godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/ConstraintPart/GearConstraintPart.h

196 lines
7.1 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/Physics/StateRecorder.h>
JPH_NAMESPACE_BEGIN
/// Constraint that constrains two rotations using a gear (rotating in opposite direction)
///
/// Constraint equation:
///
/// C = Rotation1(t) + r Rotation2(t)
///
/// Derivative:
///
/// d/dt C = 0
/// <=> w1 . a + r w2 . b = 0
///
/// Jacobian:
///
/// \f[J = \begin{bmatrix}0 & a^T & 0 & r b^T\end{bmatrix}\f]
///
/// Used terms (here and below, everything in world space):\n
/// a = axis around which body 1 rotates (normalized).\n
/// b = axis along which body 2 slides (normalized).\n
/// Rotation1(t) = rotation around a of body 1.\n
/// Rotation2(t) = rotation around b of body 2.\n
/// r = ratio between rotation for body 1 and 2.\n
/// v = [v1, w1, v2, w2].\n
/// v1, v2 = linear velocity of body 1 and 2.\n
/// w1, w2 = angular velocity of body 1 and 2.\n
/// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
/// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
/// \f$\beta\f$ = baumgarte constant.
class GearConstraintPart
{
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, float inLambda) const
{
// Apply impulse if delta is not zero
if (inLambda != 0.0f)
{
// Calculate velocity change due to constraint
//
// Impulse:
// P = J^T lambda
//
// Euler velocity integration:
// v' = v + M^-1 P
ioBody1.GetMotionProperties()->AddAngularVelocityStep(inLambda * mInvI1_A);
ioBody2.GetMotionProperties()->AddAngularVelocityStep(inLambda * mInvI2_B);
return true;
}
return false;
}
public:
/// Calculate properties used during the functions below
/// @param inBody1 The first body that this constraint is attached to
/// @param inBody2 The second body that this constraint is attached to
/// @param inWorldSpaceHingeAxis1 The axis around which body 1 rotates
/// @param inWorldSpaceHingeAxis2 The axis around which body 2 rotates
/// @param inRatio The ratio between rotation and translation
inline void CalculateConstraintProperties(const Body &inBody1, Vec3Arg inWorldSpaceHingeAxis1, const Body &inBody2, Vec3Arg inWorldSpaceHingeAxis2, float inRatio)
{
JPH_ASSERT(inWorldSpaceHingeAxis1.IsNormalized(1.0e-4f));
JPH_ASSERT(inWorldSpaceHingeAxis2.IsNormalized(1.0e-4f));
// Calculate: I1^-1 a
mInvI1_A = inBody1.GetMotionProperties()->MultiplyWorldSpaceInverseInertiaByVector(inBody1.GetRotation(), inWorldSpaceHingeAxis1);
// Calculate: I2^-1 b
mInvI2_B = inBody2.GetMotionProperties()->MultiplyWorldSpaceInverseInertiaByVector(inBody2.GetRotation(), inWorldSpaceHingeAxis2);
// K^-1 = 1 / (J M^-1 J^T) = 1 / (a^T I1^-1 a + r^2 * b^T I2^-1 b)
float inv_effective_mass = (inWorldSpaceHingeAxis1.Dot(mInvI1_A) + inWorldSpaceHingeAxis2.Dot(mInvI2_B) * Square(inRatio));
if (inv_effective_mass == 0.0f)
Deactivate();
else
mEffectiveMass = 1.0f / inv_effective_mass;
}
/// Deactivate this constraint
inline void Deactivate()
{
mEffectiveMass = 0.0f;
mTotalLambda = 0.0f;
}
/// Check if constraint is active
inline bool IsActive() const
{
return mEffectiveMass != 0.0f;
}
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
/// @param ioBody1 The first body that this constraint is attached to
/// @param ioBody2 The second body that this constraint is attached to
/// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame
inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
{
mTotalLambda *= inWarmStartImpulseRatio;
ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
}
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
/// @param ioBody1 The first body that this constraint is attached to
/// @param ioBody2 The second body that this constraint is attached to
/// @param inWorldSpaceHingeAxis1 The axis around which body 1 rotates
/// @param inWorldSpaceHingeAxis2 The axis around which body 2 rotates
/// @param inRatio The ratio between rotation and translation
inline bool SolveVelocityConstraint(Body &ioBody1, Vec3Arg inWorldSpaceHingeAxis1, Body &ioBody2, Vec3Arg inWorldSpaceHingeAxis2, float inRatio)
{
// Lagrange multiplier is:
//
// lambda = -K^-1 (J v + b)
float lambda = -mEffectiveMass * (inWorldSpaceHingeAxis1.Dot(ioBody1.GetAngularVelocity()) + inRatio * inWorldSpaceHingeAxis2.Dot(ioBody2.GetAngularVelocity()));
mTotalLambda += lambda; // Store accumulated impulse
return ApplyVelocityStep(ioBody1, ioBody2, lambda);
}
/// Return lagrange multiplier
float GetTotalLambda() const
{
return mTotalLambda;
}
/// Iteratively update the position constraint. Makes sure C(...) == 0.
/// @param ioBody1 The first body that this constraint is attached to
/// @param ioBody2 The second body that this constraint is attached to
/// @param inC Value of the constraint equation (C)
/// @param inBaumgarte Baumgarte constant (fraction of the error to correct)
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inC, float inBaumgarte) const
{
// Only apply position constraint when the constraint is hard, otherwise the velocity bias will fix the constraint
if (inC != 0.0f)
{
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
//
// lambda = -K^-1 * beta / dt * C
//
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
float lambda = -mEffectiveMass * inBaumgarte * inC;
// Directly integrate velocity change for one time step
//
// Euler velocity integration:
// dv = M^-1 P
//
// Impulse:
// P = J^T lambda
//
// Euler position integration:
// x' = x + dv * dt
//
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
// integrate + a position integrate and then discard the velocity change.
if (ioBody1.IsDynamic())
ioBody1.AddRotationStep(lambda * mInvI1_A);
if (ioBody2.IsDynamic())
ioBody2.AddRotationStep(lambda * mInvI2_B);
return true;
}
return false;
}
/// Save state of this constraint part
void SaveState(StateRecorder &inStream) const
{
inStream.Write(mTotalLambda);
}
/// Restore state of this constraint part
void RestoreState(StateRecorder &inStream)
{
inStream.Read(mTotalLambda);
}
private:
Vec3 mInvI1_A;
Vec3 mInvI2_B;
float mEffectiveMass = 0.0f;
float mTotalLambda = 0.0f;
};
JPH_NAMESPACE_END