godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/Shape/CylinderShape.cpp
2025-04-12 18:40:44 +02:00

419 lines
14 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Collision/Shape/CylinderShape.h>
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
#include <Jolt/Physics/Collision/Shape/GetTrianglesContext.h>
#include <Jolt/Physics/Collision/RayCast.h>
#include <Jolt/Physics/Collision/CastResult.h>
#include <Jolt/Physics/Collision/CollidePointResult.h>
#include <Jolt/Physics/Collision/TransformedShape.h>
#include <Jolt/Physics/Collision/CollideSoftBodyVertexIterator.h>
#include <Jolt/Geometry/RayCylinder.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(CylinderShapeSettings)
{
JPH_ADD_BASE_CLASS(CylinderShapeSettings, ConvexShapeSettings)
JPH_ADD_ATTRIBUTE(CylinderShapeSettings, mHalfHeight)
JPH_ADD_ATTRIBUTE(CylinderShapeSettings, mRadius)
JPH_ADD_ATTRIBUTE(CylinderShapeSettings, mConvexRadius)
}
// Approximation of top face with 8 vertices
static const Vec3 cCylinderTopFace[] =
{
Vec3(0.0f, 1.0f, 1.0f),
Vec3(0.707106769f, 1.0f, 0.707106769f),
Vec3(1.0f, 1.0f, 0.0f),
Vec3(0.707106769f, 1.0f, -0.707106769f),
Vec3(-0.0f, 1.0f, -1.0f),
Vec3(-0.707106769f, 1.0f, -0.707106769f),
Vec3(-1.0f, 1.0f, 0.0f),
Vec3(-0.707106769f, 1.0f, 0.707106769f)
};
static const StaticArray<Vec3, 96> sUnitCylinderTriangles = []() {
StaticArray<Vec3, 96> verts;
const Vec3 bottom_offset(0.0f, -2.0f, 0.0f);
int num_verts = sizeof(cCylinderTopFace) / sizeof(Vec3);
for (int i = 0; i < num_verts; ++i)
{
Vec3 t1 = cCylinderTopFace[i];
Vec3 t2 = cCylinderTopFace[(i + 1) % num_verts];
Vec3 b1 = cCylinderTopFace[i] + bottom_offset;
Vec3 b2 = cCylinderTopFace[(i + 1) % num_verts] + bottom_offset;
// Top
verts.emplace_back(0.0f, 1.0f, 0.0f);
verts.push_back(t1);
verts.push_back(t2);
// Bottom
verts.emplace_back(0.0f, -1.0f, 0.0f);
verts.push_back(b2);
verts.push_back(b1);
// Side
verts.push_back(t1);
verts.push_back(b1);
verts.push_back(t2);
verts.push_back(t2);
verts.push_back(b1);
verts.push_back(b2);
}
return verts;
}();
ShapeSettings::ShapeResult CylinderShapeSettings::Create() const
{
if (mCachedResult.IsEmpty())
Ref<Shape> shape = new CylinderShape(*this, mCachedResult);
return mCachedResult;
}
CylinderShape::CylinderShape(const CylinderShapeSettings &inSettings, ShapeResult &outResult) :
ConvexShape(EShapeSubType::Cylinder, inSettings, outResult),
mHalfHeight(inSettings.mHalfHeight),
mRadius(inSettings.mRadius),
mConvexRadius(inSettings.mConvexRadius)
{
if (inSettings.mHalfHeight < inSettings.mConvexRadius)
{
outResult.SetError("Invalid height");
return;
}
if (inSettings.mRadius < inSettings.mConvexRadius)
{
outResult.SetError("Invalid radius");
return;
}
if (inSettings.mConvexRadius < 0.0f)
{
outResult.SetError("Invalid convex radius");
return;
}
outResult.Set(this);
}
CylinderShape::CylinderShape(float inHalfHeight, float inRadius, float inConvexRadius, const PhysicsMaterial *inMaterial) :
ConvexShape(EShapeSubType::Cylinder, inMaterial),
mHalfHeight(inHalfHeight),
mRadius(inRadius),
mConvexRadius(inConvexRadius)
{
JPH_ASSERT(inHalfHeight >= inConvexRadius);
JPH_ASSERT(inRadius >= inConvexRadius);
JPH_ASSERT(inConvexRadius >= 0.0f);
}
class CylinderShape::Cylinder final : public Support
{
public:
Cylinder(float inHalfHeight, float inRadius, float inConvexRadius) :
mHalfHeight(inHalfHeight),
mRadius(inRadius),
mConvexRadius(inConvexRadius)
{
static_assert(sizeof(Cylinder) <= sizeof(SupportBuffer), "Buffer size too small");
JPH_ASSERT(IsAligned(this, alignof(Cylinder)));
}
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
{
// Support mapping, taken from:
// A Fast and Robust GJK Implementation for Collision Detection of Convex Objects - Gino van den Bergen
// page 8
float x = inDirection.GetX(), y = inDirection.GetY(), z = inDirection.GetZ();
float o = sqrt(Square(x) + Square(z));
if (o > 0.0f)
return Vec3((mRadius * x) / o, Sign(y) * mHalfHeight, (mRadius * z) / o);
else
return Vec3(0, Sign(y) * mHalfHeight, 0);
}
virtual float GetConvexRadius() const override
{
return mConvexRadius;
}
private:
float mHalfHeight;
float mRadius;
float mConvexRadius;
};
const ConvexShape::Support *CylinderShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const
{
JPH_ASSERT(IsValidScale(inScale));
// Get scaled cylinder
Vec3 abs_scale = inScale.Abs();
float scale_xz = abs_scale.GetX();
float scale_y = abs_scale.GetY();
float scaled_half_height = scale_y * mHalfHeight;
float scaled_radius = scale_xz * mRadius;
float scaled_convex_radius = ScaleHelpers::ScaleConvexRadius(mConvexRadius, inScale);
switch (inMode)
{
case ESupportMode::IncludeConvexRadius:
case ESupportMode::Default:
return new (&inBuffer) Cylinder(scaled_half_height, scaled_radius, 0.0f);
case ESupportMode::ExcludeConvexRadius:
return new (&inBuffer) Cylinder(scaled_half_height - scaled_convex_radius, scaled_radius - scaled_convex_radius, scaled_convex_radius);
}
JPH_ASSERT(false);
return nullptr;
}
void CylinderShape::GetSupportingFace(const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const
{
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
JPH_ASSERT(IsValidScale(inScale));
// Get scaled cylinder
Vec3 abs_scale = inScale.Abs();
float scale_xz = abs_scale.GetX();
float scale_y = abs_scale.GetY();
float scaled_half_height = scale_y * mHalfHeight;
float scaled_radius = scale_xz * mRadius;
float x = inDirection.GetX(), y = inDirection.GetY(), z = inDirection.GetZ();
float xz_sq = Square(x) + Square(z);
float y_sq = Square(y);
// Check which component is bigger
if (xz_sq > y_sq)
{
// Hitting side
float f = -scaled_radius / sqrt(xz_sq);
float vx = x * f;
float vz = z * f;
outVertices.push_back(inCenterOfMassTransform * Vec3(vx, scaled_half_height, vz));
outVertices.push_back(inCenterOfMassTransform * Vec3(vx, -scaled_half_height, vz));
}
else
{
// Hitting top or bottom
// When the inDirection is more than 5 degrees from vertical, align the vertices so that 1 of the vertices
// points towards inDirection in the XZ plane. This ensures that we always have a vertex towards max penetration depth.
Mat44 transform = inCenterOfMassTransform;
if (xz_sq > 0.00765427f * y_sq)
{
Vec4 base_x = Vec4(x, 0, z, 0) / sqrt(xz_sq);
Vec4 base_z = base_x.Swizzle<SWIZZLE_Z, SWIZZLE_Y, SWIZZLE_X, SWIZZLE_W>() * Vec4(-1, 0, 1, 0);
transform = transform * Mat44(base_x, Vec4(0, 1, 0, 0), base_z, Vec4(0, 0, 0, 1));
}
// Adjust for scale and height
Vec3 multiplier = y < 0.0f? Vec3(scaled_radius, scaled_half_height, scaled_radius) : Vec3(-scaled_radius, -scaled_half_height, scaled_radius);
transform = transform.PreScaled(multiplier);
for (const Vec3 &v : cCylinderTopFace)
outVertices.push_back(transform * v);
}
}
MassProperties CylinderShape::GetMassProperties() const
{
MassProperties p;
// Mass is surface of circle * height
float radius_sq = Square(mRadius);
float height = 2.0f * mHalfHeight;
p.mMass = JPH_PI * radius_sq * height * GetDensity();
// Inertia according to https://en.wikipedia.org/wiki/List_of_moments_of_inertia:
float inertia_y = radius_sq * p.mMass * 0.5f;
float inertia_x = inertia_y * 0.5f + p.mMass * height * height / 12.0f;
float inertia_z = inertia_x;
// Set inertia
p.mInertia = Mat44::sScale(Vec3(inertia_x, inertia_y, inertia_z));
return p;
}
Vec3 CylinderShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const
{
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
// Calculate distance to infinite cylinder surface
Vec3 local_surface_position_xz(inLocalSurfacePosition.GetX(), 0, inLocalSurfacePosition.GetZ());
float local_surface_position_xz_len = local_surface_position_xz.Length();
float distance_to_curved_surface = abs(local_surface_position_xz_len - mRadius);
// Calculate distance to top or bottom plane
float distance_to_top_or_bottom = abs(abs(inLocalSurfacePosition.GetY()) - mHalfHeight);
// Return normal according to closest surface
if (distance_to_curved_surface < distance_to_top_or_bottom)
return local_surface_position_xz / local_surface_position_xz_len;
else
return inLocalSurfacePosition.GetY() > 0.0f? Vec3::sAxisY() : -Vec3::sAxisY();
}
AABox CylinderShape::GetLocalBounds() const
{
Vec3 extent = Vec3(mRadius, mHalfHeight, mRadius);
return AABox(-extent, extent);
}
#ifdef JPH_DEBUG_RENDERER
void CylinderShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const
{
DebugRenderer::EDrawMode draw_mode = inDrawWireframe? DebugRenderer::EDrawMode::Wireframe : DebugRenderer::EDrawMode::Solid;
inRenderer->DrawCylinder(inCenterOfMassTransform * Mat44::sScale(inScale.Abs()), mHalfHeight, mRadius, inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor, DebugRenderer::ECastShadow::On, draw_mode);
}
#endif // JPH_DEBUG_RENDERER
bool CylinderShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const
{
// Test ray against capsule
float fraction = RayCylinder(inRay.mOrigin, inRay.mDirection, mHalfHeight, mRadius);
if (fraction < ioHit.mFraction)
{
ioHit.mFraction = fraction;
ioHit.mSubShapeID2 = inSubShapeIDCreator.GetID();
return true;
}
return false;
}
void CylinderShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
// Test shape filter
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
return;
// Check if the point is in the cylinder
if (abs(inPoint.GetY()) <= mHalfHeight // Within the height
&& Square(inPoint.GetX()) + Square(inPoint.GetZ()) <= Square(mRadius)) // Within the radius
ioCollector.AddHit({ TransformedShape::sGetBodyID(ioCollector.GetContext()), inSubShapeIDCreator.GetID() });
}
void CylinderShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const
{
JPH_ASSERT(IsValidScale(inScale));
Mat44 inverse_transform = inCenterOfMassTransform.InversedRotationTranslation();
// Get scaled cylinder
Vec3 abs_scale = inScale.Abs();
float half_height = abs_scale.GetY() * mHalfHeight;
float radius = abs_scale.GetX() * mRadius;
for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v)
if (v.GetInvMass() > 0.0f)
{
Vec3 local_pos = inverse_transform * v.GetPosition();
// Calculate penetration into side surface
Vec3 side_normal = local_pos;
side_normal.SetY(0.0f);
float side_normal_length = side_normal.Length();
float side_penetration = radius - side_normal_length;
// Calculate penetration into top or bottom plane
float top_penetration = half_height - abs(local_pos.GetY());
Vec3 point, normal;
if (side_penetration < 0.0f && top_penetration < 0.0f)
{
// We're outside the cylinder height and radius
point = side_normal * (radius / side_normal_length) + Vec3(0, half_height * Sign(local_pos.GetY()), 0);
normal = (local_pos - point).NormalizedOr(Vec3::sAxisY());
}
else if (side_penetration < top_penetration)
{
// Side surface is closest
normal = side_normal_length > 0.0f? side_normal / side_normal_length : Vec3::sAxisX();
point = radius * normal;
}
else
{
// Top or bottom plane is closest
normal = Vec3(0, Sign(local_pos.GetY()), 0);
point = half_height * normal;
}
// Calculate penetration
Plane plane = Plane::sFromPointAndNormal(point, normal);
float penetration = -plane.SignedDistance(local_pos);
if (v.UpdatePenetration(penetration))
v.SetCollision(plane.GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex);
}
}
void CylinderShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const
{
Mat44 unit_cylinder_transform(Vec4(mRadius, 0, 0, 0), Vec4(0, mHalfHeight, 0, 0), Vec4(0, 0, mRadius, 0), Vec4(0, 0, 0, 1));
new (&ioContext) GetTrianglesContextVertexList(inPositionCOM, inRotation, inScale, unit_cylinder_transform, sUnitCylinderTriangles.data(), sUnitCylinderTriangles.size(), GetMaterial());
}
int CylinderShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const
{
return ((GetTrianglesContextVertexList &)ioContext).GetTrianglesNext(inMaxTrianglesRequested, outTriangleVertices, outMaterials);
}
void CylinderShape::SaveBinaryState(StreamOut &inStream) const
{
ConvexShape::SaveBinaryState(inStream);
inStream.Write(mHalfHeight);
inStream.Write(mRadius);
inStream.Write(mConvexRadius);
}
void CylinderShape::RestoreBinaryState(StreamIn &inStream)
{
ConvexShape::RestoreBinaryState(inStream);
inStream.Read(mHalfHeight);
inStream.Read(mRadius);
inStream.Read(mConvexRadius);
}
bool CylinderShape::IsValidScale(Vec3Arg inScale) const
{
return ConvexShape::IsValidScale(inScale) && ScaleHelpers::IsUniformScaleXZ(inScale.Abs());
}
Vec3 CylinderShape::MakeScaleValid(Vec3Arg inScale) const
{
Vec3 scale = ScaleHelpers::MakeNonZeroScale(inScale);
return scale.GetSign() * ScaleHelpers::MakeUniformScaleXZ(scale.Abs());
}
void CylinderShape::sRegister()
{
ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::Cylinder);
f.mConstruct = []() -> Shape * { return new CylinderShape; };
f.mColor = Color::sGreen;
}
JPH_NAMESPACE_END