godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/HingeConstraint.h

201 lines
9.1 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Physics/Constraints/TwoBodyConstraint.h>
#include <Jolt/Physics/Constraints/MotorSettings.h>
#include <Jolt/Physics/Constraints/ConstraintPart/PointConstraintPart.h>
#include <Jolt/Physics/Constraints/ConstraintPart/HingeRotationConstraintPart.h>
#include <Jolt/Physics/Constraints/ConstraintPart/AngleConstraintPart.h>
JPH_NAMESPACE_BEGIN
/// Hinge constraint settings, used to create a hinge constraint
class JPH_EXPORT HingeConstraintSettings final : public TwoBodyConstraintSettings
{
JPH_DECLARE_SERIALIZABLE_VIRTUAL(JPH_EXPORT, HingeConstraintSettings)
public:
// See: ConstraintSettings::SaveBinaryState
virtual void SaveBinaryState(StreamOut &inStream) const override;
/// Create an instance of this constraint
virtual TwoBodyConstraint * Create(Body &inBody1, Body &inBody2) const override;
/// This determines in which space the constraint is setup, all properties below should be in the specified space
EConstraintSpace mSpace = EConstraintSpace::WorldSpace;
/// Body 1 constraint reference frame (space determined by mSpace).
/// Hinge axis is the axis where rotation is allowed.
/// When the normal axis of both bodies align in world space, the hinge angle is defined to be 0.
/// mHingeAxis1 and mNormalAxis1 should be perpendicular. mHingeAxis2 and mNormalAxis2 should also be perpendicular.
/// If you configure the joint in world space and create both bodies with a relative rotation you want to be defined as zero,
/// you can simply set mHingeAxis1 = mHingeAxis2 and mNormalAxis1 = mNormalAxis2.
RVec3 mPoint1 = RVec3::sZero();
Vec3 mHingeAxis1 = Vec3::sAxisY();
Vec3 mNormalAxis1 = Vec3::sAxisX();
/// Body 2 constraint reference frame (space determined by mSpace)
RVec3 mPoint2 = RVec3::sZero();
Vec3 mHingeAxis2 = Vec3::sAxisY();
Vec3 mNormalAxis2 = Vec3::sAxisX();
/// Rotation around the hinge axis will be limited between [mLimitsMin, mLimitsMax] where mLimitsMin e [-pi, 0] and mLimitsMax e [0, pi].
/// Both angles are in radians.
float mLimitsMin = -JPH_PI;
float mLimitsMax = JPH_PI;
/// When enabled, this makes the limits soft. When the constraint exceeds the limits, a spring force will pull it back.
SpringSettings mLimitsSpringSettings;
/// Maximum amount of torque (N m) to apply as friction when the constraint is not powered by a motor
float mMaxFrictionTorque = 0.0f;
/// In case the constraint is powered, this determines the motor settings around the hinge axis
MotorSettings mMotorSettings;
protected:
// See: ConstraintSettings::RestoreBinaryState
virtual void RestoreBinaryState(StreamIn &inStream) override;
};
/// A hinge constraint constrains 2 bodies on a single point and allows only a single axis of rotation
class JPH_EXPORT HingeConstraint final : public TwoBodyConstraint
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Construct hinge constraint
HingeConstraint(Body &inBody1, Body &inBody2, const HingeConstraintSettings &inSettings);
// Generic interface of a constraint
virtual EConstraintSubType GetSubType() const override { return EConstraintSubType::Hinge; }
virtual void NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM) override;
virtual void SetupVelocityConstraint(float inDeltaTime) override;
virtual void ResetWarmStart() override;
virtual void WarmStartVelocityConstraint(float inWarmStartImpulseRatio) override;
virtual bool SolveVelocityConstraint(float inDeltaTime) override;
virtual bool SolvePositionConstraint(float inDeltaTime, float inBaumgarte) override;
#ifdef JPH_DEBUG_RENDERER
virtual void DrawConstraint(DebugRenderer *inRenderer) const override;
virtual void DrawConstraintLimits(DebugRenderer *inRenderer) const override;
#endif // JPH_DEBUG_RENDERER
virtual void SaveState(StateRecorder &inStream) const override;
virtual void RestoreState(StateRecorder &inStream) override;
virtual Ref<ConstraintSettings> GetConstraintSettings() const override;
// See: TwoBodyConstraint
virtual Mat44 GetConstraintToBody1Matrix() const override;
virtual Mat44 GetConstraintToBody2Matrix() const override;
/// Get the attachment point for body 1 relative to body 1 COM (transform by Body::GetCenterOfMassTransform to take to world space)
inline Vec3 GetLocalSpacePoint1() const { return mLocalSpacePosition1; }
/// Get the attachment point for body 2 relative to body 2 COM (transform by Body::GetCenterOfMassTransform to take to world space)
inline Vec3 GetLocalSpacePoint2() const { return mLocalSpacePosition2; }
// Local space hinge directions (transform direction by Body::GetCenterOfMassTransform to take to world space)
Vec3 GetLocalSpaceHingeAxis1() const { return mLocalSpaceHingeAxis1; }
Vec3 GetLocalSpaceHingeAxis2() const { return mLocalSpaceHingeAxis2; }
// Local space normal directions (transform direction by Body::GetCenterOfMassTransform to take to world space)
Vec3 GetLocalSpaceNormalAxis1() const { return mLocalSpaceNormalAxis1; }
Vec3 GetLocalSpaceNormalAxis2() const { return mLocalSpaceNormalAxis2; }
/// Get the current rotation angle from the rest position
float GetCurrentAngle() const;
// Friction control
void SetMaxFrictionTorque(float inFrictionTorque) { mMaxFrictionTorque = inFrictionTorque; }
float GetMaxFrictionTorque() const { return mMaxFrictionTorque; }
// Motor settings
MotorSettings & GetMotorSettings() { return mMotorSettings; }
const MotorSettings & GetMotorSettings() const { return mMotorSettings; }
// Motor controls
void SetMotorState(EMotorState inState) { JPH_ASSERT(inState == EMotorState::Off || mMotorSettings.IsValid()); mMotorState = inState; }
EMotorState GetMotorState() const { return mMotorState; }
void SetTargetAngularVelocity(float inAngularVelocity) { mTargetAngularVelocity = inAngularVelocity; } ///< rad/s
float GetTargetAngularVelocity() const { return mTargetAngularVelocity; }
void SetTargetAngle(float inAngle) { mTargetAngle = mHasLimits? Clamp(inAngle, mLimitsMin, mLimitsMax) : inAngle; } ///< rad
float GetTargetAngle() const { return mTargetAngle; }
/// Update the rotation limits of the hinge, value in radians (see HingeConstraintSettings)
void SetLimits(float inLimitsMin, float inLimitsMax);
float GetLimitsMin() const { return mLimitsMin; }
float GetLimitsMax() const { return mLimitsMax; }
bool HasLimits() const { return mHasLimits; }
/// Update the limits spring settings
const SpringSettings & GetLimitsSpringSettings() const { return mLimitsSpringSettings; }
SpringSettings & GetLimitsSpringSettings() { return mLimitsSpringSettings; }
void SetLimitsSpringSettings(const SpringSettings &inLimitsSpringSettings) { mLimitsSpringSettings = inLimitsSpringSettings; }
///@name Get Lagrange multiplier from last physics update (the linear/angular impulse applied to satisfy the constraint)
inline Vec3 GetTotalLambdaPosition() const { return mPointConstraintPart.GetTotalLambda(); }
inline Vector<2> GetTotalLambdaRotation() const { return mRotationConstraintPart.GetTotalLambda(); }
inline float GetTotalLambdaRotationLimits() const { return mRotationLimitsConstraintPart.GetTotalLambda(); }
inline float GetTotalLambdaMotor() const { return mMotorConstraintPart.GetTotalLambda(); }
private:
// Internal helper function to calculate the values below
void CalculateA1AndTheta();
void CalculateRotationLimitsConstraintProperties(float inDeltaTime);
void CalculateMotorConstraintProperties(float inDeltaTime);
inline float GetSmallestAngleToLimit() const;
inline bool IsMinLimitClosest() const;
// CONFIGURATION PROPERTIES FOLLOW
// Local space constraint positions
Vec3 mLocalSpacePosition1;
Vec3 mLocalSpacePosition2;
// Local space hinge directions
Vec3 mLocalSpaceHingeAxis1;
Vec3 mLocalSpaceHingeAxis2;
// Local space normal direction (direction relative to which to draw constraint limits)
Vec3 mLocalSpaceNormalAxis1;
Vec3 mLocalSpaceNormalAxis2;
// Inverse of initial relative orientation between bodies (which defines hinge angle = 0)
Quat mInvInitialOrientation;
// Hinge limits
bool mHasLimits;
float mLimitsMin;
float mLimitsMax;
// Soft constraint limits
SpringSettings mLimitsSpringSettings;
// Friction
float mMaxFrictionTorque;
// Motor controls
MotorSettings mMotorSettings;
EMotorState mMotorState = EMotorState::Off;
float mTargetAngularVelocity = 0.0f;
float mTargetAngle = 0.0f;
// RUN TIME PROPERTIES FOLLOW
// Current rotation around the hinge axis
float mTheta = 0.0f;
// World space hinge axis for body 1
Vec3 mA1;
// The constraint parts
PointConstraintPart mPointConstraintPart;
HingeRotationConstraintPart mRotationConstraintPart;
AngleConstraintPart mRotationLimitsConstraintPart;
AngleConstraintPart mMotorConstraintPart;
};
JPH_NAMESPACE_END