godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/ConstraintPart/DualAxisConstraintPart.h

277 lines
8.9 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/Physics/StateRecorder.h>
#include <Jolt/Math/Vector.h>
#include <Jolt/Math/Matrix.h>
JPH_NAMESPACE_BEGIN
/**
Constrains movement on 2 axis
@see "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.3.1
Constraint equation (eq 51):
\f[C = \begin{bmatrix} (p_2 - p_1) \cdot n_1 \\ (p_2 - p_1) \cdot n_2\end{bmatrix}\f]
Jacobian (transposed) (eq 55):
\f[J^T = \begin{bmatrix}
-n_1 & -n_2 \\
-(r_1 + u) \times n_1 & -(r_1 + u) \times n_2 \\
n_1 & n_2 \\
r_2 \times n_1 & r_2 \times n_2
\end{bmatrix}\f]
Used terms (here and below, everything in world space):\n
n1, n2 = constraint axis (normalized).\n
p1, p2 = constraint points.\n
r1 = p1 - x1.\n
r2 = p2 - x2.\n
u = x2 + r2 - x1 - r1 = p2 - p1.\n
x1, x2 = center of mass for the bodies.\n
v = [v1, w1, v2, w2].\n
v1, v2 = linear velocity of body 1 and 2.\n
w1, w2 = angular velocity of body 1 and 2.\n
M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
\f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
b = velocity bias.\n
\f$\beta\f$ = baumgarte constant.
**/
class DualAxisConstraintPart
{
public:
using Vec2 = Vector<2>;
using Mat22 = Matrix<2, 2>;
private:
/// Internal helper function to update velocities of bodies after Lagrange multiplier is calculated
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, const Vec2 &inLambda) const
{
// Apply impulse if delta is not zero
if (!inLambda.IsZero())
{
// Calculate velocity change due to constraint
//
// Impulse:
// P = J^T lambda
//
// Euler velocity integration:
// v' = v + M^-1 P
Vec3 impulse = inN1 * inLambda[0] + inN2 * inLambda[1];
if (ioBody1.IsDynamic())
{
MotionProperties *mp1 = ioBody1.GetMotionProperties();
mp1->SubLinearVelocityStep(mp1->GetInverseMass() * impulse);
mp1->SubAngularVelocityStep(mInvI1_R1PlusUxN1 * inLambda[0] + mInvI1_R1PlusUxN2 * inLambda[1]);
}
if (ioBody2.IsDynamic())
{
MotionProperties *mp2 = ioBody2.GetMotionProperties();
mp2->AddLinearVelocityStep(mp2->GetInverseMass() * impulse);
mp2->AddAngularVelocityStep(mInvI2_R2xN1 * inLambda[0] + mInvI2_R2xN2 * inLambda[1]);
}
return true;
}
return false;
}
/// Internal helper function to calculate the lagrange multiplier
inline void CalculateLagrangeMultiplier(const Body &inBody1, const Body &inBody2, Vec3Arg inN1, Vec3Arg inN2, Vec2 &outLambda) const
{
// Calculate lagrange multiplier:
//
// lambda = -K^-1 (J v + b)
Vec3 delta_lin = inBody1.GetLinearVelocity() - inBody2.GetLinearVelocity();
Vec2 jv;
jv[0] = inN1.Dot(delta_lin) + mR1PlusUxN1.Dot(inBody1.GetAngularVelocity()) - mR2xN1.Dot(inBody2.GetAngularVelocity());
jv[1] = inN2.Dot(delta_lin) + mR1PlusUxN2.Dot(inBody1.GetAngularVelocity()) - mR2xN2.Dot(inBody2.GetAngularVelocity());
outLambda = mEffectiveMass * jv;
}
public:
/// Calculate properties used during the functions below
/// All input vectors are in world space
inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inR1PlusU, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inR2, Vec3Arg inN1, Vec3Arg inN2)
{
JPH_ASSERT(inN1.IsNormalized(1.0e-5f));
JPH_ASSERT(inN2.IsNormalized(1.0e-5f));
// Calculate properties used during constraint solving
mR1PlusUxN1 = inR1PlusU.Cross(inN1);
mR1PlusUxN2 = inR1PlusU.Cross(inN2);
mR2xN1 = inR2.Cross(inN1);
mR2xN2 = inR2.Cross(inN2);
// Calculate effective mass: K^-1 = (J M^-1 J^T)^-1, eq 59
Mat22 inv_effective_mass;
if (inBody1.IsDynamic())
{
const MotionProperties *mp1 = inBody1.GetMotionProperties();
Mat44 inv_i1 = mp1->GetInverseInertiaForRotation(inRotation1);
mInvI1_R1PlusUxN1 = inv_i1.Multiply3x3(mR1PlusUxN1);
mInvI1_R1PlusUxN2 = inv_i1.Multiply3x3(mR1PlusUxN2);
inv_effective_mass(0, 0) = mp1->GetInverseMass() + mR1PlusUxN1.Dot(mInvI1_R1PlusUxN1);
inv_effective_mass(0, 1) = mR1PlusUxN1.Dot(mInvI1_R1PlusUxN2);
inv_effective_mass(1, 0) = mR1PlusUxN2.Dot(mInvI1_R1PlusUxN1);
inv_effective_mass(1, 1) = mp1->GetInverseMass() + mR1PlusUxN2.Dot(mInvI1_R1PlusUxN2);
}
else
{
JPH_IF_DEBUG(mInvI1_R1PlusUxN1 = Vec3::sNaN();)
JPH_IF_DEBUG(mInvI1_R1PlusUxN2 = Vec3::sNaN();)
inv_effective_mass = Mat22::sZero();
}
if (inBody2.IsDynamic())
{
const MotionProperties *mp2 = inBody2.GetMotionProperties();
Mat44 inv_i2 = mp2->GetInverseInertiaForRotation(inRotation2);
mInvI2_R2xN1 = inv_i2.Multiply3x3(mR2xN1);
mInvI2_R2xN2 = inv_i2.Multiply3x3(mR2xN2);
inv_effective_mass(0, 0) += mp2->GetInverseMass() + mR2xN1.Dot(mInvI2_R2xN1);
inv_effective_mass(0, 1) += mR2xN1.Dot(mInvI2_R2xN2);
inv_effective_mass(1, 0) += mR2xN2.Dot(mInvI2_R2xN1);
inv_effective_mass(1, 1) += mp2->GetInverseMass() + mR2xN2.Dot(mInvI2_R2xN2);
}
else
{
JPH_IF_DEBUG(mInvI2_R2xN1 = Vec3::sNaN();)
JPH_IF_DEBUG(mInvI2_R2xN2 = Vec3::sNaN();)
}
if (!mEffectiveMass.SetInversed(inv_effective_mass))
Deactivate();
}
/// Deactivate this constraint
inline void Deactivate()
{
mEffectiveMass.SetZero();
mTotalLambda.SetZero();
}
/// Check if constraint is active
inline bool IsActive() const
{
return !mEffectiveMass.IsZero();
}
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
/// All input vectors are in world space
inline void WarmStart(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inWarmStartImpulseRatio)
{
mTotalLambda *= inWarmStartImpulseRatio;
ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, mTotalLambda);
}
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
/// All input vectors are in world space
inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2)
{
Vec2 lambda;
CalculateLagrangeMultiplier(ioBody1, ioBody2, inN1, inN2, lambda);
// Store accumulated lambda
mTotalLambda += lambda;
return ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, lambda);
}
/// Iteratively update the position constraint. Makes sure C(...) = 0.
/// All input vectors are in world space
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inU, Vec3Arg inN1, Vec3Arg inN2, float inBaumgarte) const
{
Vec2 c;
c[0] = inU.Dot(inN1);
c[1] = inU.Dot(inN2);
if (!c.IsZero())
{
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
//
// lambda = -K^-1 * beta / dt * C
//
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
Vec2 lambda = -inBaumgarte * (mEffectiveMass * c);
// Directly integrate velocity change for one time step
//
// Euler velocity integration:
// dv = M^-1 P
//
// Impulse:
// P = J^T lambda
//
// Euler position integration:
// x' = x + dv * dt
//
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
// integrate + a position integrate and then discard the velocity change.
Vec3 impulse = inN1 * lambda[0] + inN2 * lambda[1];
if (ioBody1.IsDynamic())
{
ioBody1.SubPositionStep(ioBody1.GetMotionProperties()->GetInverseMass() * impulse);
ioBody1.SubRotationStep(mInvI1_R1PlusUxN1 * lambda[0] + mInvI1_R1PlusUxN2 * lambda[1]);
}
if (ioBody2.IsDynamic())
{
ioBody2.AddPositionStep(ioBody2.GetMotionProperties()->GetInverseMass() * impulse);
ioBody2.AddRotationStep(mInvI2_R2xN1 * lambda[0] + mInvI2_R2xN2 * lambda[1]);
}
return true;
}
return false;
}
/// Override total lagrange multiplier, can be used to set the initial value for warm starting
inline void SetTotalLambda(const Vec2 &inLambda)
{
mTotalLambda = inLambda;
}
/// Return lagrange multiplier
inline const Vec2 & GetTotalLambda() const
{
return mTotalLambda;
}
/// Save state of this constraint part
void SaveState(StateRecorder &inStream) const
{
inStream.Write(mTotalLambda);
}
/// Restore state of this constraint part
void RestoreState(StateRecorder &inStream)
{
inStream.Read(mTotalLambda);
}
private:
Vec3 mR1PlusUxN1;
Vec3 mR1PlusUxN2;
Vec3 mR2xN1;
Vec3 mR2xN2;
Vec3 mInvI1_R1PlusUxN1;
Vec3 mInvI1_R1PlusUxN2;
Vec3 mInvI2_R2xN1;
Vec3 mInvI2_R2xN2;
Mat22 mEffectiveMass;
Vec2 mTotalLambda { Vec2::sZero() };
};
JPH_NAMESPACE_END