godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/ConeConstraint.h

134 lines
5 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Physics/Constraints/TwoBodyConstraint.h>
#include <Jolt/Physics/Constraints/ConstraintPart/PointConstraintPart.h>
#include <Jolt/Physics/Constraints/ConstraintPart/AngleConstraintPart.h>
JPH_NAMESPACE_BEGIN
/// Cone constraint settings, used to create a cone constraint
class JPH_EXPORT ConeConstraintSettings final : public TwoBodyConstraintSettings
{
JPH_DECLARE_SERIALIZABLE_VIRTUAL(JPH_EXPORT, ConeConstraintSettings)
public:
// See: ConstraintSettings::SaveBinaryState
virtual void SaveBinaryState(StreamOut &inStream) const override;
/// Create an instance of this constraint
virtual TwoBodyConstraint * Create(Body &inBody1, Body &inBody2) const override;
/// This determines in which space the constraint is setup, all properties below should be in the specified space
EConstraintSpace mSpace = EConstraintSpace::WorldSpace;
/// Body 1 constraint reference frame (space determined by mSpace)
RVec3 mPoint1 = RVec3::sZero();
Vec3 mTwistAxis1 = Vec3::sAxisX();
/// Body 2 constraint reference frame (space determined by mSpace)
RVec3 mPoint2 = RVec3::sZero();
Vec3 mTwistAxis2 = Vec3::sAxisX();
/// Half of maximum angle between twist axis of body 1 and 2
float mHalfConeAngle = 0.0f;
protected:
// See: ConstraintSettings::RestoreBinaryState
virtual void RestoreBinaryState(StreamIn &inStream) override;
};
/// A cone constraint constraints 2 bodies to a single point and limits the swing between the twist axis within a cone:
///
/// t1 . t2 <= cos(theta)
///
/// Where:
///
/// t1 = twist axis of body 1.
/// t2 = twist axis of body 2.
/// theta = half cone angle (angle from the principal axis of the cone to the edge).
///
/// Calculating the Jacobian:
///
/// Constraint equation:
///
/// C = t1 . t2 - cos(theta)
///
/// Derivative:
///
/// d/dt C = d/dt (t1 . t2) = (d/dt t1) . t2 + t1 . (d/dt t2) = (w1 x t1) . t2 + t1 . (w2 x t2) = (t1 x t2) . w1 + (t2 x t1) . w2
///
/// d/dt C = J v = [0, -t2 x t1, 0, t2 x t1] [v1, w1, v2, w2]
///
/// Where J is the Jacobian.
///
/// Note that this is the exact same equation as used in AngleConstraintPart if we use t2 x t1 as the world space axis
class JPH_EXPORT ConeConstraint final : public TwoBodyConstraint
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Construct cone constraint
ConeConstraint(Body &inBody1, Body &inBody2, const ConeConstraintSettings &inSettings);
// Generic interface of a constraint
virtual EConstraintSubType GetSubType() const override { return EConstraintSubType::Cone; }
virtual void NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM) override;
virtual void SetupVelocityConstraint(float inDeltaTime) override;
virtual void ResetWarmStart() override;
virtual void WarmStartVelocityConstraint(float inWarmStartImpulseRatio) override;
virtual bool SolveVelocityConstraint(float inDeltaTime) override;
virtual bool SolvePositionConstraint(float inDeltaTime, float inBaumgarte) override;
#ifdef JPH_DEBUG_RENDERER
virtual void DrawConstraint(DebugRenderer *inRenderer) const override;
virtual void DrawConstraintLimits(DebugRenderer *inRenderer) const override;
#endif // JPH_DEBUG_RENDERER
virtual void SaveState(StateRecorder &inStream) const override;
virtual void RestoreState(StateRecorder &inStream) override;
virtual Ref<ConstraintSettings> GetConstraintSettings() const override;
// See: TwoBodyConstraint
virtual Mat44 GetConstraintToBody1Matrix() const override;
virtual Mat44 GetConstraintToBody2Matrix() const override;
/// Update maximum angle between body 1 and 2 (see ConeConstraintSettings)
void SetHalfConeAngle(float inHalfConeAngle) { JPH_ASSERT(inHalfConeAngle >= 0.0f && inHalfConeAngle <= JPH_PI); mCosHalfConeAngle = Cos(inHalfConeAngle); }
float GetCosHalfConeAngle() const { return mCosHalfConeAngle; }
///@name Get Lagrange multiplier from last physics update (the linear/angular impulse applied to satisfy the constraint)
inline Vec3 GetTotalLambdaPosition() const { return mPointConstraintPart.GetTotalLambda(); }
inline float GetTotalLambdaRotation() const { return mAngleConstraintPart.GetTotalLambda(); }
private:
// Internal helper function to calculate the values below
void CalculateRotationConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2);
// CONFIGURATION PROPERTIES FOLLOW
// Local space constraint positions
Vec3 mLocalSpacePosition1;
Vec3 mLocalSpacePosition2;
// Local space constraint axis
Vec3 mLocalSpaceTwistAxis1;
Vec3 mLocalSpaceTwistAxis2;
// Angular limits
float mCosHalfConeAngle;
// RUN TIME PROPERTIES FOLLOW
// Axis and angle of rotation between the two bodies
Vec3 mWorldSpaceRotationAxis;
float mCosTheta;
// The constraint parts
PointConstraintPart mPointConstraintPart;
AngleConstraintPart mAngleConstraintPart;
};
JPH_NAMESPACE_END