godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/Shape/SphereShape.cpp
2025-04-12 18:40:44 +02:00

348 lines
11 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Collision/Shape/SphereShape.h>
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
#include <Jolt/Physics/Collision/Shape/GetTrianglesContext.h>
#include <Jolt/Physics/Collision/RayCast.h>
#include <Jolt/Physics/Collision/CastResult.h>
#include <Jolt/Physics/Collision/CollidePointResult.h>
#include <Jolt/Physics/Collision/TransformedShape.h>
#include <Jolt/Physics/Collision/CollideSoftBodyVertexIterator.h>
#include <Jolt/Geometry/RaySphere.h>
#include <Jolt/Geometry/Plane.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SphereShapeSettings)
{
JPH_ADD_BASE_CLASS(SphereShapeSettings, ConvexShapeSettings)
JPH_ADD_ATTRIBUTE(SphereShapeSettings, mRadius)
}
ShapeSettings::ShapeResult SphereShapeSettings::Create() const
{
if (mCachedResult.IsEmpty())
Ref<Shape> shape = new SphereShape(*this, mCachedResult);
return mCachedResult;
}
SphereShape::SphereShape(const SphereShapeSettings &inSettings, ShapeResult &outResult) :
ConvexShape(EShapeSubType::Sphere, inSettings, outResult),
mRadius(inSettings.mRadius)
{
if (inSettings.mRadius <= 0.0f)
{
outResult.SetError("Invalid radius");
return;
}
outResult.Set(this);
}
float SphereShape::GetScaledRadius(Vec3Arg inScale) const
{
JPH_ASSERT(IsValidScale(inScale));
Vec3 abs_scale = inScale.Abs();
return abs_scale.GetX() * mRadius;
}
AABox SphereShape::GetLocalBounds() const
{
Vec3 half_extent = Vec3::sReplicate(mRadius);
return AABox(-half_extent, half_extent);
}
AABox SphereShape::GetWorldSpaceBounds(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
{
float scaled_radius = GetScaledRadius(inScale);
Vec3 half_extent = Vec3::sReplicate(scaled_radius);
AABox bounds(-half_extent, half_extent);
bounds.Translate(inCenterOfMassTransform.GetTranslation());
return bounds;
}
class SphereShape::SphereNoConvex final : public Support
{
public:
explicit SphereNoConvex(float inRadius) :
mRadius(inRadius)
{
static_assert(sizeof(SphereNoConvex) <= sizeof(SupportBuffer), "Buffer size too small");
JPH_ASSERT(IsAligned(this, alignof(SphereNoConvex)));
}
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
{
return Vec3::sZero();
}
virtual float GetConvexRadius() const override
{
return mRadius;
}
private:
float mRadius;
};
class SphereShape::SphereWithConvex final : public Support
{
public:
explicit SphereWithConvex(float inRadius) :
mRadius(inRadius)
{
static_assert(sizeof(SphereWithConvex) <= sizeof(SupportBuffer), "Buffer size too small");
JPH_ASSERT(IsAligned(this, alignof(SphereWithConvex)));
}
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
{
float len = inDirection.Length();
return len > 0.0f? (mRadius / len) * inDirection : Vec3::sZero();
}
virtual float GetConvexRadius() const override
{
return 0.0f;
}
private:
float mRadius;
};
const ConvexShape::Support *SphereShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const
{
float scaled_radius = GetScaledRadius(inScale);
switch (inMode)
{
case ESupportMode::IncludeConvexRadius:
return new (&inBuffer) SphereWithConvex(scaled_radius);
case ESupportMode::ExcludeConvexRadius:
case ESupportMode::Default:
return new (&inBuffer) SphereNoConvex(scaled_radius);
}
JPH_ASSERT(false);
return nullptr;
}
MassProperties SphereShape::GetMassProperties() const
{
MassProperties p;
// Calculate mass
float r2 = mRadius * mRadius;
p.mMass = (4.0f / 3.0f * JPH_PI) * mRadius * r2 * GetDensity();
// Calculate inertia
float inertia = (2.0f / 5.0f) * p.mMass * r2;
p.mInertia = Mat44::sScale(inertia);
return p;
}
Vec3 SphereShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const
{
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
float len = inLocalSurfacePosition.Length();
return len != 0.0f? inLocalSurfacePosition / len : Vec3::sAxisY();
}
void SphereShape::GetSubmergedVolume(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const Plane &inSurface, float &outTotalVolume, float &outSubmergedVolume, Vec3 &outCenterOfBuoyancy JPH_IF_DEBUG_RENDERER(, RVec3Arg inBaseOffset)) const
{
float scaled_radius = GetScaledRadius(inScale);
outTotalVolume = (4.0f / 3.0f * JPH_PI) * Cubed(scaled_radius);
float distance_to_surface = inSurface.SignedDistance(inCenterOfMassTransform.GetTranslation());
if (distance_to_surface >= scaled_radius)
{
// Above surface
outSubmergedVolume = 0.0f;
outCenterOfBuoyancy = Vec3::sZero();
}
else if (distance_to_surface <= -scaled_radius)
{
// Under surface
outSubmergedVolume = outTotalVolume;
outCenterOfBuoyancy = inCenterOfMassTransform.GetTranslation();
}
else
{
// Intersecting surface
// Calculate submerged volume, see: https://en.wikipedia.org/wiki/Spherical_cap
float h = scaled_radius - distance_to_surface;
outSubmergedVolume = (JPH_PI / 3.0f) * Square(h) * (3.0f * scaled_radius - h);
// Calculate center of buoyancy, see: http://mathworld.wolfram.com/SphericalCap.html (eq 10)
float z = (3.0f / 4.0f) * Square(2.0f * scaled_radius - h) / (3.0f * scaled_radius - h);
outCenterOfBuoyancy = inCenterOfMassTransform.GetTranslation() - z * inSurface.GetNormal(); // Negative normal since we want the portion under the water
#ifdef JPH_DEBUG_RENDERER
// Draw intersection between sphere and water plane
if (sDrawSubmergedVolumes)
{
Vec3 circle_center = inCenterOfMassTransform.GetTranslation() - distance_to_surface * inSurface.GetNormal();
float circle_radius = sqrt(Square(scaled_radius) - Square(distance_to_surface));
DebugRenderer::sInstance->DrawPie(inBaseOffset + circle_center, circle_radius, inSurface.GetNormal(), inSurface.GetNormal().GetNormalizedPerpendicular(), -JPH_PI, JPH_PI, Color::sGreen, DebugRenderer::ECastShadow::Off);
}
#endif // JPH_DEBUG_RENDERER
}
#ifdef JPH_DEBUG_RENDERER
// Draw center of buoyancy
if (sDrawSubmergedVolumes)
DebugRenderer::sInstance->DrawWireSphere(inBaseOffset + outCenterOfBuoyancy, 0.05f, Color::sRed, 1);
#endif // JPH_DEBUG_RENDERER
}
#ifdef JPH_DEBUG_RENDERER
void SphereShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const
{
DebugRenderer::EDrawMode draw_mode = inDrawWireframe? DebugRenderer::EDrawMode::Wireframe : DebugRenderer::EDrawMode::Solid;
inRenderer->DrawUnitSphere(inCenterOfMassTransform * Mat44::sScale(mRadius * inScale.Abs().GetX()), inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor, DebugRenderer::ECastShadow::On, draw_mode);
}
#endif // JPH_DEBUG_RENDERER
bool SphereShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const
{
float fraction = RaySphere(inRay.mOrigin, inRay.mDirection, Vec3::sZero(), mRadius);
if (fraction < ioHit.mFraction)
{
ioHit.mFraction = fraction;
ioHit.mSubShapeID2 = inSubShapeIDCreator.GetID();
return true;
}
return false;
}
void SphereShape::CastRay(const RayCast &inRay, const RayCastSettings &inRayCastSettings, const SubShapeIDCreator &inSubShapeIDCreator, CastRayCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
// Test shape filter
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
return;
float min_fraction, max_fraction;
int num_results = RaySphere(inRay.mOrigin, inRay.mDirection, Vec3::sZero(), mRadius, min_fraction, max_fraction);
if (num_results > 0 // Ray should intersect
&& max_fraction >= 0.0f // End of ray should be inside sphere
&& min_fraction < ioCollector.GetEarlyOutFraction()) // Start of ray should be before early out fraction
{
// Better hit than the current hit
RayCastResult hit;
hit.mBodyID = TransformedShape::sGetBodyID(ioCollector.GetContext());
hit.mSubShapeID2 = inSubShapeIDCreator.GetID();
// Check front side hit
if (inRayCastSettings.mTreatConvexAsSolid || min_fraction > 0.0f)
{
hit.mFraction = max(0.0f, min_fraction);
ioCollector.AddHit(hit);
}
// Check back side hit
if (inRayCastSettings.mBackFaceModeConvex == EBackFaceMode::CollideWithBackFaces
&& num_results > 1 // Ray should have 2 intersections
&& max_fraction < ioCollector.GetEarlyOutFraction()) // End of ray should be before early out fraction
{
hit.mFraction = max_fraction;
ioCollector.AddHit(hit);
}
}
}
void SphereShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
// Test shape filter
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
return;
if (inPoint.LengthSq() <= Square(mRadius))
ioCollector.AddHit({ TransformedShape::sGetBodyID(ioCollector.GetContext()), inSubShapeIDCreator.GetID() });
}
void SphereShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const
{
Vec3 center = inCenterOfMassTransform.GetTranslation();
float radius = GetScaledRadius(inScale);
for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v)
if (v.GetInvMass() > 0.0f)
{
// Calculate penetration
Vec3 delta = v.GetPosition() - center;
float distance = delta.Length();
float penetration = radius - distance;
if (v.UpdatePenetration(penetration))
{
// Calculate contact point and normal
Vec3 normal = distance > 0.0f? delta / distance : Vec3::sAxisY();
Vec3 point = center + radius * normal;
// Store collision
v.SetCollision(Plane::sFromPointAndNormal(point, normal), inCollidingShapeIndex);
}
}
}
void SphereShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const
{
float scaled_radius = GetScaledRadius(inScale);
new (&ioContext) GetTrianglesContextVertexList(inPositionCOM, inRotation, Vec3::sOne(), Mat44::sScale(scaled_radius), sUnitSphereTriangles.data(), sUnitSphereTriangles.size(), GetMaterial());
}
int SphereShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const
{
return ((GetTrianglesContextVertexList &)ioContext).GetTrianglesNext(inMaxTrianglesRequested, outTriangleVertices, outMaterials);
}
void SphereShape::SaveBinaryState(StreamOut &inStream) const
{
ConvexShape::SaveBinaryState(inStream);
inStream.Write(mRadius);
}
void SphereShape::RestoreBinaryState(StreamIn &inStream)
{
ConvexShape::RestoreBinaryState(inStream);
inStream.Read(mRadius);
}
bool SphereShape::IsValidScale(Vec3Arg inScale) const
{
return ConvexShape::IsValidScale(inScale) && ScaleHelpers::IsUniformScale(inScale.Abs());
}
Vec3 SphereShape::MakeScaleValid(Vec3Arg inScale) const
{
Vec3 scale = ScaleHelpers::MakeNonZeroScale(inScale);
return scale.GetSign() * ScaleHelpers::MakeUniformScale(scale.Abs());
}
void SphereShape::sRegister()
{
ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::Sphere);
f.mConstruct = []() -> Shape * { return new SphereShape; };
f.mColor = Color::sGreen;
}
JPH_NAMESPACE_END