223 lines
7.3 KiB
C++
223 lines
7.3 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Physics/Body/Body.h>
|
|
#include <Jolt/Physics/StateRecorder.h>
|
|
#include <Jolt/Math/Vector.h>
|
|
#include <Jolt/Math/Matrix.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
/**
|
|
Constrains rotation around 2 axis so that it only allows rotation around 1 axis
|
|
|
|
Based on: "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.4.1
|
|
|
|
Constraint equation (eq 87):
|
|
|
|
\f[C = \begin{bmatrix}a_1 \cdot b_2 \\ a_1 \cdot c_2\end{bmatrix}\f]
|
|
|
|
Jacobian (eq 90):
|
|
|
|
\f[J = \begin{bmatrix}
|
|
0 & -b_2 \times a_1 & 0 & b_2 \times a_1 \\
|
|
0 & -c_2 \times a_1 & 0 & c2 \times a_1
|
|
\end{bmatrix}\f]
|
|
|
|
Used terms (here and below, everything in world space):\n
|
|
a1 = hinge axis on body 1.\n
|
|
b2, c2 = axis perpendicular to hinge axis on body 2.\n
|
|
x1, x2 = center of mass for the bodies.\n
|
|
v = [v1, w1, v2, w2].\n
|
|
v1, v2 = linear velocity of body 1 and 2.\n
|
|
w1, w2 = angular velocity of body 1 and 2.\n
|
|
M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
|
|
\f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
|
|
b = velocity bias.\n
|
|
\f$\beta\f$ = baumgarte constant.\n
|
|
E = identity matrix.
|
|
**/
|
|
class HingeRotationConstraintPart
|
|
{
|
|
public:
|
|
using Vec2 = Vector<2>;
|
|
using Mat22 = Matrix<2, 2>;
|
|
|
|
private:
|
|
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
|
|
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, const Vec2 &inLambda) const
|
|
{
|
|
// Apply impulse if delta is not zero
|
|
if (!inLambda.IsZero())
|
|
{
|
|
// Calculate velocity change due to constraint
|
|
//
|
|
// Impulse:
|
|
// P = J^T lambda
|
|
//
|
|
// Euler velocity integration:
|
|
// v' = v + M^-1 P
|
|
Vec3 impulse = mB2xA1 * inLambda[0] + mC2xA1 * inLambda[1];
|
|
if (ioBody1.IsDynamic())
|
|
ioBody1.GetMotionProperties()->SubAngularVelocityStep(mInvI1.Multiply3x3(impulse));
|
|
if (ioBody2.IsDynamic())
|
|
ioBody2.GetMotionProperties()->AddAngularVelocityStep(mInvI2.Multiply3x3(impulse));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
/// Calculate properties used during the functions below
|
|
inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inWorldSpaceHingeAxis1, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inWorldSpaceHingeAxis2)
|
|
{
|
|
JPH_ASSERT(inWorldSpaceHingeAxis1.IsNormalized(1.0e-5f));
|
|
JPH_ASSERT(inWorldSpaceHingeAxis2.IsNormalized(1.0e-5f));
|
|
|
|
// Calculate hinge axis in world space
|
|
mA1 = inWorldSpaceHingeAxis1;
|
|
Vec3 a2 = inWorldSpaceHingeAxis2;
|
|
float dot = mA1.Dot(a2);
|
|
if (dot <= 1.0e-3f)
|
|
{
|
|
// World space axes are more than 90 degrees apart, get a perpendicular vector in the plane formed by mA1 and a2 as hinge axis until the rotation is less than 90 degrees
|
|
Vec3 perp = a2 - dot * mA1;
|
|
if (perp.LengthSq() < 1.0e-6f)
|
|
{
|
|
// mA1 ~ -a2, take random perpendicular
|
|
perp = mA1.GetNormalizedPerpendicular();
|
|
}
|
|
|
|
// Blend in a little bit from mA1 so we're less than 90 degrees apart
|
|
a2 = (0.99f * perp.Normalized() + 0.01f * mA1).Normalized();
|
|
}
|
|
mB2 = a2.GetNormalizedPerpendicular();
|
|
mC2 = a2.Cross(mB2);
|
|
|
|
// Calculate properties used during constraint solving
|
|
mInvI1 = inBody1.IsDynamic()? inBody1.GetMotionProperties()->GetInverseInertiaForRotation(inRotation1) : Mat44::sZero();
|
|
mInvI2 = inBody2.IsDynamic()? inBody2.GetMotionProperties()->GetInverseInertiaForRotation(inRotation2) : Mat44::sZero();
|
|
mB2xA1 = mB2.Cross(mA1);
|
|
mC2xA1 = mC2.Cross(mA1);
|
|
|
|
// Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
|
|
Mat44 summed_inv_inertia = mInvI1 + mInvI2;
|
|
Mat22 inv_effective_mass;
|
|
inv_effective_mass(0, 0) = mB2xA1.Dot(summed_inv_inertia.Multiply3x3(mB2xA1));
|
|
inv_effective_mass(0, 1) = mB2xA1.Dot(summed_inv_inertia.Multiply3x3(mC2xA1));
|
|
inv_effective_mass(1, 0) = mC2xA1.Dot(summed_inv_inertia.Multiply3x3(mB2xA1));
|
|
inv_effective_mass(1, 1) = mC2xA1.Dot(summed_inv_inertia.Multiply3x3(mC2xA1));
|
|
if (!mEffectiveMass.SetInversed(inv_effective_mass))
|
|
Deactivate();
|
|
}
|
|
|
|
/// Deactivate this constraint
|
|
inline void Deactivate()
|
|
{
|
|
mEffectiveMass.SetZero();
|
|
mTotalLambda.SetZero();
|
|
}
|
|
|
|
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
|
|
inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
|
|
{
|
|
mTotalLambda *= inWarmStartImpulseRatio;
|
|
ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
|
|
}
|
|
|
|
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
|
|
inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2)
|
|
{
|
|
// Calculate lagrange multiplier:
|
|
//
|
|
// lambda = -K^-1 (J v + b)
|
|
Vec3 delta_ang = ioBody1.GetAngularVelocity() - ioBody2.GetAngularVelocity();
|
|
Vec2 jv;
|
|
jv[0] = mB2xA1.Dot(delta_ang);
|
|
jv[1] = mC2xA1.Dot(delta_ang);
|
|
Vec2 lambda = mEffectiveMass * jv;
|
|
|
|
// Store accumulated lambda
|
|
mTotalLambda += lambda;
|
|
|
|
return ApplyVelocityStep(ioBody1, ioBody2, lambda);
|
|
}
|
|
|
|
/// Iteratively update the position constraint. Makes sure C(...) = 0.
|
|
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inBaumgarte) const
|
|
{
|
|
// Constraint needs Axis of body 1 perpendicular to both B and C from body 2 (which are both perpendicular to the Axis of body 2)
|
|
Vec2 c;
|
|
c[0] = mA1.Dot(mB2);
|
|
c[1] = mA1.Dot(mC2);
|
|
if (!c.IsZero())
|
|
{
|
|
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
|
|
//
|
|
// lambda = -K^-1 * beta / dt * C
|
|
//
|
|
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
|
|
Vec2 lambda = -inBaumgarte * (mEffectiveMass * c);
|
|
|
|
// Directly integrate velocity change for one time step
|
|
//
|
|
// Euler velocity integration:
|
|
// dv = M^-1 P
|
|
//
|
|
// Impulse:
|
|
// P = J^T lambda
|
|
//
|
|
// Euler position integration:
|
|
// x' = x + dv * dt
|
|
//
|
|
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
|
|
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
|
|
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
|
|
// integrate + a position integrate and then discard the velocity change.
|
|
Vec3 impulse = mB2xA1 * lambda[0] + mC2xA1 * lambda[1];
|
|
if (ioBody1.IsDynamic())
|
|
ioBody1.SubRotationStep(mInvI1.Multiply3x3(impulse));
|
|
if (ioBody2.IsDynamic())
|
|
ioBody2.AddRotationStep(mInvI2.Multiply3x3(impulse));
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return lagrange multiplier
|
|
const Vec2 & GetTotalLambda() const
|
|
{
|
|
return mTotalLambda;
|
|
}
|
|
|
|
/// Save state of this constraint part
|
|
void SaveState(StateRecorder &inStream) const
|
|
{
|
|
inStream.Write(mTotalLambda);
|
|
}
|
|
|
|
/// Restore state of this constraint part
|
|
void RestoreState(StateRecorder &inStream)
|
|
{
|
|
inStream.Read(mTotalLambda);
|
|
}
|
|
|
|
private:
|
|
Vec3 mA1; ///< World space hinge axis for body 1
|
|
Vec3 mB2; ///< World space perpendiculars of hinge axis for body 2
|
|
Vec3 mC2;
|
|
Mat44 mInvI1;
|
|
Mat44 mInvI2;
|
|
Vec3 mB2xA1;
|
|
Vec3 mC2xA1;
|
|
Mat22 mEffectiveMass;
|
|
Vec2 mTotalLambda { Vec2::sZero() };
|
|
};
|
|
|
|
JPH_NAMESPACE_END
|