196 lines
7.1 KiB
C++
196 lines
7.1 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Physics/Body/Body.h>
|
|
#include <Jolt/Physics/StateRecorder.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
/// Constraint that constrains two rotations using a gear (rotating in opposite direction)
|
|
///
|
|
/// Constraint equation:
|
|
///
|
|
/// C = Rotation1(t) + r Rotation2(t)
|
|
///
|
|
/// Derivative:
|
|
///
|
|
/// d/dt C = 0
|
|
/// <=> w1 . a + r w2 . b = 0
|
|
///
|
|
/// Jacobian:
|
|
///
|
|
/// \f[J = \begin{bmatrix}0 & a^T & 0 & r b^T\end{bmatrix}\f]
|
|
///
|
|
/// Used terms (here and below, everything in world space):\n
|
|
/// a = axis around which body 1 rotates (normalized).\n
|
|
/// b = axis along which body 2 slides (normalized).\n
|
|
/// Rotation1(t) = rotation around a of body 1.\n
|
|
/// Rotation2(t) = rotation around b of body 2.\n
|
|
/// r = ratio between rotation for body 1 and 2.\n
|
|
/// v = [v1, w1, v2, w2].\n
|
|
/// v1, v2 = linear velocity of body 1 and 2.\n
|
|
/// w1, w2 = angular velocity of body 1 and 2.\n
|
|
/// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
|
|
/// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
|
|
/// \f$\beta\f$ = baumgarte constant.
|
|
class GearConstraintPart
|
|
{
|
|
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
|
|
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, float inLambda) const
|
|
{
|
|
// Apply impulse if delta is not zero
|
|
if (inLambda != 0.0f)
|
|
{
|
|
// Calculate velocity change due to constraint
|
|
//
|
|
// Impulse:
|
|
// P = J^T lambda
|
|
//
|
|
// Euler velocity integration:
|
|
// v' = v + M^-1 P
|
|
ioBody1.GetMotionProperties()->AddAngularVelocityStep(inLambda * mInvI1_A);
|
|
ioBody2.GetMotionProperties()->AddAngularVelocityStep(inLambda * mInvI2_B);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
/// Calculate properties used during the functions below
|
|
/// @param inBody1 The first body that this constraint is attached to
|
|
/// @param inBody2 The second body that this constraint is attached to
|
|
/// @param inWorldSpaceHingeAxis1 The axis around which body 1 rotates
|
|
/// @param inWorldSpaceHingeAxis2 The axis around which body 2 rotates
|
|
/// @param inRatio The ratio between rotation and translation
|
|
inline void CalculateConstraintProperties(const Body &inBody1, Vec3Arg inWorldSpaceHingeAxis1, const Body &inBody2, Vec3Arg inWorldSpaceHingeAxis2, float inRatio)
|
|
{
|
|
JPH_ASSERT(inWorldSpaceHingeAxis1.IsNormalized(1.0e-4f));
|
|
JPH_ASSERT(inWorldSpaceHingeAxis2.IsNormalized(1.0e-4f));
|
|
|
|
// Calculate: I1^-1 a
|
|
mInvI1_A = inBody1.GetMotionProperties()->MultiplyWorldSpaceInverseInertiaByVector(inBody1.GetRotation(), inWorldSpaceHingeAxis1);
|
|
|
|
// Calculate: I2^-1 b
|
|
mInvI2_B = inBody2.GetMotionProperties()->MultiplyWorldSpaceInverseInertiaByVector(inBody2.GetRotation(), inWorldSpaceHingeAxis2);
|
|
|
|
// K^-1 = 1 / (J M^-1 J^T) = 1 / (a^T I1^-1 a + r^2 * b^T I2^-1 b)
|
|
float inv_effective_mass = (inWorldSpaceHingeAxis1.Dot(mInvI1_A) + inWorldSpaceHingeAxis2.Dot(mInvI2_B) * Square(inRatio));
|
|
if (inv_effective_mass == 0.0f)
|
|
Deactivate();
|
|
else
|
|
mEffectiveMass = 1.0f / inv_effective_mass;
|
|
}
|
|
|
|
/// Deactivate this constraint
|
|
inline void Deactivate()
|
|
{
|
|
mEffectiveMass = 0.0f;
|
|
mTotalLambda = 0.0f;
|
|
}
|
|
|
|
/// Check if constraint is active
|
|
inline bool IsActive() const
|
|
{
|
|
return mEffectiveMass != 0.0f;
|
|
}
|
|
|
|
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
|
|
/// @param ioBody1 The first body that this constraint is attached to
|
|
/// @param ioBody2 The second body that this constraint is attached to
|
|
/// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame
|
|
inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
|
|
{
|
|
mTotalLambda *= inWarmStartImpulseRatio;
|
|
ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
|
|
}
|
|
|
|
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
|
|
/// @param ioBody1 The first body that this constraint is attached to
|
|
/// @param ioBody2 The second body that this constraint is attached to
|
|
/// @param inWorldSpaceHingeAxis1 The axis around which body 1 rotates
|
|
/// @param inWorldSpaceHingeAxis2 The axis around which body 2 rotates
|
|
/// @param inRatio The ratio between rotation and translation
|
|
inline bool SolveVelocityConstraint(Body &ioBody1, Vec3Arg inWorldSpaceHingeAxis1, Body &ioBody2, Vec3Arg inWorldSpaceHingeAxis2, float inRatio)
|
|
{
|
|
// Lagrange multiplier is:
|
|
//
|
|
// lambda = -K^-1 (J v + b)
|
|
float lambda = -mEffectiveMass * (inWorldSpaceHingeAxis1.Dot(ioBody1.GetAngularVelocity()) + inRatio * inWorldSpaceHingeAxis2.Dot(ioBody2.GetAngularVelocity()));
|
|
mTotalLambda += lambda; // Store accumulated impulse
|
|
|
|
return ApplyVelocityStep(ioBody1, ioBody2, lambda);
|
|
}
|
|
|
|
/// Return lagrange multiplier
|
|
float GetTotalLambda() const
|
|
{
|
|
return mTotalLambda;
|
|
}
|
|
|
|
/// Iteratively update the position constraint. Makes sure C(...) == 0.
|
|
/// @param ioBody1 The first body that this constraint is attached to
|
|
/// @param ioBody2 The second body that this constraint is attached to
|
|
/// @param inC Value of the constraint equation (C)
|
|
/// @param inBaumgarte Baumgarte constant (fraction of the error to correct)
|
|
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inC, float inBaumgarte) const
|
|
{
|
|
// Only apply position constraint when the constraint is hard, otherwise the velocity bias will fix the constraint
|
|
if (inC != 0.0f)
|
|
{
|
|
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
|
|
//
|
|
// lambda = -K^-1 * beta / dt * C
|
|
//
|
|
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
|
|
float lambda = -mEffectiveMass * inBaumgarte * inC;
|
|
|
|
// Directly integrate velocity change for one time step
|
|
//
|
|
// Euler velocity integration:
|
|
// dv = M^-1 P
|
|
//
|
|
// Impulse:
|
|
// P = J^T lambda
|
|
//
|
|
// Euler position integration:
|
|
// x' = x + dv * dt
|
|
//
|
|
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
|
|
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
|
|
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
|
|
// integrate + a position integrate and then discard the velocity change.
|
|
if (ioBody1.IsDynamic())
|
|
ioBody1.AddRotationStep(lambda * mInvI1_A);
|
|
if (ioBody2.IsDynamic())
|
|
ioBody2.AddRotationStep(lambda * mInvI2_B);
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Save state of this constraint part
|
|
void SaveState(StateRecorder &inStream) const
|
|
{
|
|
inStream.Write(mTotalLambda);
|
|
}
|
|
|
|
/// Restore state of this constraint part
|
|
void RestoreState(StateRecorder &inStream)
|
|
{
|
|
inStream.Read(mTotalLambda);
|
|
}
|
|
|
|
private:
|
|
Vec3 mInvI1_A;
|
|
Vec3 mInvI2_B;
|
|
float mEffectiveMass = 0.0f;
|
|
float mTotalLambda = 0.0f;
|
|
};
|
|
|
|
JPH_NAMESPACE_END
|