godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/ConstraintPart/HingeRotationConstraintPart.h

223 lines
7.3 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/Physics/StateRecorder.h>
#include <Jolt/Math/Vector.h>
#include <Jolt/Math/Matrix.h>
JPH_NAMESPACE_BEGIN
/**
Constrains rotation around 2 axis so that it only allows rotation around 1 axis
Based on: "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.4.1
Constraint equation (eq 87):
\f[C = \begin{bmatrix}a_1 \cdot b_2 \\ a_1 \cdot c_2\end{bmatrix}\f]
Jacobian (eq 90):
\f[J = \begin{bmatrix}
0 & -b_2 \times a_1 & 0 & b_2 \times a_1 \\
0 & -c_2 \times a_1 & 0 & c2 \times a_1
\end{bmatrix}\f]
Used terms (here and below, everything in world space):\n
a1 = hinge axis on body 1.\n
b2, c2 = axis perpendicular to hinge axis on body 2.\n
x1, x2 = center of mass for the bodies.\n
v = [v1, w1, v2, w2].\n
v1, v2 = linear velocity of body 1 and 2.\n
w1, w2 = angular velocity of body 1 and 2.\n
M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
\f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
b = velocity bias.\n
\f$\beta\f$ = baumgarte constant.\n
E = identity matrix.
**/
class HingeRotationConstraintPart
{
public:
using Vec2 = Vector<2>;
using Mat22 = Matrix<2, 2>;
private:
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, const Vec2 &inLambda) const
{
// Apply impulse if delta is not zero
if (!inLambda.IsZero())
{
// Calculate velocity change due to constraint
//
// Impulse:
// P = J^T lambda
//
// Euler velocity integration:
// v' = v + M^-1 P
Vec3 impulse = mB2xA1 * inLambda[0] + mC2xA1 * inLambda[1];
if (ioBody1.IsDynamic())
ioBody1.GetMotionProperties()->SubAngularVelocityStep(mInvI1.Multiply3x3(impulse));
if (ioBody2.IsDynamic())
ioBody2.GetMotionProperties()->AddAngularVelocityStep(mInvI2.Multiply3x3(impulse));
return true;
}
return false;
}
public:
/// Calculate properties used during the functions below
inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inWorldSpaceHingeAxis1, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inWorldSpaceHingeAxis2)
{
JPH_ASSERT(inWorldSpaceHingeAxis1.IsNormalized(1.0e-5f));
JPH_ASSERT(inWorldSpaceHingeAxis2.IsNormalized(1.0e-5f));
// Calculate hinge axis in world space
mA1 = inWorldSpaceHingeAxis1;
Vec3 a2 = inWorldSpaceHingeAxis2;
float dot = mA1.Dot(a2);
if (dot <= 1.0e-3f)
{
// World space axes are more than 90 degrees apart, get a perpendicular vector in the plane formed by mA1 and a2 as hinge axis until the rotation is less than 90 degrees
Vec3 perp = a2 - dot * mA1;
if (perp.LengthSq() < 1.0e-6f)
{
// mA1 ~ -a2, take random perpendicular
perp = mA1.GetNormalizedPerpendicular();
}
// Blend in a little bit from mA1 so we're less than 90 degrees apart
a2 = (0.99f * perp.Normalized() + 0.01f * mA1).Normalized();
}
mB2 = a2.GetNormalizedPerpendicular();
mC2 = a2.Cross(mB2);
// Calculate properties used during constraint solving
mInvI1 = inBody1.IsDynamic()? inBody1.GetMotionProperties()->GetInverseInertiaForRotation(inRotation1) : Mat44::sZero();
mInvI2 = inBody2.IsDynamic()? inBody2.GetMotionProperties()->GetInverseInertiaForRotation(inRotation2) : Mat44::sZero();
mB2xA1 = mB2.Cross(mA1);
mC2xA1 = mC2.Cross(mA1);
// Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
Mat44 summed_inv_inertia = mInvI1 + mInvI2;
Mat22 inv_effective_mass;
inv_effective_mass(0, 0) = mB2xA1.Dot(summed_inv_inertia.Multiply3x3(mB2xA1));
inv_effective_mass(0, 1) = mB2xA1.Dot(summed_inv_inertia.Multiply3x3(mC2xA1));
inv_effective_mass(1, 0) = mC2xA1.Dot(summed_inv_inertia.Multiply3x3(mB2xA1));
inv_effective_mass(1, 1) = mC2xA1.Dot(summed_inv_inertia.Multiply3x3(mC2xA1));
if (!mEffectiveMass.SetInversed(inv_effective_mass))
Deactivate();
}
/// Deactivate this constraint
inline void Deactivate()
{
mEffectiveMass.SetZero();
mTotalLambda.SetZero();
}
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
{
mTotalLambda *= inWarmStartImpulseRatio;
ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
}
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2)
{
// Calculate lagrange multiplier:
//
// lambda = -K^-1 (J v + b)
Vec3 delta_ang = ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity();
Vec2 jv;
jv[0] = mB2xA1.Dot(delta_ang);
jv[1] = mC2xA1.Dot(delta_ang);
Vec2 lambda = mEffectiveMass * jv;
// Store accumulated lambda
mTotalLambda += lambda;
return ApplyVelocityStep(ioBody1, ioBody2, lambda);
}
/// Iteratively update the position constraint. Makes sure C(...) = 0.
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inBaumgarte) const
{
// Constraint needs Axis of body 1 perpendicular to both B and C from body 2 (which are both perpendicular to the Axis of body 2)
Vec2 c;
c[0] = mA1.Dot(mB2);
c[1] = mA1.Dot(mC2);
if (!c.IsZero())
{
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
//
// lambda = -K^-1 * beta / dt * C
//
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
Vec2 lambda = -inBaumgarte * (mEffectiveMass * c);
// Directly integrate velocity change for one time step
//
// Euler velocity integration:
// dv = M^-1 P
//
// Impulse:
// P = J^T lambda
//
// Euler position integration:
// x' = x + dv * dt
//
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
// integrate + a position integrate and then discard the velocity change.
Vec3 impulse = mB2xA1 * lambda[0] + mC2xA1 * lambda[1];
if (ioBody1.IsDynamic())
ioBody1.SubRotationStep(mInvI1.Multiply3x3(impulse));
if (ioBody2.IsDynamic())
ioBody2.AddRotationStep(mInvI2.Multiply3x3(impulse));
return true;
}
return false;
}
/// Return lagrange multiplier
const Vec2 & GetTotalLambda() const
{
return mTotalLambda;
}
/// Save state of this constraint part
void SaveState(StateRecorder &inStream) const
{
inStream.Write(mTotalLambda);
}
/// Restore state of this constraint part
void RestoreState(StateRecorder &inStream)
{
inStream.Read(mTotalLambda);
}
private:
Vec3 mA1; ///< World space hinge axis for body 1
Vec3 mB2; ///< World space perpendiculars of hinge axis for body 2
Vec3 mC2;
Mat44 mInvI1;
Mat44 mInvI2;
Vec3 mB2xA1;
Vec3 mC2xA1;
Mat22 mEffectiveMass;
Vec2 mTotalLambda { Vec2::sZero() };
};
JPH_NAMESPACE_END