition);
}
Ref<ConstraintSettings> SliderConstraint::GetConstraintSettings() const
{
SliderConstraintSettings *settings = new SliderConstraintSettings;
ToConstraintSettings(*settings);
settings->mSpace = EConstraintSpace::LocalToBodyCOM;
settings->mPoint1 = RVec3(mLocalSpacePosition1);
settings->mSliderAxis1 = mLocalSpaceSliderAxis1;
settings->mNormalAxis1 = mLocalSpaceNormal1;
settings->mPoint2 = RVec3(mLocalSpacePosition2);
Mat44 inv_initial_rotation = Mat44::sRotation(mInvInitialOrientation);
settings->mSliderAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceSliderAxis1);
settings->mNormalAxis2 = inv_initial_rotation.Multiply3x3(mLocalSpaceNormal1);
settings->mLimitsMin = mLimitsMin;
settings->mLimitsMax = mLimitsMax;
settings->mLimitsSpringSettings = mLimitsSpringSettings;
settings->mMaxFrictionForce = mMaxFrictionForce;
settings->mMotorSettings = mMotorSettings;
return settings;
}
Mat44 SliderConstraint::GetConstraintToBody1Matrix() const
{
return Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(mLocalSpacePosition1, 1));
}
Mat44 SliderConstraint::GetConstraintToBody2Matrix() const
{
Mat44 mat = Mat44::sRotation(mInvInitialOrientation).Multiply3x3(Mat44(Vec4(mLocalSpaceSliderAxis1, 0), Vec4(mLocalSpaceNormal1, 0), Vec4(mLocalSpaceNormal2, 0), Vec4(0, 0, 0, 1)));
mat.SetTranslation(mLocalSpacePosition2);
return mat;
}
JPH_NAMESPACE_END