godot-module-template/engine/modules/navigation_2d/2d/nav_map_builder_2d.cpp
2025-04-12 18:40:44 +02:00

405 lines
17 KiB
C++

/**************************************************************************/
/* nav_map_builder_2d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "nav_map_builder_2d.h"
#include "../nav_link_2d.h"
#include "../nav_map_2d.h"
#include "../nav_region_2d.h"
#include "../triangle2.h"
#include "nav_map_iteration_2d.h"
#include "nav_region_iteration_2d.h"
using namespace nav_2d;
PointKey NavMapBuilder2D::get_point_key(const Vector2 &p_pos, const Vector2 &p_cell_size) {
const int x = static_cast<int>(Math::floor(p_pos.x / p_cell_size.x));
const int y = static_cast<int>(Math::floor(p_pos.y / p_cell_size.y));
PointKey p;
p.key = 0;
p.x = x;
p.y = y;
return p;
}
void NavMapBuilder2D::build_navmap_iteration(NavMapIterationBuild2D &r_build) {
PerformanceData &performance_data = r_build.performance_data;
performance_data.pm_polygon_count = 0;
performance_data.pm_edge_count = 0;
performance_data.pm_edge_merge_count = 0;
performance_data.pm_edge_connection_count = 0;
performance_data.pm_edge_free_count = 0;
_build_step_gather_region_polygons(r_build);
_build_step_find_edge_connection_pairs(r_build);
_build_step_merge_edge_connection_pairs(r_build);
_build_step_edge_connection_margin_connections(r_build);
_build_step_navlink_connections(r_build);
_build_update_map_iteration(r_build);
}
void NavMapBuilder2D::_build_step_gather_region_polygons(NavMapIterationBuild2D &r_build) {
PerformanceData &performance_data = r_build.performance_data;
NavMapIteration2D *map_iteration = r_build.map_iteration;
LocalVector<NavRegionIteration2D> &regions = map_iteration->region_iterations;
HashMap<uint32_t, LocalVector<Edge::Connection>> &region_external_connections = map_iteration->external_region_connections;
// Remove regions connections.
region_external_connections.clear();
for (const NavRegionIteration2D &region : regions) {
region_external_connections[region.id] = LocalVector<Edge::Connection>();
}
// Copy all region polygons in the map.
int polygon_count = 0;
for (NavRegionIteration2D &region : regions) {
if (!region.get_enabled()) {
continue;
}
LocalVector<Polygon> &polygons_source = region.navmesh_polygons;
for (uint32_t n = 0; n < polygons_source.size(); n++) {
polygons_source[n].id = polygon_count;
polygon_count++;
}
}
performance_data.pm_polygon_count = polygon_count;
r_build.polygon_count = polygon_count;
}
void NavMapBuilder2D::_build_step_find_edge_connection_pairs(NavMapIterationBuild2D &r_build) {
PerformanceData &performance_data = r_build.performance_data;
NavMapIteration2D *map_iteration = r_build.map_iteration;
int polygon_count = r_build.polygon_count;
const Vector2 merge_rasterizer_cell_size = r_build.merge_rasterizer_cell_size;
HashMap<EdgeKey, EdgeConnectionPair, EdgeKey> &connection_pairs_map = r_build.iter_connection_pairs_map;
// Group all edges per key.
connection_pairs_map.clear();
connection_pairs_map.reserve(polygon_count);
int free_edges_count = 0; // How many ConnectionPairs have only one Connection.
for (NavRegionIteration2D &region : map_iteration->region_iterations) {
if (!region.get_enabled()) {
continue;
}
for (Polygon &poly : region.navmesh_polygons) {
for (uint32_t p = 0; p < poly.vertices.size(); p++) {
const int next_point = (p + 1) % poly.vertices.size();
const EdgeKey ek(get_point_key(poly.vertices[p], merge_rasterizer_cell_size), get_point_key(poly.vertices[next_point], merge_rasterizer_cell_size));
HashMap<EdgeKey, EdgeConnectionPair, EdgeKey>::Iterator pair_it = connection_pairs_map.find(ek);
if (!pair_it) {
pair_it = connection_pairs_map.insert(ek, EdgeConnectionPair());
performance_data.pm_edge_count += 1;
++free_edges_count;
}
EdgeConnectionPair &pair = pair_it->value;
if (pair.size < 2) {
// Add the polygon/edge tuple to this key.
Edge::Connection new_connection;
new_connection.polygon = &poly;
new_connection.edge = p;
new_connection.pathway_start = poly.vertices[p];
new_connection.pathway_end = poly.vertices[next_point];
pair.connections[pair.size] = new_connection;
++pair.size;
if (pair.size == 2) {
--free_edges_count;
}
} else {
// The edge is already connected with another edge, skip.
ERR_PRINT_ONCE("Navigation map synchronization error. Attempted to merge a navigation mesh polygon edge with another already-merged edge. This is usually caused by crossing edges, overlapping polygons, or a mismatch of the NavigationMesh / NavigationPolygon baked 'cell_size' and navigation map 'cell_size'. If you're certain none of above is the case, change 'navigation/3d/merge_rasterizer_cell_scale' to 0.001.");
}
}
}
}
r_build.free_edge_count = free_edges_count;
}
void NavMapBuilder2D::_build_step_merge_edge_connection_pairs(NavMapIterationBuild2D &r_build) {
PerformanceData &performance_data = r_build.performance_data;
HashMap<EdgeKey, EdgeConnectionPair, EdgeKey> &connection_pairs_map = r_build.iter_connection_pairs_map;
LocalVector<Edge::Connection> &free_edges = r_build.iter_free_edges;
int free_edges_count = r_build.free_edge_count;
bool use_edge_connections = r_build.use_edge_connections;
free_edges.clear();
free_edges.reserve(free_edges_count);
for (const KeyValue<EdgeKey, EdgeConnectionPair> &pair_it : connection_pairs_map) {
const EdgeConnectionPair &pair = pair_it.value;
if (pair.size == 2) {
// Connect edge that are shared in different polygons.
const Edge::Connection &c1 = pair.connections[0];
const Edge::Connection &c2 = pair.connections[1];
c1.polygon->edges[c1.edge].connections.push_back(c2);
c2.polygon->edges[c2.edge].connections.push_back(c1);
// Note: The pathway_start/end are full for those connection and do not need to be modified.
performance_data.pm_edge_merge_count += 1;
} else {
CRASH_COND_MSG(pair.size != 1, vformat("Number of connection != 1. Found: %d", pair.size));
if (use_edge_connections && pair.connections[0].polygon->owner->get_use_edge_connections()) {
free_edges.push_back(pair.connections[0]);
}
}
}
}
void NavMapBuilder2D::_build_step_edge_connection_margin_connections(NavMapIterationBuild2D &r_build) {
PerformanceData &performance_data = r_build.performance_data;
NavMapIteration2D *map_iteration = r_build.map_iteration;
real_t edge_connection_margin = r_build.edge_connection_margin;
LocalVector<Edge::Connection> &free_edges = r_build.iter_free_edges;
HashMap<uint32_t, LocalVector<Edge::Connection>> &region_external_connections = map_iteration->external_region_connections;
// Find the compatible near edges.
//
// Note:
// Considering that the edges must be compatible (for obvious reasons)
// to be connected, create new polygons to remove that small gap is
// not really useful and would result in wasteful computation during
// connection, integration and path finding.
performance_data.pm_edge_free_count = free_edges.size();
const real_t edge_connection_margin_squared = edge_connection_margin * edge_connection_margin;
for (uint32_t i = 0; i < free_edges.size(); i++) {
const Edge::Connection &free_edge = free_edges[i];
Vector2 edge_p1 = free_edge.polygon->vertices[free_edge.edge];
Vector2 edge_p2 = free_edge.polygon->vertices[(free_edge.edge + 1) % free_edge.polygon->vertices.size()];
for (uint32_t j = 0; j < free_edges.size(); j++) {
const Edge::Connection &other_edge = free_edges[j];
if (i == j || free_edge.polygon->owner == other_edge.polygon->owner) {
continue;
}
Vector2 other_edge_p1 = other_edge.polygon->vertices[other_edge.edge];
Vector2 other_edge_p2 = other_edge.polygon->vertices[(other_edge.edge + 1) % other_edge.polygon->vertices.size()];
// Compute the projection of the opposite edge on the current one.
Vector2 edge_vector = edge_p2 - edge_p1;
real_t projected_p1_ratio = edge_vector.dot(other_edge_p1 - edge_p1) / edge_vector.length_squared();
real_t projected_p2_ratio = edge_vector.dot(other_edge_p2 - edge_p1) / edge_vector.length_squared();
if ((projected_p1_ratio < 0.0 && projected_p2_ratio < 0.0) || (projected_p1_ratio > 1.0 && projected_p2_ratio > 1.0)) {
continue;
}
// Check if the two edges are close to each other enough and compute a pathway between the two regions.
Vector2 self1 = edge_vector * CLAMP(projected_p1_ratio, 0.0, 1.0) + edge_p1;
Vector2 other1;
if (projected_p1_ratio >= 0.0 && projected_p1_ratio <= 1.0) {
other1 = other_edge_p1;
} else {
other1 = other_edge_p1.lerp(other_edge_p2, (1.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
}
if (other1.distance_squared_to(self1) > edge_connection_margin_squared) {
continue;
}
Vector2 self2 = edge_vector * CLAMP(projected_p2_ratio, 0.0, 1.0) + edge_p1;
Vector2 other2;
if (projected_p2_ratio >= 0.0 && projected_p2_ratio <= 1.0) {
other2 = other_edge_p2;
} else {
other2 = other_edge_p1.lerp(other_edge_p2, (0.0 - projected_p1_ratio) / (projected_p2_ratio - projected_p1_ratio));
}
if (other2.distance_squared_to(self2) > edge_connection_margin_squared) {
continue;
}
// The edges can now be connected.
Edge::Connection new_connection = other_edge;
new_connection.pathway_start = (self1 + other1) / 2.0;
new_connection.pathway_end = (self2 + other2) / 2.0;
free_edge.polygon->edges[free_edge.edge].connections.push_back(new_connection);
// Add the connection to the region_connection map.
region_external_connections[(uint32_t)free_edge.polygon->owner->id].push_back(new_connection);
performance_data.pm_edge_connection_count += 1;
}
}
}
void NavMapBuilder2D::_build_step_navlink_connections(NavMapIterationBuild2D &r_build) {
NavMapIteration2D *map_iteration = r_build.map_iteration;
real_t link_connection_radius = r_build.link_connection_radius;
LocalVector<Polygon> &link_polygons = map_iteration->link_polygons;
LocalVector<NavLinkIteration2D> &links = map_iteration->link_iterations;
int polygon_count = r_build.polygon_count;
real_t link_connection_radius_sqr = link_connection_radius * link_connection_radius;
uint32_t link_poly_idx = 0;
link_polygons.resize(links.size());
// Search for polygons within range of a nav link.
for (const NavLinkIteration2D &link : links) {
if (!link.get_enabled()) {
continue;
}
const Vector2 link_start_pos = link.get_start_position();
const Vector2 link_end_pos = link.get_end_position();
Polygon *closest_start_polygon = nullptr;
real_t closest_start_sqr_dist = link_connection_radius_sqr;
Vector2 closest_start_point;
Polygon *closest_end_polygon = nullptr;
real_t closest_end_sqr_dist = link_connection_radius_sqr;
Vector2 closest_end_point;
for (NavRegionIteration2D &region : map_iteration->region_iterations) {
if (!region.get_enabled()) {
continue;
}
Rect2 region_bounds = region.get_bounds().grow(link_connection_radius);
if (!region_bounds.has_point(link_start_pos) && !region_bounds.has_point(link_end_pos)) {
continue;
}
for (Polygon &polyon : region.navmesh_polygons) {
for (uint32_t point_id = 2; point_id < polyon.vertices.size(); point_id += 1) {
const Triangle2 triangle(polyon.vertices[0], polyon.vertices[point_id - 1], polyon.vertices[point_id]);
{
const Vector2 start_point = triangle.get_closest_point_to(link_start_pos);
const real_t sqr_dist = start_point.distance_squared_to(link_start_pos);
// Pick the polygon that is within our radius and is closer than anything we've seen yet.
if (sqr_dist < closest_start_sqr_dist) {
closest_start_sqr_dist = sqr_dist;
closest_start_point = start_point;
closest_start_polygon = &polyon;
}
}
{
const Vector2 end_point = triangle.get_closest_point_to(link_end_pos);
const real_t sqr_dist = end_point.distance_squared_to(link_end_pos);
// Pick the polygon that is within our radius and is closer than anything we've seen yet.
if (sqr_dist < closest_end_sqr_dist) {
closest_end_sqr_dist = sqr_dist;
closest_end_point = end_point;
closest_end_polygon = &polyon;
}
}
}
}
}
// If we have both a start and end point, then create a synthetic polygon to route through.
if (closest_start_polygon && closest_end_polygon) {
Polygon &new_polygon = link_polygons[link_poly_idx++];
new_polygon.id = polygon_count++;
new_polygon.owner = &link;
new_polygon.edges.clear();
new_polygon.edges.resize(4);
new_polygon.vertices.resize(4);
// Build a set of vertices that create a thin polygon going from the start to the end point.
new_polygon.vertices[0] = closest_start_point;
new_polygon.vertices[1] = closest_start_point;
new_polygon.vertices[2] = closest_end_point;
new_polygon.vertices[3] = closest_end_point;
// Setup connections to go forward in the link.
{
Edge::Connection entry_connection;
entry_connection.polygon = &new_polygon;
entry_connection.edge = -1;
entry_connection.pathway_start = new_polygon.vertices[0];
entry_connection.pathway_end = new_polygon.vertices[1];
closest_start_polygon->edges[0].connections.push_back(entry_connection);
Edge::Connection exit_connection;
exit_connection.polygon = closest_end_polygon;
exit_connection.edge = -1;
exit_connection.pathway_start = new_polygon.vertices[2];
exit_connection.pathway_end = new_polygon.vertices[3];
new_polygon.edges[2].connections.push_back(exit_connection);
}
// If the link is bi-directional, create connections from the end to the start.
if (link.is_bidirectional()) {
Edge::Connection entry_connection;
entry_connection.polygon = &new_polygon;
entry_connection.edge = -1;
entry_connection.pathway_start = new_polygon.vertices[2];
entry_connection.pathway_end = new_polygon.vertices[3];
closest_end_polygon->edges[0].connections.push_back(entry_connection);
Edge::Connection exit_connection;
exit_connection.polygon = closest_start_polygon;
exit_connection.edge = -1;
exit_connection.pathway_start = new_polygon.vertices[0];
exit_connection.pathway_end = new_polygon.vertices[1];
new_polygon.edges[0].connections.push_back(exit_connection);
}
}
}
}
void NavMapBuilder2D::_build_update_map_iteration(NavMapIterationBuild2D &r_build) {
NavMapIteration2D *map_iteration = r_build.map_iteration;
LocalVector<Polygon> &link_polygons = map_iteration->link_polygons;
map_iteration->navmesh_polygon_count = r_build.polygon_count;
map_iteration->link_polygon_count = link_polygons.size();
map_iteration->path_query_slots_mutex.lock();
for (NavMeshQueries2D::PathQuerySlot &p_path_query_slot : map_iteration->path_query_slots) {
p_path_query_slot.traversable_polys.clear();
p_path_query_slot.traversable_polys.reserve(map_iteration->navmesh_polygon_count * 0.25);
p_path_query_slot.path_corridor.clear();
p_path_query_slot.path_corridor.resize(map_iteration->navmesh_polygon_count + map_iteration->link_polygon_count);
}
map_iteration->path_query_slots_mutex.unlock();
}