277 lines
8.9 KiB
C++
277 lines
8.9 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Physics/Body/Body.h>
|
|
#include <Jolt/Physics/StateRecorder.h>
|
|
#include <Jolt/Math/Vector.h>
|
|
#include <Jolt/Math/Matrix.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
/**
|
|
Constrains movement on 2 axis
|
|
|
|
@see "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.3.1
|
|
|
|
Constraint equation (eq 51):
|
|
|
|
\f[C = \begin{bmatrix} (p_2 - p_1) \cdot n_1 \\ (p_2 - p_1) \cdot n_2\end{bmatrix}\f]
|
|
|
|
Jacobian (transposed) (eq 55):
|
|
|
|
\f[J^T = \begin{bmatrix}
|
|
-n_1 & -n_2 \\
|
|
-(r_1 + u) \times n_1 & -(r_1 + u) \times n_2 \\
|
|
n_1 & n_2 \\
|
|
r_2 \times n_1 & r_2 \times n_2
|
|
\end{bmatrix}\f]
|
|
|
|
Used terms (here and below, everything in world space):\n
|
|
n1, n2 = constraint axis (normalized).\n
|
|
p1, p2 = constraint points.\n
|
|
r1 = p1 - x1.\n
|
|
r2 = p2 - x2.\n
|
|
u = x2 + r2 - x1 - r1 = p2 - p1.\n
|
|
x1, x2 = center of mass for the bodies.\n
|
|
v = [v1, w1, v2, w2].\n
|
|
v1, v2 = linear velocity of body 1 and 2.\n
|
|
w1, w2 = angular velocity of body 1 and 2.\n
|
|
M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
|
|
\f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
|
|
b = velocity bias.\n
|
|
\f$\beta\f$ = baumgarte constant.
|
|
**/
|
|
class DualAxisConstraintPart
|
|
{
|
|
public:
|
|
using Vec2 = Vector<2>;
|
|
using Mat22 = Matrix<2, 2>;
|
|
|
|
private:
|
|
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
|
|
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, const Vec2 &inLambda) const
|
|
{
|
|
// Apply impulse if delta is not zero
|
|
if (!inLambda.IsZero())
|
|
{
|
|
// Calculate velocity change due to constraint
|
|
//
|
|
// Impulse:
|
|
// P = J^T lambda
|
|
//
|
|
// Euler velocity integration:
|
|
// v' = v + M^-1 P
|
|
Vec3 impulse = inN1 * inLambda[0] + inN2 * inLambda[1];
|
|
if (ioBody1.IsDynamic())
|
|
{
|
|
MotionProperties *mp1 = ioBody1.GetMotionProperties();
|
|
mp1->SubLinearVelocityStep(mp1->GetInverseMass() * impulse);
|
|
mp1->SubAngularVelocityStep(mInvI1_R1PlusUxN1 * inLambda[0] + mInvI1_R1PlusUxN2 * inLambda[1]);
|
|
}
|
|
if (ioBody2.IsDynamic())
|
|
{
|
|
MotionProperties *mp2 = ioBody2.GetMotionProperties();
|
|
mp2->AddLinearVelocityStep(mp2->GetInverseMass() * impulse);
|
|
mp2->AddAngularVelocityStep(mInvI2_R2xN1 * inLambda[0] + mInvI2_R2xN2 * inLambda[1]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Internal helper function to calculate the lagrange multiplier
|
|
inline void CalculateLagrangeMultiplier(const Body &inBody1, const Body &inBody2, Vec3Arg inN1, Vec3Arg inN2, Vec2 &outLambda) const
|
|
{
|
|
// Calculate lagrange multiplier:
|
|
//
|
|
// lambda = -K^-1 (J v + b)
|
|
Vec3 delta_lin = inBody1.GetLinearVelocity() - inBody2.GetLinearVelocity();
|
|
Vec2 jv;
|
|
jv[0] = inN1.Dot(delta_lin) + mR1PlusUxN1.Dot(inBody1.GetAngularVelocity()) - mR2xN1.Dot(inBody2.GetAngularVelocity());
|
|
jv[1] = inN2.Dot(delta_lin) + mR1PlusUxN2.Dot(inBody1.GetAngularVelocity()) - mR2xN2.Dot(inBody2.GetAngularVelocity());
|
|
outLambda = mEffectiveMass * jv;
|
|
}
|
|
|
|
public:
|
|
/// Calculate properties used during the functions below
|
|
/// All input vectors are in world space
|
|
inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inR1PlusU, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inR2, Vec3Arg inN1, Vec3Arg inN2)
|
|
{
|
|
JPH_ASSERT(inN1.IsNormalized(1.0e-5f));
|
|
JPH_ASSERT(inN2.IsNormalized(1.0e-5f));
|
|
|
|
// Calculate properties used during constraint solving
|
|
mR1PlusUxN1 = inR1PlusU.Cross(inN1);
|
|
mR1PlusUxN2 = inR1PlusU.Cross(inN2);
|
|
mR2xN1 = inR2.Cross(inN1);
|
|
mR2xN2 = inR2.Cross(inN2);
|
|
|
|
// Calculate effective mass: K^-1 = (J M^-1 J^T)^-1, eq 59
|
|
Mat22 inv_effective_mass;
|
|
if (inBody1.IsDynamic())
|
|
{
|
|
const MotionProperties *mp1 = inBody1.GetMotionProperties();
|
|
Mat44 inv_i1 = mp1->GetInverseInertiaForRotation(inRotation1);
|
|
mInvI1_R1PlusUxN1 = inv_i1.Multiply3x3(mR1PlusUxN1);
|
|
mInvI1_R1PlusUxN2 = inv_i1.Multiply3x3(mR1PlusUxN2);
|
|
|
|
inv_effective_mass(0, 0) = mp1->GetInverseMass() + mR1PlusUxN1.Dot(mInvI1_R1PlusUxN1);
|
|
inv_effective_mass(0, 1) = mR1PlusUxN1.Dot(mInvI1_R1PlusUxN2);
|
|
inv_effective_mass(1, 0) = mR1PlusUxN2.Dot(mInvI1_R1PlusUxN1);
|
|
inv_effective_mass(1, 1) = mp1->GetInverseMass() + mR1PlusUxN2.Dot(mInvI1_R1PlusUxN2);
|
|
}
|
|
else
|
|
{
|
|
JPH_IF_DEBUG(mInvI1_R1PlusUxN1 = Vec3::sNaN();)
|
|
JPH_IF_DEBUG(mInvI1_R1PlusUxN2 = Vec3::sNaN();)
|
|
|
|
inv_effective_mass = Mat22::sZero();
|
|
}
|
|
|
|
if (inBody2.IsDynamic())
|
|
{
|
|
const MotionProperties *mp2 = inBody2.GetMotionProperties();
|
|
Mat44 inv_i2 = mp2->GetInverseInertiaForRotation(inRotation2);
|
|
mInvI2_R2xN1 = inv_i2.Multiply3x3(mR2xN1);
|
|
mInvI2_R2xN2 = inv_i2.Multiply3x3(mR2xN2);
|
|
|
|
inv_effective_mass(0, 0) += mp2->GetInverseMass() + mR2xN1.Dot(mInvI2_R2xN1);
|
|
inv_effective_mass(0, 1) += mR2xN1.Dot(mInvI2_R2xN2);
|
|
inv_effective_mass(1, 0) += mR2xN2.Dot(mInvI2_R2xN1);
|
|
inv_effective_mass(1, 1) += mp2->GetInverseMass() + mR2xN2.Dot(mInvI2_R2xN2);
|
|
}
|
|
else
|
|
{
|
|
JPH_IF_DEBUG(mInvI2_R2xN1 = Vec3::sNaN();)
|
|
JPH_IF_DEBUG(mInvI2_R2xN2 = Vec3::sNaN();)
|
|
}
|
|
|
|
if (!mEffectiveMass.SetInversed(inv_effective_mass))
|
|
Deactivate();
|
|
}
|
|
|
|
/// Deactivate this constraint
|
|
inline void Deactivate()
|
|
{
|
|
mEffectiveMass.SetZero();
|
|
mTotalLambda.SetZero();
|
|
}
|
|
|
|
/// Check if constraint is active
|
|
inline bool IsActive() const
|
|
{
|
|
return !mEffectiveMass.IsZero();
|
|
}
|
|
|
|
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
|
|
/// All input vectors are in world space
|
|
inline void WarmStart(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inWarmStartImpulseRatio)
|
|
{
|
|
mTotalLambda *= inWarmStartImpulseRatio;
|
|
ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, mTotalLambda);
|
|
}
|
|
|
|
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
|
|
/// All input vectors are in world space
|
|
inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2)
|
|
{
|
|
Vec2 lambda;
|
|
CalculateLagrangeMultiplier(ioBody1, ioBody2, inN1, inN2, lambda);
|
|
|
|
// Store accumulated lambda
|
|
mTotalLambda += lambda;
|
|
|
|
return ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, lambda);
|
|
}
|
|
|
|
/// Iteratively update the position constraint. Makes sure C(...) = 0.
|
|
/// All input vectors are in world space
|
|
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inU, Vec3Arg inN1, Vec3Arg inN2, float inBaumgarte) const
|
|
{
|
|
Vec2 c;
|
|
c[0] = inU.Dot(inN1);
|
|
c[1] = inU.Dot(inN2);
|
|
if (!c.IsZero())
|
|
{
|
|
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
|
|
//
|
|
// lambda = -K^-1 * beta / dt * C
|
|
//
|
|
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
|
|
Vec2 lambda = -inBaumgarte * (mEffectiveMass * c);
|
|
|
|
// Directly integrate velocity change for one time step
|
|
//
|
|
// Euler velocity integration:
|
|
// dv = M^-1 P
|
|
//
|
|
// Impulse:
|
|
// P = J^T lambda
|
|
//
|
|
// Euler position integration:
|
|
// x' = x + dv * dt
|
|
//
|
|
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
|
|
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
|
|
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
|
|
// integrate + a position integrate and then discard the velocity change.
|
|
Vec3 impulse = inN1 * lambda[0] + inN2 * lambda[1];
|
|
if (ioBody1.IsDynamic())
|
|
{
|
|
ioBody1.SubPositionStep(ioBody1.GetMotionProperties()->GetInverseMass() * impulse);
|
|
ioBody1.SubRotationStep(mInvI1_R1PlusUxN1 * lambda[0] + mInvI1_R1PlusUxN2 * lambda[1]);
|
|
}
|
|
if (ioBody2.IsDynamic())
|
|
{
|
|
ioBody2.AddPositionStep(ioBody2.GetMotionProperties()->GetInverseMass() * impulse);
|
|
ioBody2.AddRotationStep(mInvI2_R2xN1 * lambda[0] + mInvI2_R2xN2 * lambda[1]);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Override total lagrange multiplier, can be used to set the initial value for warm starting
|
|
inline void SetTotalLambda(const Vec2 &inLambda)
|
|
{
|
|
mTotalLambda = inLambda;
|
|
}
|
|
|
|
/// Return lagrange multiplier
|
|
inline const Vec2 & GetTotalLambda() const
|
|
{
|
|
return mTotalLambda;
|
|
}
|
|
|
|
/// Save state of this constraint part
|
|
void SaveState(StateRecorder &inStream) const
|
|
{
|
|
inStream.Write(mTotalLambda);
|
|
}
|
|
|
|
/// Restore state of this constraint part
|
|
void RestoreState(StateRecorder &inStream)
|
|
{
|
|
inStream.Read(mTotalLambda);
|
|
}
|
|
|
|
private:
|
|
Vec3 mR1PlusUxN1;
|
|
Vec3 mR1PlusUxN2;
|
|
Vec3 mR2xN1;
|
|
Vec3 mR2xN2;
|
|
Vec3 mInvI1_R1PlusUxN1;
|
|
Vec3 mInvI1_R1PlusUxN2;
|
|
Vec3 mInvI2_R2xN1;
|
|
Vec3 mInvI2_R2xN2;
|
|
Mat22 mEffectiveMass;
|
|
Vec2 mTotalLambda { Vec2::sZero() };
|
|
};
|
|
|
|
JPH_NAMESPACE_END
|