godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Vehicle/MotorcycleController.cpp

294 lines
11 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2023 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Vehicle/MotorcycleController.h>
#include <Jolt/Physics/PhysicsSystem.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(MotorcycleControllerSettings)
{
JPH_ADD_BASE_CLASS(MotorcycleControllerSettings, VehicleControllerSettings)
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mMaxLeanAngle)
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringConstant)
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringDamping)
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringIntegrationCoefficient)
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringIntegrationCoefficientDecay)
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSmoothingFactor)
}
VehicleController *MotorcycleControllerSettings::ConstructController(VehicleConstraint &inConstraint) const
{
return new MotorcycleController(*this, inConstraint);
}
void MotorcycleControllerSettings::SaveBinaryState(StreamOut &inStream) const
{
WheeledVehicleControllerSettings::SaveBinaryState(inStream);
inStream.Write(mMaxLeanAngle);
inStream.Write(mLeanSpringConstant);
inStream.Write(mLeanSpringDamping);
inStream.Write(mLeanSpringIntegrationCoefficient);
inStream.Write(mLeanSpringIntegrationCoefficientDecay);
inStream.Write(mLeanSmoothingFactor);
}
void MotorcycleControllerSettings::RestoreBinaryState(StreamIn &inStream)
{
WheeledVehicleControllerSettings::RestoreBinaryState(inStream);
inStream.Read(mMaxLeanAngle);
inStream.Read(mLeanSpringConstant);
inStream.Read(mLeanSpringDamping);
inStream.Read(mLeanSpringIntegrationCoefficient);
inStream.Read(mLeanSpringIntegrationCoefficientDecay);
inStream.Read(mLeanSmoothingFactor);
}
MotorcycleController::MotorcycleController(const MotorcycleControllerSettings &inSettings, VehicleConstraint &inConstraint) :
WheeledVehicleController(inSettings, inConstraint),
mMaxLeanAngle(inSettings.mMaxLeanAngle),
mLeanSpringConstant(inSettings.mLeanSpringConstant),
mLeanSpringDamping(inSettings.mLeanSpringDamping),
mLeanSpringIntegrationCoefficient(inSettings.mLeanSpringIntegrationCoefficient),
mLeanSpringIntegrationCoefficientDecay(inSettings.mLeanSpringIntegrationCoefficientDecay),
mLeanSmoothingFactor(inSettings.mLeanSmoothingFactor)
{
}
float MotorcycleController::GetWheelBase() const
{
float low = FLT_MAX, high = -FLT_MAX;
for (const Wheel *w : mConstraint.GetWheels())
{
const WheelSettings *s = w->GetSettings();
// Measure distance along the forward axis by looking at the fully extended suspension.
// If the suspension force point is active, use that instead.
Vec3 force_point = s->mEnableSuspensionForcePoint? s->mSuspensionForcePoint : s->mPosition + s->mSuspensionDirection * s->mSuspensionMaxLength;
float value = force_point.Dot(mConstraint.GetLocalForward());
// Update min and max
low = min(low, value);
high = max(high, value);
}
return high - low;
}
void MotorcycleController::PreCollide(float inDeltaTime, PhysicsSystem &inPhysicsSystem)
{
WheeledVehicleController::PreCollide(inDeltaTime, inPhysicsSystem);
const Body *body = mConstraint.GetVehicleBody();
Vec3 forward = body->GetRotation() * mConstraint.GetLocalForward();
float wheel_base = GetWheelBase();
Vec3 world_up = mConstraint.GetWorldUp();
if (mEnableLeanController)
{
// Calculate the target lean vector, this is in the direction of the total applied impulse by the ground on the wheels
Vec3 target_lean = Vec3::sZero();
for (const Wheel *w : mConstraint.GetWheels())
if (w->HasContact())
target_lean += w->GetContactNormal() * w->GetSuspensionLambda() + w->GetContactLateral() * w->GetLateralLambda();
// Normalize the impulse
target_lean = target_lean.NormalizedOr(world_up);
// Smooth the impulse to avoid jittery behavior
mTargetLean = mLeanSmoothingFactor * mTargetLean + (1.0f - mLeanSmoothingFactor) * target_lean;
// Remove forward component, we can only lean sideways
mTargetLean -= forward * mTargetLean.Dot(forward);
mTargetLean = mTargetLean.NormalizedOr(world_up);
// Clamp the target lean against the max lean angle
Vec3 adjusted_world_up = world_up - forward * world_up.Dot(forward);
adjusted_world_up = adjusted_world_up.NormalizedOr(world_up);
float w_angle = -Sign(mTargetLean.Cross(adjusted_world_up).Dot(forward)) * ACos(mTargetLean.Dot(adjusted_world_up));
if (abs(w_angle) > mMaxLeanAngle)
mTargetLean = Quat::sRotation(forward, Sign(w_angle) * mMaxLeanAngle) * adjusted_world_up;
// Integrate the delta angle
Vec3 up = body->GetRotation() * mConstraint.GetLocalUp();
float d_angle = -Sign(mTargetLean.Cross(up).Dot(forward)) * ACos(mTargetLean.Dot(up));
mLeanSpringIntegratedDeltaAngle += d_angle * inDeltaTime;
}
else
{
// Controller not enabled, reset target lean
mTargetLean = world_up;
// Reset integrated delta angle
mLeanSpringIntegratedDeltaAngle = 0;
}
JPH_DET_LOG("WheeledVehicleController::PreCollide: mTargetLean: " << mTargetLean);
// Calculate max steering angle based on the max lean angle we're willing to take
// See: https://en.wikipedia.org/wiki/Bicycle_and_motorcycle_dynamics#Leaning
// LeanAngle = Atan(Velocity^2 / (Gravity * TurnRadius))
// And: https://en.wikipedia.org/wiki/Turning_radius (we're ignoring the tire width)
// The CasterAngle is the added according to https://en.wikipedia.org/wiki/Bicycle_and_motorcycle_dynamics#Turning (this is the same formula but without small angle approximation)
// TurnRadius = WheelBase / (Sin(SteerAngle) * Cos(CasterAngle))
// => SteerAngle = ASin(WheelBase * Tan(LeanAngle) * Gravity / (Velocity^2 * Cos(CasterAngle))
// The caster angle is different for each wheel so we can only calculate part of the equation here
float max_steer_angle_factor = wheel_base * Tan(mMaxLeanAngle) * (mConstraint.IsGravityOverridden()? mConstraint.GetGravityOverride() : inPhysicsSystem.GetGravity()).Length();
// Calculate forward velocity
float velocity = body->GetLinearVelocity().Dot(forward);
float velocity_sq = Square(velocity);
// Decompose steering into sign and direction
float steer_strength = abs(mRightInput);
float steer_sign = -Sign(mRightInput);
for (Wheel *w_base : mConstraint.GetWheels())
{
WheelWV *w = static_cast<WheelWV *>(w_base);
const WheelSettingsWV *s = w->GetSettings();
// Check if this wheel can steer
if (s->mMaxSteerAngle != 0.0f)
{
// Calculate cos(caster angle), the angle between the steering axis and the up vector
float cos_caster_angle = s->mSteeringAxis.Dot(mConstraint.GetLocalUp());
// Calculate steer angle
float steer_angle = steer_strength * w->GetSettings()->mMaxSteerAngle;
// Clamp to max steering angle
if (mEnableLeanSteeringLimit
&& velocity_sq > 1.0e-6f && cos_caster_angle > 1.0e-6f)
{
float max_steer_angle = ASin(max_steer_angle_factor / (velocity_sq * cos_caster_angle));
steer_angle = min(steer_angle, max_steer_angle);
}
// Set steering angle
w->SetSteerAngle(steer_sign * steer_angle);
}
}
// Reset applied impulse
mAppliedImpulse = 0;
}
bool MotorcycleController::SolveLongitudinalAndLateralConstraints(float inDeltaTime)
{
bool impulse = WheeledVehicleController::SolveLongitudinalAndLateralConstraints(inDeltaTime);
if (mEnableLeanController)
{
// Only apply a lean impulse if all wheels are in contact, otherwise we can easily spin out
bool all_in_contact = true;
for (const Wheel *w : mConstraint.GetWheels())
if (!w->HasContact() || w->GetSuspensionLambda() <= 0.0f)
{
all_in_contact = false;
break;
}
if (all_in_contact)
{
Body *body = mConstraint.GetVehicleBody();
const MotionProperties *mp = body->GetMotionProperties();
Vec3 forward = body->GetRotation() * mConstraint.GetLocalForward();
Vec3 up = body->GetRotation() * mConstraint.GetLocalUp();
// Calculate delta to target angle and derivative
float d_angle = -Sign(mTargetLean.Cross(up).Dot(forward)) * ACos(mTargetLean.Dot(up));
float ddt_angle = body->GetAngularVelocity().Dot(forward);
// Calculate impulse to apply to get to target lean angle
float total_impulse = (mLeanSpringConstant * d_angle - mLeanSpringDamping * ddt_angle + mLeanSpringIntegrationCoefficient * mLeanSpringIntegratedDeltaAngle) * inDeltaTime;
// Remember angular velocity pre angular impulse
Vec3 old_w = mp->GetAngularVelocity();
// Apply impulse taking into account the impulse we've applied earlier
float delta_impulse = total_impulse - mAppliedImpulse;
body->AddAngularImpulse(delta_impulse * forward);
mAppliedImpulse = total_impulse;
// Calculate delta angular velocity due to angular impulse
Vec3 dw = mp->GetAngularVelocity() - old_w;
Vec3 linear_acceleration = Vec3::sZero();
float total_lambda = 0.0f;
for (Wheel *w_base : mConstraint.GetWheels())
{
const WheelWV *w = static_cast<WheelWV *>(w_base);
// We weigh the importance of each contact point according to the contact force
float lambda = w->GetSuspensionLambda();
total_lambda += lambda;
// Linear acceleration of contact point is dw x com_to_contact
Vec3 r = Vec3(w->GetContactPosition() - body->GetCenterOfMassPosition());
linear_acceleration += lambda * dw.Cross(r);
}
// Apply linear impulse to COM to cancel the average velocity change on the wheels due to the angular impulse
Vec3 linear_impulse = -linear_acceleration / (total_lambda * mp->GetInverseMass());
body->AddImpulse(linear_impulse);
// Return true if we applied an impulse
impulse |= delta_impulse != 0.0f;
}
else
{
// Decay the integrated angle because we won't be applying a torque this frame
// Uses 1st order Taylor approximation of e^(-decay * dt) = 1 - decay * dt
mLeanSpringIntegratedDeltaAngle *= max(0.0f, 1.0f - mLeanSpringIntegrationCoefficientDecay * inDeltaTime);
}
}
return impulse;
}
void MotorcycleController::SaveState(StateRecorder &inStream) const
{
WheeledVehicleController::SaveState(inStream);
inStream.Write(mTargetLean);
}
void MotorcycleController::RestoreState(StateRecorder &inStream)
{
WheeledVehicleController::RestoreState(inStream);
inStream.Read(mTargetLean);
}
#ifdef JPH_DEBUG_RENDERER
void MotorcycleController::Draw(DebugRenderer *inRenderer) const
{
WheeledVehicleController::Draw(inRenderer);
// Draw current and desired lean angle
Body *body = mConstraint.GetVehicleBody();
RVec3 center_of_mass = body->GetCenterOfMassPosition();
Vec3 up = body->GetRotation() * mConstraint.GetLocalUp();
inRenderer->DrawArrow(center_of_mass, center_of_mass + up, Color::sYellow, 0.1f);
inRenderer->DrawArrow(center_of_mass, center_of_mass + mTargetLean, Color::sRed, 0.1f);
}
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_END