294 lines
11 KiB
C++
294 lines
11 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2023 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#include <Jolt/Jolt.h>
|
|
|
|
#include <Jolt/Physics/Vehicle/MotorcycleController.h>
|
|
#include <Jolt/Physics/PhysicsSystem.h>
|
|
#include <Jolt/ObjectStream/TypeDeclarations.h>
|
|
#include <Jolt/Core/StreamIn.h>
|
|
#include <Jolt/Core/StreamOut.h>
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
#include <Jolt/Renderer/DebugRenderer.h>
|
|
#endif // JPH_DEBUG_RENDERER
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(MotorcycleControllerSettings)
|
|
{
|
|
JPH_ADD_BASE_CLASS(MotorcycleControllerSettings, VehicleControllerSettings)
|
|
|
|
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mMaxLeanAngle)
|
|
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringConstant)
|
|
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringDamping)
|
|
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringIntegrationCoefficient)
|
|
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSpringIntegrationCoefficientDecay)
|
|
JPH_ADD_ATTRIBUTE(MotorcycleControllerSettings, mLeanSmoothingFactor)
|
|
}
|
|
|
|
VehicleController *MotorcycleControllerSettings::ConstructController(VehicleConstraint &inConstraint) const
|
|
{
|
|
return new MotorcycleController(*this, inConstraint);
|
|
}
|
|
|
|
void MotorcycleControllerSettings::SaveBinaryState(StreamOut &inStream) const
|
|
{
|
|
WheeledVehicleControllerSettings::SaveBinaryState(inStream);
|
|
|
|
inStream.Write(mMaxLeanAngle);
|
|
inStream.Write(mLeanSpringConstant);
|
|
inStream.Write(mLeanSpringDamping);
|
|
inStream.Write(mLeanSpringIntegrationCoefficient);
|
|
inStream.Write(mLeanSpringIntegrationCoefficientDecay);
|
|
inStream.Write(mLeanSmoothingFactor);
|
|
}
|
|
|
|
void MotorcycleControllerSettings::RestoreBinaryState(StreamIn &inStream)
|
|
{
|
|
WheeledVehicleControllerSettings::RestoreBinaryState(inStream);
|
|
|
|
inStream.Read(mMaxLeanAngle);
|
|
inStream.Read(mLeanSpringConstant);
|
|
inStream.Read(mLeanSpringDamping);
|
|
inStream.Read(mLeanSpringIntegrationCoefficient);
|
|
inStream.Read(mLeanSpringIntegrationCoefficientDecay);
|
|
inStream.Read(mLeanSmoothingFactor);
|
|
}
|
|
|
|
MotorcycleController::MotorcycleController(const MotorcycleControllerSettings &inSettings, VehicleConstraint &inConstraint) :
|
|
WheeledVehicleController(inSettings, inConstraint),
|
|
mMaxLeanAngle(inSettings.mMaxLeanAngle),
|
|
mLeanSpringConstant(inSettings.mLeanSpringConstant),
|
|
mLeanSpringDamping(inSettings.mLeanSpringDamping),
|
|
mLeanSpringIntegrationCoefficient(inSettings.mLeanSpringIntegrationCoefficient),
|
|
mLeanSpringIntegrationCoefficientDecay(inSettings.mLeanSpringIntegrationCoefficientDecay),
|
|
mLeanSmoothingFactor(inSettings.mLeanSmoothingFactor)
|
|
{
|
|
}
|
|
|
|
float MotorcycleController::GetWheelBase() const
|
|
{
|
|
float low = FLT_MAX, high = -FLT_MAX;
|
|
|
|
for (const Wheel *w : mConstraint.GetWheels())
|
|
{
|
|
const WheelSettings *s = w->GetSettings();
|
|
|
|
// Measure distance along the forward axis by looking at the fully extended suspension.
|
|
// If the suspension force point is active, use that instead.
|
|
Vec3 force_point = s->mEnableSuspensionForcePoint? s->mSuspensionForcePoint : s->mPosition + s->mSuspensionDirection * s->mSuspensionMaxLength;
|
|
float value = force_point.Dot(mConstraint.GetLocalForward());
|
|
|
|
// Update min and max
|
|
low = min(low, value);
|
|
high = max(high, value);
|
|
}
|
|
|
|
return high - low;
|
|
}
|
|
|
|
void MotorcycleController::PreCollide(float inDeltaTime, PhysicsSystem &inPhysicsSystem)
|
|
{
|
|
WheeledVehicleController::PreCollide(inDeltaTime, inPhysicsSystem);
|
|
|
|
const Body *body = mConstraint.GetVehicleBody();
|
|
Vec3 forward = body->GetRotation() * mConstraint.GetLocalForward();
|
|
float wheel_base = GetWheelBase();
|
|
Vec3 world_up = mConstraint.GetWorldUp();
|
|
|
|
if (mEnableLeanController)
|
|
{
|
|
// Calculate the target lean vector, this is in the direction of the total applied impulse by the ground on the wheels
|
|
Vec3 target_lean = Vec3::sZero();
|
|
for (const Wheel *w : mConstraint.GetWheels())
|
|
if (w->HasContact())
|
|
target_lean += w->GetContactNormal() * w->GetSuspensionLambda() + w->GetContactLateral() * w->GetLateralLambda();
|
|
|
|
// Normalize the impulse
|
|
target_lean = target_lean.NormalizedOr(world_up);
|
|
|
|
// Smooth the impulse to avoid jittery behavior
|
|
mTargetLean = mLeanSmoothingFactor * mTargetLean + (1.0f - mLeanSmoothingFactor) * target_lean;
|
|
|
|
// Remove forward component, we can only lean sideways
|
|
mTargetLean -= forward * mTargetLean.Dot(forward);
|
|
mTargetLean = mTargetLean.NormalizedOr(world_up);
|
|
|
|
// Clamp the target lean against the max lean angle
|
|
Vec3 adjusted_world_up = world_up - forward * world_up.Dot(forward);
|
|
adjusted_world_up = adjusted_world_up.NormalizedOr(world_up);
|
|
float w_angle = -Sign(mTargetLean.Cross(adjusted_world_up).Dot(forward)) * ACos(mTargetLean.Dot(adjusted_world_up));
|
|
if (abs(w_angle) > mMaxLeanAngle)
|
|
mTargetLean = Quat::sRotation(forward, Sign(w_angle) * mMaxLeanAngle) * adjusted_world_up;
|
|
|
|
// Integrate the delta angle
|
|
Vec3 up = body->GetRotation() * mConstraint.GetLocalUp();
|
|
float d_angle = -Sign(mTargetLean.Cross(up).Dot(forward)) * ACos(mTargetLean.Dot(up));
|
|
mLeanSpringIntegratedDeltaAngle += d_angle * inDeltaTime;
|
|
}
|
|
else
|
|
{
|
|
// Controller not enabled, reset target lean
|
|
mTargetLean = world_up;
|
|
|
|
// Reset integrated delta angle
|
|
mLeanSpringIntegratedDeltaAngle = 0;
|
|
}
|
|
|
|
JPH_DET_LOG("WheeledVehicleController::PreCollide: mTargetLean: " << mTargetLean);
|
|
|
|
// Calculate max steering angle based on the max lean angle we're willing to take
|
|
// See: https://en.wikipedia.org/wiki/Bicycle_and_motorcycle_dynamics#Leaning
|
|
// LeanAngle = Atan(Velocity^2 / (Gravity * TurnRadius))
|
|
// And: https://en.wikipedia.org/wiki/Turning_radius (we're ignoring the tire width)
|
|
// The CasterAngle is the added according to https://en.wikipedia.org/wiki/Bicycle_and_motorcycle_dynamics#Turning (this is the same formula but without small angle approximation)
|
|
// TurnRadius = WheelBase / (Sin(SteerAngle) * Cos(CasterAngle))
|
|
// => SteerAngle = ASin(WheelBase * Tan(LeanAngle) * Gravity / (Velocity^2 * Cos(CasterAngle))
|
|
// The caster angle is different for each wheel so we can only calculate part of the equation here
|
|
float max_steer_angle_factor = wheel_base * Tan(mMaxLeanAngle) * (mConstraint.IsGravityOverridden()? mConstraint.GetGravityOverride() : inPhysicsSystem.GetGravity()).Length();
|
|
|
|
// Calculate forward velocity
|
|
float velocity = body->GetLinearVelocity().Dot(forward);
|
|
float velocity_sq = Square(velocity);
|
|
|
|
// Decompose steering into sign and direction
|
|
float steer_strength = abs(mRightInput);
|
|
float steer_sign = -Sign(mRightInput);
|
|
|
|
for (Wheel *w_base : mConstraint.GetWheels())
|
|
{
|
|
WheelWV *w = static_cast<WheelWV *>(w_base);
|
|
const WheelSettingsWV *s = w->GetSettings();
|
|
|
|
// Check if this wheel can steer
|
|
if (s->mMaxSteerAngle != 0.0f)
|
|
{
|
|
// Calculate cos(caster angle), the angle between the steering axis and the up vector
|
|
float cos_caster_angle = s->mSteeringAxis.Dot(mConstraint.GetLocalUp());
|
|
|
|
// Calculate steer angle
|
|
float steer_angle = steer_strength * w->GetSettings()->mMaxSteerAngle;
|
|
|
|
// Clamp to max steering angle
|
|
if (mEnableLeanSteeringLimit
|
|
&& velocity_sq > 1.0e-6f && cos_caster_angle > 1.0e-6f)
|
|
{
|
|
float max_steer_angle = ASin(max_steer_angle_factor / (velocity_sq * cos_caster_angle));
|
|
steer_angle = min(steer_angle, max_steer_angle);
|
|
}
|
|
|
|
// Set steering angle
|
|
w->SetSteerAngle(steer_sign * steer_angle);
|
|
}
|
|
}
|
|
|
|
// Reset applied impulse
|
|
mAppliedImpulse = 0;
|
|
}
|
|
|
|
bool MotorcycleController::SolveLongitudinalAndLateralConstraints(float inDeltaTime)
|
|
{
|
|
bool impulse = WheeledVehicleController::SolveLongitudinalAndLateralConstraints(inDeltaTime);
|
|
|
|
if (mEnableLeanController)
|
|
{
|
|
// Only apply a lean impulse if all wheels are in contact, otherwise we can easily spin out
|
|
bool all_in_contact = true;
|
|
for (const Wheel *w : mConstraint.GetWheels())
|
|
if (!w->HasContact() || w->GetSuspensionLambda() <= 0.0f)
|
|
{
|
|
all_in_contact = false;
|
|
break;
|
|
}
|
|
|
|
if (all_in_contact)
|
|
{
|
|
Body *body = mConstraint.GetVehicleBody();
|
|
const MotionProperties *mp = body->GetMotionProperties();
|
|
|
|
Vec3 forward = body->GetRotation() * mConstraint.GetLocalForward();
|
|
Vec3 up = body->GetRotation() * mConstraint.GetLocalUp();
|
|
|
|
// Calculate delta to target angle and derivative
|
|
float d_angle = -Sign(mTargetLean.Cross(up).Dot(forward)) * ACos(mTargetLean.Dot(up));
|
|
float ddt_angle = body->GetAngularVelocity().Dot(forward);
|
|
|
|
// Calculate impulse to apply to get to target lean angle
|
|
float total_impulse = (mLeanSpringConstant * d_angle - mLeanSpringDamping * ddt_angle + mLeanSpringIntegrationCoefficient * mLeanSpringIntegratedDeltaAngle) * inDeltaTime;
|
|
|
|
// Remember angular velocity pre angular impulse
|
|
Vec3 old_w = mp->GetAngularVelocity();
|
|
|
|
// Apply impulse taking into account the impulse we've applied earlier
|
|
float delta_impulse = total_impulse - mAppliedImpulse;
|
|
body->AddAngularImpulse(delta_impulse * forward);
|
|
mAppliedImpulse = total_impulse;
|
|
|
|
// Calculate delta angular velocity due to angular impulse
|
|
Vec3 dw = mp->GetAngularVelocity() - old_w;
|
|
Vec3 linear_acceleration = Vec3::sZero();
|
|
float total_lambda = 0.0f;
|
|
for (Wheel *w_base : mConstraint.GetWheels())
|
|
{
|
|
const WheelWV *w = static_cast<WheelWV *>(w_base);
|
|
|
|
// We weigh the importance of each contact point according to the contact force
|
|
float lambda = w->GetSuspensionLambda();
|
|
total_lambda += lambda;
|
|
|
|
// Linear acceleration of contact point is dw x com_to_contact
|
|
Vec3 r = Vec3(w->GetContactPosition() - body->GetCenterOfMassPosition());
|
|
linear_acceleration += lambda * dw.Cross(r);
|
|
}
|
|
|
|
// Apply linear impulse to COM to cancel the average velocity change on the wheels due to the angular impulse
|
|
Vec3 linear_impulse = -linear_acceleration / (total_lambda * mp->GetInverseMass());
|
|
body->AddImpulse(linear_impulse);
|
|
|
|
// Return true if we applied an impulse
|
|
impulse |= delta_impulse != 0.0f;
|
|
}
|
|
else
|
|
{
|
|
// Decay the integrated angle because we won't be applying a torque this frame
|
|
// Uses 1st order Taylor approximation of e^(-decay * dt) = 1 - decay * dt
|
|
mLeanSpringIntegratedDeltaAngle *= max(0.0f, 1.0f - mLeanSpringIntegrationCoefficientDecay * inDeltaTime);
|
|
}
|
|
}
|
|
|
|
return impulse;
|
|
}
|
|
|
|
void MotorcycleController::SaveState(StateRecorder &inStream) const
|
|
{
|
|
WheeledVehicleController::SaveState(inStream);
|
|
|
|
inStream.Write(mTargetLean);
|
|
}
|
|
|
|
void MotorcycleController::RestoreState(StateRecorder &inStream)
|
|
{
|
|
WheeledVehicleController::RestoreState(inStream);
|
|
|
|
inStream.Read(mTargetLean);
|
|
}
|
|
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
|
|
void MotorcycleController::Draw(DebugRenderer *inRenderer) const
|
|
{
|
|
WheeledVehicleController::Draw(inRenderer);
|
|
|
|
// Draw current and desired lean angle
|
|
Body *body = mConstraint.GetVehicleBody();
|
|
RVec3 center_of_mass = body->GetCenterOfMassPosition();
|
|
Vec3 up = body->GetRotation() * mConstraint.GetLocalUp();
|
|
inRenderer->DrawArrow(center_of_mass, center_of_mass + up, Color::sYellow, 0.1f);
|
|
inRenderer->DrawArrow(center_of_mass, center_of_mass + mTargetLean, Color::sRed, 0.1f);
|
|
}
|
|
|
|
#endif // JPH_DEBUG_RENDERER
|
|
|
|
JPH_NAMESPACE_END
|