201 lines
9.1 KiB
C++
201 lines
9.1 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Physics/Constraints/TwoBodyConstraint.h>
|
|
#include <Jolt/Physics/Constraints/MotorSettings.h>
|
|
#include <Jolt/Physics/Constraints/ConstraintPart/PointConstraintPart.h>
|
|
#include <Jolt/Physics/Constraints/ConstraintPart/HingeRotationConstraintPart.h>
|
|
#include <Jolt/Physics/Constraints/ConstraintPart/AngleConstraintPart.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
/// Hinge constraint settings, used to create a hinge constraint
|
|
class JPH_EXPORT HingeConstraintSettings final : public TwoBodyConstraintSettings
|
|
{
|
|
JPH_DECLARE_SERIALIZABLE_VIRTUAL(JPH_EXPORT, HingeConstraintSettings)
|
|
|
|
public:
|
|
// See: ConstraintSettings::SaveBinaryState
|
|
virtual void SaveBinaryState(StreamOut &inStream) const override;
|
|
|
|
/// Create an instance of this constraint
|
|
virtual TwoBodyConstraint * Create(Body &inBody1, Body &inBody2) const override;
|
|
|
|
/// This determines in which space the constraint is setup, all properties below should be in the specified space
|
|
EConstraintSpace mSpace = EConstraintSpace::WorldSpace;
|
|
|
|
/// Body 1 constraint reference frame (space determined by mSpace).
|
|
/// Hinge axis is the axis where rotation is allowed.
|
|
/// When the normal axis of both bodies align in world space, the hinge angle is defined to be 0.
|
|
/// mHingeAxis1 and mNormalAxis1 should be perpendicular. mHingeAxis2 and mNormalAxis2 should also be perpendicular.
|
|
/// If you configure the joint in world space and create both bodies with a relative rotation you want to be defined as zero,
|
|
/// you can simply set mHingeAxis1 = mHingeAxis2 and mNormalAxis1 = mNormalAxis2.
|
|
RVec3 mPoint1 = RVec3::sZero();
|
|
Vec3 mHingeAxis1 = Vec3::sAxisY();
|
|
Vec3 mNormalAxis1 = Vec3::sAxisX();
|
|
|
|
/// Body 2 constraint reference frame (space determined by mSpace)
|
|
RVec3 mPoint2 = RVec3::sZero();
|
|
Vec3 mHingeAxis2 = Vec3::sAxisY();
|
|
Vec3 mNormalAxis2 = Vec3::sAxisX();
|
|
|
|
/// Rotation around the hinge axis will be limited between [mLimitsMin, mLimitsMax] where mLimitsMin e [-pi, 0] and mLimitsMax e [0, pi].
|
|
/// Both angles are in radians.
|
|
float mLimitsMin = -JPH_PI;
|
|
float mLimitsMax = JPH_PI;
|
|
|
|
/// When enabled, this makes the limits soft. When the constraint exceeds the limits, a spring force will pull it back.
|
|
SpringSettings mLimitsSpringSettings;
|
|
|
|
/// Maximum amount of torque (N m) to apply as friction when the constraint is not powered by a motor
|
|
float mMaxFrictionTorque = 0.0f;
|
|
|
|
/// In case the constraint is powered, this determines the motor settings around the hinge axis
|
|
MotorSettings mMotorSettings;
|
|
|
|
protected:
|
|
// See: ConstraintSettings::RestoreBinaryState
|
|
virtual void RestoreBinaryState(StreamIn &inStream) override;
|
|
};
|
|
|
|
/// A hinge constraint constrains 2 bodies on a single point and allows only a single axis of rotation
|
|
class JPH_EXPORT HingeConstraint final : public TwoBodyConstraint
|
|
{
|
|
public:
|
|
JPH_OVERRIDE_NEW_DELETE
|
|
|
|
/// Construct hinge constraint
|
|
HingeConstraint(Body &inBody1, Body &inBody2, const HingeConstraintSettings &inSettings);
|
|
|
|
// Generic interface of a constraint
|
|
virtual EConstraintSubType GetSubType() const override { return EConstraintSubType::Hinge; }
|
|
virtual void NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM) override;
|
|
virtual void SetupVelocityConstraint(float inDeltaTime) override;
|
|
virtual void ResetWarmStart() override;
|
|
virtual void WarmStartVelocityConstraint(float inWarmStartImpulseRatio) override;
|
|
virtual bool SolveVelocityConstraint(float inDeltaTime) override;
|
|
virtual bool SolvePositionConstraint(float inDeltaTime, float inBaumgarte) override;
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
virtual void DrawConstraint(DebugRenderer *inRenderer) const override;
|
|
virtual void DrawConstraintLimits(DebugRenderer *inRenderer) const override;
|
|
#endif // JPH_DEBUG_RENDERER
|
|
virtual void SaveState(StateRecorder &inStream) const override;
|
|
virtual void RestoreState(StateRecorder &inStream) override;
|
|
virtual Ref<ConstraintSettings> GetConstraintSettings() const override;
|
|
|
|
// See: TwoBodyConstraint
|
|
virtual Mat44 GetConstraintToBody1Matrix() const override;
|
|
virtual Mat44 GetConstraintToBody2Matrix() const override;
|
|
|
|
/// Get the attachment point for body 1 relative to body 1 COM (transform by Body::GetCenterOfMassTransform to take to world space)
|
|
inline Vec3 GetLocalSpacePoint1() const { return mLocalSpacePosition1; }
|
|
|
|
/// Get the attachment point for body 2 relative to body 2 COM (transform by Body::GetCenterOfMassTransform to take to world space)
|
|
inline Vec3 GetLocalSpacePoint2() const { return mLocalSpacePosition2; }
|
|
|
|
// Local space hinge directions (transform direction by Body::GetCenterOfMassTransform to take to world space)
|
|
Vec3 GetLocalSpaceHingeAxis1() const { return mLocalSpaceHingeAxis1; }
|
|
Vec3 GetLocalSpaceHingeAxis2() const { return mLocalSpaceHingeAxis2; }
|
|
|
|
// Local space normal directions (transform direction by Body::GetCenterOfMassTransform to take to world space)
|
|
Vec3 GetLocalSpaceNormalAxis1() const { return mLocalSpaceNormalAxis1; }
|
|
Vec3 GetLocalSpaceNormalAxis2() const { return mLocalSpaceNormalAxis2; }
|
|
|
|
/// Get the current rotation angle from the rest position
|
|
float GetCurrentAngle() const;
|
|
|
|
// Friction control
|
|
void SetMaxFrictionTorque(float inFrictionTorque) { mMaxFrictionTorque = inFrictionTorque; }
|
|
float GetMaxFrictionTorque() const { return mMaxFrictionTorque; }
|
|
|
|
// Motor settings
|
|
MotorSettings & GetMotorSettings() { return mMotorSettings; }
|
|
const MotorSettings & GetMotorSettings() const { return mMotorSettings; }
|
|
|
|
// Motor controls
|
|
void SetMotorState(EMotorState inState) { JPH_ASSERT(inState == EMotorState::Off || mMotorSettings.IsValid()); mMotorState = inState; }
|
|
EMotorState GetMotorState() const { return mMotorState; }
|
|
void SetTargetAngularVelocity(float inAngularVelocity) { mTargetAngularVelocity = inAngularVelocity; } ///< rad/s
|
|
float GetTargetAngularVelocity() const { return mTargetAngularVelocity; }
|
|
void SetTargetAngle(float inAngle) { mTargetAngle = mHasLimits? Clamp(inAngle, mLimitsMin, mLimitsMax) : inAngle; } ///< rad
|
|
float GetTargetAngle() const { return mTargetAngle; }
|
|
|
|
/// Update the rotation limits of the hinge, value in radians (see HingeConstraintSettings)
|
|
void SetLimits(float inLimitsMin, float inLimitsMax);
|
|
float GetLimitsMin() const { return mLimitsMin; }
|
|
float GetLimitsMax() const { return mLimitsMax; }
|
|
bool HasLimits() const { return mHasLimits; }
|
|
|
|
/// Update the limits spring settings
|
|
const SpringSettings & GetLimitsSpringSettings() const { return mLimitsSpringSettings; }
|
|
SpringSettings & GetLimitsSpringSettings() { return mLimitsSpringSettings; }
|
|
void SetLimitsSpringSettings(const SpringSettings &inLimitsSpringSettings) { mLimitsSpringSettings = inLimitsSpringSettings; }
|
|
|
|
///@name Get Lagrange multiplier from last physics update (the linear/angular impulse applied to satisfy the constraint)
|
|
inline Vec3 GetTotalLambdaPosition() const { return mPointConstraintPart.GetTotalLambda(); }
|
|
inline Vector<2> GetTotalLambdaRotation() const { return mRotationConstraintPart.GetTotalLambda(); }
|
|
inline float GetTotalLambdaRotationLimits() const { return mRotationLimitsConstraintPart.GetTotalLambda(); }
|
|
inline float GetTotalLambdaMotor() const { return mMotorConstraintPart.GetTotalLambda(); }
|
|
|
|
private:
|
|
// Internal helper function to calculate the values below
|
|
void CalculateA1AndTheta();
|
|
void CalculateRotationLimitsConstraintProperties(float inDeltaTime);
|
|
void CalculateMotorConstraintProperties(float inDeltaTime);
|
|
inline float GetSmallestAngleToLimit() const;
|
|
inline bool IsMinLimitClosest() const;
|
|
|
|
// CONFIGURATION PROPERTIES FOLLOW
|
|
|
|
// Local space constraint positions
|
|
Vec3 mLocalSpacePosition1;
|
|
Vec3 mLocalSpacePosition2;
|
|
|
|
// Local space hinge directions
|
|
Vec3 mLocalSpaceHingeAxis1;
|
|
Vec3 mLocalSpaceHingeAxis2;
|
|
|
|
// Local space normal direction (direction relative to which to draw constraint limits)
|
|
Vec3 mLocalSpaceNormalAxis1;
|
|
Vec3 mLocalSpaceNormalAxis2;
|
|
|
|
// Inverse of initial relative orientation between bodies (which defines hinge angle = 0)
|
|
Quat mInvInitialOrientation;
|
|
|
|
// Hinge limits
|
|
bool mHasLimits;
|
|
float mLimitsMin;
|
|
float mLimitsMax;
|
|
|
|
// Soft constraint limits
|
|
SpringSettings mLimitsSpringSettings;
|
|
|
|
// Friction
|
|
float mMaxFrictionTorque;
|
|
|
|
// Motor controls
|
|
MotorSettings mMotorSettings;
|
|
EMotorState mMotorState = EMotorState::Off;
|
|
float mTargetAngularVelocity = 0.0f;
|
|
float mTargetAngle = 0.0f;
|
|
|
|
// RUN TIME PROPERTIES FOLLOW
|
|
|
|
// Current rotation around the hinge axis
|
|
float mTheta = 0.0f;
|
|
|
|
// World space hinge axis for body 1
|
|
Vec3 mA1;
|
|
|
|
// The constraint parts
|
|
PointConstraintPart mPointConstraintPart;
|
|
HingeRotationConstraintPart mRotationConstraintPart;
|
|
AngleConstraintPart mRotationLimitsConstraintPart;
|
|
AngleConstraintPart mMotorConstraintPart;
|
|
};
|
|
|
|
JPH_NAMESPACE_END
|