godot-module-template/engine/thirdparty/pcre2/deps/sljit/sljit_src/sljitNativeX86_common.c
2025-04-12 18:40:44 +02:00

5139 lines
150 KiB
C

/*
* Stack-less Just-In-Time compiler
*
* Copyright Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
SLJIT_API_FUNC_ATTRIBUTE const char* sljit_get_platform_name(void)
{
return "x86" SLJIT_CPUINFO;
}
/*
32b register indexes:
0 - EAX
1 - ECX
2 - EDX
3 - EBX
4 - ESP
5 - EBP
6 - ESI
7 - EDI
*/
/*
64b register indexes:
0 - RAX
1 - RCX
2 - RDX
3 - RBX
4 - RSP
5 - RBP
6 - RSI
7 - RDI
8 - R8 - From now on REX prefix is required
9 - R9
10 - R10
11 - R11
12 - R12
13 - R13
14 - R14
15 - R15
*/
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_FREG (SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1)
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 3] = {
0, 0, 2, 1, 0, 0, 0, 0, 0, 0, 5, 7, 6, 4, 3
};
static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2] = {
0, 1, 2, 3, 4, 5, 6, 7, 0
};
#define CHECK_EXTRA_REGS(p, w, do) \
if (p >= SLJIT_R3 && p <= SLJIT_S3) { \
w = (2 * SSIZE_OF(sw)) + ((p) - SLJIT_R3) * SSIZE_OF(sw); \
p = SLJIT_MEM1(SLJIT_SP); \
do; \
}
#else /* SLJIT_CONFIG_X86_32 */
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
/* Note: r12 & 0x7 == 0b100, which decoded as SIB byte present
Note: avoid to use r12 and r13 for memory addressing
therefore r12 is better to be a higher saved register. */
#ifndef _WIN64
/* Args: rdi(=7), rsi(=6), rdx(=2), rcx(=1), r8, r9. Scratches: rax(=0), r10, r11 */
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 4] = {
0, 0, 6, 7, 1, 8, 11, 10, 12, 5, 13, 14, 15, 3, 4, 2, 9
};
/* low-map. reg_map & 0x7. */
static const sljit_u8 reg_lmap[SLJIT_NUMBER_OF_REGISTERS + 4] = {
0, 0, 6, 7, 1, 0, 3, 2, 4, 5, 5, 6, 7, 3, 4, 2, 1
};
#else
/* Args: rcx(=1), rdx(=2), r8, r9. Scratches: rax(=0), r10, r11 */
static const sljit_u8 reg_map[SLJIT_NUMBER_OF_REGISTERS + 4] = {
0, 0, 2, 8, 1, 11, 12, 5, 13, 14, 15, 7, 6, 3, 4, 9, 10
};
/* low-map. reg_map & 0x7. */
static const sljit_u8 reg_lmap[SLJIT_NUMBER_OF_REGISTERS + 4] = {
0, 0, 2, 0, 1, 3, 4, 5, 5, 6, 7, 7, 6, 3, 4, 1, 2
};
#endif
/* Args: xmm0-xmm3 */
static const sljit_u8 freg_map[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2] = {
0, 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 4
};
/* low-map. freg_map & 0x7. */
static const sljit_u8 freg_lmap[SLJIT_NUMBER_OF_FLOAT_REGISTERS + 2] = {
0, 0, 1, 2, 3, 5, 6, 7, 0, 1, 2, 3, 4, 5, 6, 7, 4
};
#define REX_W 0x48
#define REX_R 0x44
#define REX_X 0x42
#define REX_B 0x41
#define REX 0x40
#ifndef _WIN64
#define HALFWORD_MAX 0x7fffffffl
#define HALFWORD_MIN -0x80000000l
#else
#define HALFWORD_MAX 0x7fffffffll
#define HALFWORD_MIN -0x80000000ll
#endif
#define IS_HALFWORD(x) ((x) <= HALFWORD_MAX && (x) >= HALFWORD_MIN)
#define NOT_HALFWORD(x) ((x) > HALFWORD_MAX || (x) < HALFWORD_MIN)
#define CHECK_EXTRA_REGS(p, w, do)
#endif /* SLJIT_CONFIG_X86_32 */
#define U8(v) ((sljit_u8)(v))
/* Size flags for emit_x86_instruction: */
#define EX86_BIN_INS ((sljit_uw)0x000010)
#define EX86_SHIFT_INS ((sljit_uw)0x000020)
#define EX86_BYTE_ARG ((sljit_uw)0x000040)
#define EX86_HALF_ARG ((sljit_uw)0x000080)
/* Size flags for both emit_x86_instruction and emit_vex_instruction: */
#define EX86_REX ((sljit_uw)0x000100)
#define EX86_NO_REXW ((sljit_uw)0x000200)
#define EX86_PREF_66 ((sljit_uw)0x000400)
#define EX86_PREF_F2 ((sljit_uw)0x000800)
#define EX86_PREF_F3 ((sljit_uw)0x001000)
#define EX86_SSE2_OP1 ((sljit_uw)0x002000)
#define EX86_SSE2_OP2 ((sljit_uw)0x004000)
#define EX86_SSE2 (EX86_SSE2_OP1 | EX86_SSE2_OP2)
#define EX86_VEX_EXT ((sljit_uw)0x008000)
/* Op flags for emit_vex_instruction: */
#define VEX_OP_0F38 ((sljit_uw)0x010000)
#define VEX_OP_0F3A ((sljit_uw)0x020000)
#define VEX_SSE2_OPV ((sljit_uw)0x040000)
#define VEX_AUTO_W ((sljit_uw)0x080000)
#define VEX_W ((sljit_uw)0x100000)
#define VEX_256 ((sljit_uw)0x200000)
#define EX86_SELECT_66(op) (((op) & SLJIT_32) ? 0 : EX86_PREF_66)
#define EX86_SELECT_F2_F3(op) (((op) & SLJIT_32) ? EX86_PREF_F3 : EX86_PREF_F2)
/* --------------------------------------------------------------------- */
/* Instruction forms */
/* --------------------------------------------------------------------- */
#define ADD (/* BINARY */ 0 << 3)
#define ADD_EAX_i32 0x05
#define ADD_r_rm 0x03
#define ADD_rm_r 0x01
#define ADDSD_x_xm 0x58
#define ADC (/* BINARY */ 2 << 3)
#define ADC_EAX_i32 0x15
#define ADC_r_rm 0x13
#define ADC_rm_r 0x11
#define AND (/* BINARY */ 4 << 3)
#define AND_EAX_i32 0x25
#define AND_r_rm 0x23
#define AND_rm_r 0x21
#define ANDPD_x_xm 0x54
#define BSR_r_rm (/* GROUP_0F */ 0xbd)
#define BSF_r_rm (/* GROUP_0F */ 0xbc)
#define BSWAP_r (/* GROUP_0F */ 0xc8)
#define CALL_i32 0xe8
#define CALL_rm (/* GROUP_FF */ 2 << 3)
#define CDQ 0x99
#define CMOVE_r_rm (/* GROUP_0F */ 0x44)
#define CMP (/* BINARY */ 7 << 3)
#define CMP_EAX_i32 0x3d
#define CMP_r_rm 0x3b
#define CMP_rm_r 0x39
#define CMPS_x_xm 0xc2
#define CMPXCHG_rm_r 0xb1
#define CMPXCHG_rm8_r 0xb0
#define CVTPD2PS_x_xm 0x5a
#define CVTPS2PD_x_xm 0x5a
#define CVTSI2SD_x_rm 0x2a
#define CVTTSD2SI_r_xm 0x2c
#define DIV (/* GROUP_F7 */ 6 << 3)
#define DIVSD_x_xm 0x5e
#define EXTRACTPS_x_xm 0x17
#define FLDS 0xd9
#define FLDL 0xdd
#define FSTPS 0xd9
#define FSTPD 0xdd
#define INSERTPS_x_xm 0x21
#define INT3 0xcc
#define IDIV (/* GROUP_F7 */ 7 << 3)
#define IMUL (/* GROUP_F7 */ 5 << 3)
#define IMUL_r_rm (/* GROUP_0F */ 0xaf)
#define IMUL_r_rm_i8 0x6b
#define IMUL_r_rm_i32 0x69
#define JL_i8 0x7c
#define JE_i8 0x74
#define JNC_i8 0x73
#define JNE_i8 0x75
#define JMP_i8 0xeb
#define JMP_i32 0xe9
#define JMP_rm (/* GROUP_FF */ 4 << 3)
#define LEA_r_m 0x8d
#define LOOP_i8 0xe2
#define LZCNT_r_rm (/* GROUP_F3 */ /* GROUP_0F */ 0xbd)
#define MOV_r_rm 0x8b
#define MOV_r_i32 0xb8
#define MOV_rm_r 0x89
#define MOV_rm_i32 0xc7
#define MOV_rm8_i8 0xc6
#define MOV_rm8_r8 0x88
#define MOVAPS_x_xm 0x28
#define MOVAPS_xm_x 0x29
#define MOVD_x_rm 0x6e
#define MOVD_rm_x 0x7e
#define MOVDDUP_x_xm 0x12
#define MOVDQA_x_xm 0x6f
#define MOVDQA_xm_x 0x7f
#define MOVDQU_x_xm 0x6f
#define MOVHLPS_x_x 0x12
#define MOVHPD_m_x 0x17
#define MOVHPD_x_m 0x16
#define MOVLHPS_x_x 0x16
#define MOVLPD_m_x 0x13
#define MOVLPD_x_m 0x12
#define MOVMSKPS_r_x (/* GROUP_0F */ 0x50)
#define MOVQ_x_xm (/* GROUP_0F */ 0x7e)
#define MOVSD_x_xm 0x10
#define MOVSD_xm_x 0x11
#define MOVSHDUP_x_xm 0x16
#define MOVSXD_r_rm 0x63
#define MOVSX_r_rm8 (/* GROUP_0F */ 0xbe)
#define MOVSX_r_rm16 (/* GROUP_0F */ 0xbf)
#define MOVUPS_x_xm 0x10
#define MOVZX_r_rm8 (/* GROUP_0F */ 0xb6)
#define MOVZX_r_rm16 (/* GROUP_0F */ 0xb7)
#define MUL (/* GROUP_F7 */ 4 << 3)
#define MULSD_x_xm 0x59
#define NEG_rm (/* GROUP_F7 */ 3 << 3)
#define NOP 0x90
#define NOT_rm (/* GROUP_F7 */ 2 << 3)
#define OR (/* BINARY */ 1 << 3)
#define OR_r_rm 0x0b
#define OR_EAX_i32 0x0d
#define OR_rm_r 0x09
#define OR_rm8_r8 0x08
#define ORPD_x_xm 0x56
#define PACKSSWB_x_xm (/* GROUP_0F */ 0x63)
#define PAND_x_xm 0xdb
#define PCMPEQD_x_xm 0x76
#define PINSRB_x_rm_i8 0x20
#define PINSRW_x_rm_i8 0xc4
#define PINSRD_x_rm_i8 0x22
#define PEXTRB_rm_x_i8 0x14
#define PEXTRW_rm_x_i8 0x15
#define PEXTRD_rm_x_i8 0x16
#define PMOVMSKB_r_x (/* GROUP_0F */ 0xd7)
#define PMOVSXBD_x_xm 0x21
#define PMOVSXBQ_x_xm 0x22
#define PMOVSXBW_x_xm 0x20
#define PMOVSXDQ_x_xm 0x25
#define PMOVSXWD_x_xm 0x23
#define PMOVSXWQ_x_xm 0x24
#define PMOVZXBD_x_xm 0x31
#define PMOVZXBQ_x_xm 0x32
#define PMOVZXBW_x_xm 0x30
#define PMOVZXDQ_x_xm 0x35
#define PMOVZXWD_x_xm 0x33
#define PMOVZXWQ_x_xm 0x34
#define POP_r 0x58
#define POP_rm 0x8f
#define POPF 0x9d
#define POR_x_xm 0xeb
#define PREFETCH 0x18
#define PSHUFB_x_xm 0x00
#define PSHUFD_x_xm 0x70
#define PSHUFLW_x_xm 0x70
#define PSRLDQ_x 0x73
#define PSLLD_x_i8 0x72
#define PSLLQ_x_i8 0x73
#define PUSH_i32 0x68
#define PUSH_r 0x50
#define PUSH_rm (/* GROUP_FF */ 6 << 3)
#define PUSHF 0x9c
#define PXOR_x_xm 0xef
#define ROL (/* SHIFT */ 0 << 3)
#define ROR (/* SHIFT */ 1 << 3)
#define RET_near 0xc3
#define RET_i16 0xc2
#define SBB (/* BINARY */ 3 << 3)
#define SBB_EAX_i32 0x1d
#define SBB_r_rm 0x1b
#define SBB_rm_r 0x19
#define SAR (/* SHIFT */ 7 << 3)
#define SHL (/* SHIFT */ 4 << 3)
#define SHLD (/* GROUP_0F */ 0xa5)
#define SHRD (/* GROUP_0F */ 0xad)
#define SHR (/* SHIFT */ 5 << 3)
#define SHUFPS_x_xm 0xc6
#define SUB (/* BINARY */ 5 << 3)
#define SUB_EAX_i32 0x2d
#define SUB_r_rm 0x2b
#define SUB_rm_r 0x29
#define SUBSD_x_xm 0x5c
#define TEST_EAX_i32 0xa9
#define TEST_rm_r 0x85
#define TZCNT_r_rm (/* GROUP_F3 */ /* GROUP_0F */ 0xbc)
#define UCOMISD_x_xm 0x2e
#define UNPCKLPD_x_xm 0x14
#define UNPCKLPS_x_xm 0x14
#define VBROADCASTSD_x_xm 0x19
#define VBROADCASTSS_x_xm 0x18
#define VEXTRACTF128_x_ym 0x19
#define VEXTRACTI128_x_ym 0x39
#define VINSERTF128_y_y_xm 0x18
#define VINSERTI128_y_y_xm 0x38
#define VPBROADCASTB_x_xm 0x78
#define VPBROADCASTD_x_xm 0x58
#define VPBROADCASTQ_x_xm 0x59
#define VPBROADCASTW_x_xm 0x79
#define VPERMPD_y_ym 0x01
#define VPERMQ_y_ym 0x00
#define XCHG_EAX_r 0x90
#define XCHG_r_rm 0x87
#define XOR (/* BINARY */ 6 << 3)
#define XOR_EAX_i32 0x35
#define XOR_r_rm 0x33
#define XOR_rm_r 0x31
#define XORPD_x_xm 0x57
#define GROUP_0F 0x0f
#define GROUP_66 0x66
#define GROUP_F3 0xf3
#define GROUP_F7 0xf7
#define GROUP_FF 0xff
#define GROUP_BINARY_81 0x81
#define GROUP_BINARY_83 0x83
#define GROUP_SHIFT_1 0xd1
#define GROUP_SHIFT_N 0xc1
#define GROUP_SHIFT_CL 0xd3
#define GROUP_LOCK 0xf0
#define MOD_REG 0xc0
#define MOD_DISP8 0x40
#define INC_SIZE(s) (*inst++ = U8(s), compiler->size += (s))
#define PUSH_REG(r) (*inst++ = U8(PUSH_r + (r)))
#define POP_REG(r) (*inst++ = U8(POP_r + (r)))
#define RET() (*inst++ = RET_near)
#define RET_I16(n) (*inst++ = RET_i16, *inst++ = U8(n), *inst++ = 0)
#define SLJIT_INST_LABEL 255
#define SLJIT_INST_JUMP 254
#define SLJIT_INST_MOV_ADDR 253
#define SLJIT_INST_CONST 252
/* Multithreading does not affect these static variables, since they store
built-in CPU features. Therefore they can be overwritten by different threads
if they detect the CPU features in the same time. */
#define CPU_FEATURE_DETECTED 0x001
#if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2)
#define CPU_FEATURE_SSE2 0x002
#endif
#define CPU_FEATURE_SSE41 0x004
#define CPU_FEATURE_LZCNT 0x008
#define CPU_FEATURE_TZCNT 0x010
#define CPU_FEATURE_CMOV 0x020
#define CPU_FEATURE_AVX 0x040
#define CPU_FEATURE_AVX2 0x080
#define CPU_FEATURE_OSXSAVE 0x100
static sljit_u32 cpu_feature_list = 0;
#ifdef _WIN32_WCE
#include <cmnintrin.h>
#elif defined(_MSC_VER) && _MSC_VER >= 1400
#include <intrin.h>
#elif defined(__INTEL_COMPILER)
#include <cpuid.h>
#endif
#if (defined(_MSC_VER) && _MSC_VER >= 1400) || defined(__INTEL_COMPILER) \
|| (defined(__INTEL_LLVM_COMPILER) && defined(__XSAVE__))
#include <immintrin.h>
#endif
/******************************************************/
/* Unaligned-store functions */
/******************************************************/
static SLJIT_INLINE void sljit_unaligned_store_s16(void *addr, sljit_s16 value)
{
SLJIT_MEMCPY(addr, &value, sizeof(value));
}
static SLJIT_INLINE void sljit_unaligned_store_s32(void *addr, sljit_s32 value)
{
SLJIT_MEMCPY(addr, &value, sizeof(value));
}
static SLJIT_INLINE void sljit_unaligned_store_sw(void *addr, sljit_sw value)
{
SLJIT_MEMCPY(addr, &value, sizeof(value));
}
/******************************************************/
/* Utility functions */
/******************************************************/
static void execute_cpu_id(sljit_u32 info[4])
{
#if (defined(_MSC_VER) && _MSC_VER >= 1400) \
|| (defined(__INTEL_COMPILER) && __INTEL_COMPILER == 2021 && __INTEL_COMPILER_UPDATE >= 7)
__cpuidex((int*)info, (int)info[0], (int)info[2]);
#elif (defined(__INTEL_COMPILER) && __INTEL_COMPILER >= 1900)
__get_cpuid_count(info[0], info[2], info, info + 1, info + 2, info + 3);
#elif (defined(_MSC_VER) || defined(__INTEL_COMPILER)) \
&& (defined(SLJIT_CONFIG_X86_32) && SLJIT_CONFIG_X86_32)
/* Intel syntax. */
__asm {
mov esi, info
mov eax, [esi]
mov ecx, [esi + 8]
cpuid
mov [esi], eax
mov [esi + 4], ebx
mov [esi + 8], ecx
mov [esi + 12], edx
}
#else
__asm__ __volatile__ (
"cpuid\n"
: "=a" (info[0]), "=b" (info[1]), "=c" (info[2]), "=d" (info[3])
: "0" (info[0]), "2" (info[2])
);
#endif
}
static sljit_u32 execute_get_xcr0_low(void)
{
sljit_u32 xcr0;
#if (defined(_MSC_VER) && _MSC_VER >= 1400) || defined(__INTEL_COMPILER) \
|| (defined(__INTEL_LLVM_COMPILER) && defined(__XSAVE__))
xcr0 = (sljit_u32)_xgetbv(0);
#elif defined(__TINYC__)
__asm__ (
"xorl %%ecx, %%ecx\n"
".byte 0x0f\n"
".byte 0x01\n"
".byte 0xd0\n"
: "=a" (xcr0)
:
#if defined(SLJIT_CONFIG_X86_32) && SLJIT_CONFIG_X86_32
: "ecx", "edx"
#else /* !SLJIT_CONFIG_X86_32 */
: "rcx", "rdx"
#endif /* SLJIT_CONFIG_X86_32 */
);
#elif (defined(__INTEL_LLVM_COMPILER) && __INTEL_LLVM_COMPILER < 20220100) \
|| (defined(__clang__) && __clang_major__ < 14) \
|| (defined(__GNUC__) && __GNUC__ < 3) \
|| defined(__SUNPRO_C) || defined(__SUNPRO_CC)
/* AT&T syntax. */
__asm__ (
"xorl %%ecx, %%ecx\n"
"xgetbv\n"
: "=a" (xcr0)
:
#if defined(SLJIT_CONFIG_X86_32) && SLJIT_CONFIG_X86_32
: "ecx", "edx"
#else /* !SLJIT_CONFIG_X86_32 */
: "rcx", "rdx"
#endif /* SLJIT_CONFIG_X86_32 */
);
#elif defined(_MSC_VER)
/* Intel syntax. */
__asm {
xor ecx, ecx
xgetbv
mov xcr0, eax
}
#else
__asm__ (
"xor{l %%ecx, %%ecx | ecx, ecx}\n"
"xgetbv\n"
: "=a" (xcr0)
:
#if defined(SLJIT_CONFIG_X86_32) && SLJIT_CONFIG_X86_32
: "ecx", "edx"
#else /* !SLJIT_CONFIG_X86_32 */
: "rcx", "rdx"
#endif /* SLJIT_CONFIG_X86_32 */
);
#endif
return xcr0;
}
static void get_cpu_features(void)
{
sljit_u32 feature_list = CPU_FEATURE_DETECTED;
sljit_u32 info[4] = {0};
sljit_u32 max_id;
execute_cpu_id(info);
max_id = info[0];
if (max_id >= 7) {
info[0] = 7;
info[2] = 0;
execute_cpu_id(info);
if (info[1] & 0x8)
feature_list |= CPU_FEATURE_TZCNT;
if (info[1] & 0x20)
feature_list |= CPU_FEATURE_AVX2;
}
if (max_id >= 1) {
info[0] = 1;
#if defined(SLJIT_CONFIG_X86_32) && SLJIT_CONFIG_X86_32
/* Winchip 2 and Cyrix MII bugs */
info[1] = info[2] = 0;
#endif
execute_cpu_id(info);
if (info[2] & 0x80000)
feature_list |= CPU_FEATURE_SSE41;
if (info[2] & 0x8000000)
feature_list |= CPU_FEATURE_OSXSAVE;
if (info[2] & 0x10000000)
feature_list |= CPU_FEATURE_AVX;
#if (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2)
if (info[3] & 0x4000000)
feature_list |= CPU_FEATURE_SSE2;
#endif
if (info[3] & 0x8000)
feature_list |= CPU_FEATURE_CMOV;
}
info[0] = 0x80000000;
execute_cpu_id(info);
max_id = info[0];
if (max_id >= 0x80000001) {
info[0] = 0x80000001;
execute_cpu_id(info);
if (info[2] & 0x20)
feature_list |= CPU_FEATURE_LZCNT;
}
if ((feature_list & CPU_FEATURE_OSXSAVE) && (execute_get_xcr0_low() & 0x4) == 0)
feature_list &= ~(sljit_u32)(CPU_FEATURE_AVX | CPU_FEATURE_AVX2);
cpu_feature_list = feature_list;
}
static sljit_u8 get_jump_code(sljit_uw type)
{
switch (type) {
case SLJIT_EQUAL:
case SLJIT_ATOMIC_STORED:
case SLJIT_F_EQUAL:
case SLJIT_UNORDERED_OR_EQUAL:
return 0x84 /* je */;
case SLJIT_NOT_EQUAL:
case SLJIT_ATOMIC_NOT_STORED:
case SLJIT_F_NOT_EQUAL:
case SLJIT_ORDERED_NOT_EQUAL:
return 0x85 /* jne */;
case SLJIT_LESS:
case SLJIT_CARRY:
case SLJIT_F_LESS:
case SLJIT_UNORDERED_OR_LESS:
case SLJIT_UNORDERED_OR_GREATER:
return 0x82 /* jc */;
case SLJIT_GREATER_EQUAL:
case SLJIT_NOT_CARRY:
case SLJIT_F_GREATER_EQUAL:
case SLJIT_ORDERED_GREATER_EQUAL:
case SLJIT_ORDERED_LESS_EQUAL:
return 0x83 /* jae */;
case SLJIT_GREATER:
case SLJIT_F_GREATER:
case SLJIT_ORDERED_LESS:
case SLJIT_ORDERED_GREATER:
return 0x87 /* jnbe */;
case SLJIT_LESS_EQUAL:
case SLJIT_F_LESS_EQUAL:
case SLJIT_UNORDERED_OR_GREATER_EQUAL:
case SLJIT_UNORDERED_OR_LESS_EQUAL:
return 0x86 /* jbe */;
case SLJIT_SIG_LESS:
return 0x8c /* jl */;
case SLJIT_SIG_GREATER_EQUAL:
return 0x8d /* jnl */;
case SLJIT_SIG_GREATER:
return 0x8f /* jnle */;
case SLJIT_SIG_LESS_EQUAL:
return 0x8e /* jle */;
case SLJIT_OVERFLOW:
return 0x80 /* jo */;
case SLJIT_NOT_OVERFLOW:
return 0x81 /* jno */;
case SLJIT_UNORDERED:
case SLJIT_ORDERED_EQUAL: /* NaN. */
return 0x8a /* jp */;
case SLJIT_ORDERED:
case SLJIT_UNORDERED_OR_NOT_EQUAL: /* Not NaN. */
return 0x8b /* jpo */;
}
return 0;
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
static sljit_u8* detect_far_jump_type(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_sw executable_offset);
#else /* !SLJIT_CONFIG_X86_32 */
static sljit_u8* detect_far_jump_type(struct sljit_jump *jump, sljit_u8 *code_ptr);
static sljit_u8* generate_mov_addr_code(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_u8 *code, sljit_sw executable_offset);
#endif /* SLJIT_CONFIG_X86_32 */
static sljit_u8* detect_near_jump_type(struct sljit_jump *jump, sljit_u8 *code_ptr, sljit_u8 *code, sljit_sw executable_offset)
{
sljit_uw type = jump->flags >> TYPE_SHIFT;
sljit_s32 short_jump;
sljit_uw label_addr;
sljit_uw jump_addr;
jump_addr = (sljit_uw)code_ptr;
if (!(jump->flags & JUMP_ADDR)) {
label_addr = (sljit_uw)(code + jump->u.label->size);
if (jump->u.label->size > jump->addr)
jump_addr = (sljit_uw)(code + jump->addr);
} else
label_addr = jump->u.target - (sljit_uw)executable_offset;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((sljit_sw)(label_addr - (jump_addr + 6)) > HALFWORD_MAX || (sljit_sw)(label_addr - (jump_addr + 5)) < HALFWORD_MIN)
return detect_far_jump_type(jump, code_ptr);
#endif /* SLJIT_CONFIG_X86_64 */
short_jump = (sljit_sw)(label_addr - (jump_addr + 2)) >= -0x80 && (sljit_sw)(label_addr - (jump_addr + 2)) <= 0x7f;
if (type == SLJIT_JUMP) {
if (short_jump)
*code_ptr++ = JMP_i8;
else
*code_ptr++ = JMP_i32;
} else if (type > SLJIT_JUMP) {
short_jump = 0;
*code_ptr++ = CALL_i32;
} else if (short_jump) {
*code_ptr++ = U8(get_jump_code(type) - 0x10);
} else {
*code_ptr++ = GROUP_0F;
*code_ptr++ = get_jump_code(type);
}
jump->addr = (sljit_uw)code_ptr;
if (short_jump) {
jump->flags |= PATCH_MB;
code_ptr += sizeof(sljit_s8);
} else {
jump->flags |= PATCH_MW;
code_ptr += sizeof(sljit_s32);
}
return code_ptr;
}
static void generate_jump_or_mov_addr(struct sljit_jump *jump, sljit_sw executable_offset)
{
sljit_uw flags = jump->flags;
sljit_uw addr = (flags & JUMP_ADDR) ? jump->u.target : jump->u.label->u.addr;
sljit_uw jump_addr = jump->addr;
SLJIT_UNUSED_ARG(executable_offset);
if (SLJIT_UNLIKELY(flags & JUMP_MOV_ADDR)) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_unaligned_store_sw((void*)(jump_addr - sizeof(sljit_sw)), (sljit_sw)addr);
#else /* SLJIT_CONFIG_X86_32 */
if (flags & PATCH_MD) {
SLJIT_ASSERT(addr > HALFWORD_MAX);
sljit_unaligned_store_sw((void*)(jump_addr - sizeof(sljit_sw)), (sljit_sw)addr);
return;
}
if (flags & PATCH_MW) {
addr -= (sljit_uw)SLJIT_ADD_EXEC_OFFSET((sljit_u8*)jump_addr, executable_offset);
SLJIT_ASSERT((sljit_sw)addr <= HALFWORD_MAX && (sljit_sw)addr >= HALFWORD_MIN);
} else {
SLJIT_ASSERT(addr <= HALFWORD_MAX);
}
sljit_unaligned_store_s32((void*)(jump_addr - sizeof(sljit_s32)), (sljit_s32)addr);
#endif /* !SLJIT_CONFIG_X86_32 */
return;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (SLJIT_UNLIKELY(flags & PATCH_MD)) {
SLJIT_ASSERT(!(flags & JUMP_ADDR));
sljit_unaligned_store_sw((void*)jump_addr, (sljit_sw)addr);
return;
}
#endif /* SLJIT_CONFIG_X86_64 */
addr -= (sljit_uw)SLJIT_ADD_EXEC_OFFSET((sljit_u8*)jump_addr, executable_offset);
if (flags & PATCH_MB) {
addr -= sizeof(sljit_s8);
SLJIT_ASSERT((sljit_sw)addr <= 0x7f && (sljit_sw)addr >= -0x80);
*(sljit_u8*)jump_addr = U8(addr);
return;
} else if (flags & PATCH_MW) {
addr -= sizeof(sljit_s32);
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_unaligned_store_sw((void*)jump_addr, (sljit_sw)addr);
#else /* !SLJIT_CONFIG_X86_32 */
SLJIT_ASSERT((sljit_sw)addr <= HALFWORD_MAX && (sljit_sw)addr >= HALFWORD_MIN);
sljit_unaligned_store_s32((void*)jump_addr, (sljit_s32)addr);
#endif /* SLJIT_CONFIG_X86_32 */
}
}
static void reduce_code_size(struct sljit_compiler *compiler)
{
struct sljit_label *label;
struct sljit_jump *jump;
sljit_uw next_label_size;
sljit_uw next_jump_addr;
sljit_uw next_min_addr;
sljit_uw size_reduce = 0;
sljit_sw diff;
sljit_uw type;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
sljit_uw size_reduce_max;
#endif /* SLJIT_DEBUG */
label = compiler->labels;
jump = compiler->jumps;
next_label_size = SLJIT_GET_NEXT_SIZE(label);
next_jump_addr = SLJIT_GET_NEXT_ADDRESS(jump);
while (1) {
next_min_addr = next_label_size;
if (next_jump_addr < next_min_addr)
next_min_addr = next_jump_addr;
if (next_min_addr == SLJIT_MAX_ADDRESS)
break;
if (next_min_addr == next_label_size) {
label->size -= size_reduce;
label = label->next;
next_label_size = SLJIT_GET_NEXT_SIZE(label);
}
if (next_min_addr != next_jump_addr)
continue;
jump->addr -= size_reduce;
if (!(jump->flags & JUMP_MOV_ADDR)) {
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
size_reduce_max = size_reduce + (((jump->flags >> TYPE_SHIFT) < SLJIT_JUMP) ? CJUMP_MAX_SIZE : JUMP_MAX_SIZE);
#endif /* SLJIT_DEBUG */
if (!(jump->flags & SLJIT_REWRITABLE_JUMP)) {
if (jump->flags & JUMP_ADDR) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (jump->u.target <= 0xffffffffl)
size_reduce += sizeof(sljit_s32);
#endif /* SLJIT_CONFIG_X86_64 */
} else {
/* Unit size: instruction. */
diff = (sljit_sw)jump->u.label->size - (sljit_sw)jump->addr;
if (jump->u.label->size > jump->addr) {
SLJIT_ASSERT(jump->u.label->size - size_reduce >= jump->addr);
diff -= (sljit_sw)size_reduce;
}
type = jump->flags >> TYPE_SHIFT;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (type == SLJIT_JUMP) {
if (diff <= 0x7f + 2 && diff >= -0x80 + 2)
size_reduce += JUMP_MAX_SIZE - 2;
else if (diff <= HALFWORD_MAX + 5 && diff >= HALFWORD_MIN + 5)
size_reduce += JUMP_MAX_SIZE - 5;
} else if (type < SLJIT_JUMP) {
if (diff <= 0x7f + 2 && diff >= -0x80 + 2)
size_reduce += CJUMP_MAX_SIZE - 2;
else if (diff <= HALFWORD_MAX + 6 && diff >= HALFWORD_MIN + 6)
size_reduce += CJUMP_MAX_SIZE - 6;
} else {
if (diff <= HALFWORD_MAX + 5 && diff >= HALFWORD_MIN + 5)
size_reduce += JUMP_MAX_SIZE - 5;
}
#else /* !SLJIT_CONFIG_X86_64 */
if (type == SLJIT_JUMP) {
if (diff <= 0x7f + 2 && diff >= -0x80 + 2)
size_reduce += JUMP_MAX_SIZE - 2;
} else if (type < SLJIT_JUMP) {
if (diff <= 0x7f + 2 && diff >= -0x80 + 2)
size_reduce += CJUMP_MAX_SIZE - 2;
}
#endif /* SLJIT_CONFIG_X86_64 */
}
}
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
jump->flags |= (size_reduce_max - size_reduce) << JUMP_SIZE_SHIFT;
#endif /* SLJIT_DEBUG */
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
} else {
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
size_reduce_max = size_reduce + 10;
#endif /* SLJIT_DEBUG */
if (!(jump->flags & JUMP_ADDR)) {
diff = (sljit_sw)jump->u.label->size - (sljit_sw)(jump->addr - 3);
if (diff <= HALFWORD_MAX && diff >= HALFWORD_MIN)
size_reduce += 3;
} else if (jump->u.target <= 0xffffffffl)
size_reduce += (jump->flags & MOV_ADDR_HI) ? 4 : 5;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
jump->flags |= (size_reduce_max - size_reduce) << JUMP_SIZE_SHIFT;
#endif /* SLJIT_DEBUG */
#endif /* SLJIT_CONFIG_X86_64 */
}
jump = jump->next;
next_jump_addr = SLJIT_GET_NEXT_ADDRESS(jump);
}
compiler->size -= size_reduce;
}
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler, sljit_s32 options, void *exec_allocator_data)
{
struct sljit_memory_fragment *buf;
sljit_u8 *code;
sljit_u8 *code_ptr;
sljit_u8 *buf_ptr;
sljit_u8 *buf_end;
sljit_u8 len;
sljit_sw executable_offset;
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
sljit_uw addr;
#endif /* SLJIT_DEBUG */
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_generate_code(compiler));
reduce_code_size(compiler);
/* Second code generation pass. */
code = (sljit_u8*)allocate_executable_memory(compiler->size, options, exec_allocator_data, &executable_offset);
PTR_FAIL_WITH_EXEC_IF(code);
reverse_buf(compiler);
buf = compiler->buf;
code_ptr = code;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
do {
buf_ptr = buf->memory;
buf_end = buf_ptr + buf->used_size;
do {
len = *buf_ptr++;
SLJIT_ASSERT(len > 0);
if (len < SLJIT_INST_CONST) {
/* The code is already generated. */
SLJIT_MEMCPY(code_ptr, buf_ptr, len);
code_ptr += len;
buf_ptr += len;
} else {
switch (len) {
case SLJIT_INST_LABEL:
label->u.addr = (sljit_uw)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset);
label->size = (sljit_uw)(code_ptr - code);
label = label->next;
break;
case SLJIT_INST_JUMP:
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
addr = (sljit_uw)code_ptr;
#endif /* SLJIT_DEBUG */
if (!(jump->flags & SLJIT_REWRITABLE_JUMP))
code_ptr = detect_near_jump_type(jump, code_ptr, code, executable_offset);
else {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
code_ptr = detect_far_jump_type(jump, code_ptr, executable_offset);
#else /* !SLJIT_CONFIG_X86_32 */
code_ptr = detect_far_jump_type(jump, code_ptr);
#endif /* SLJIT_CONFIG_X86_32 */
}
SLJIT_ASSERT((sljit_uw)code_ptr - addr <= ((jump->flags >> JUMP_SIZE_SHIFT) & 0x1f));
jump = jump->next;
break;
case SLJIT_INST_MOV_ADDR:
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
code_ptr = generate_mov_addr_code(jump, code_ptr, code, executable_offset);
#endif /* SLJIT_CONFIG_X86_64 */
jump->addr = (sljit_uw)code_ptr;
jump = jump->next;
break;
default:
SLJIT_ASSERT(len == SLJIT_INST_CONST);
const_->addr = ((sljit_uw)code_ptr) - sizeof(sljit_sw);
const_ = const_->next;
break;
}
}
} while (buf_ptr < buf_end);
SLJIT_ASSERT(buf_ptr == buf_end);
buf = buf->next;
} while (buf);
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
SLJIT_ASSERT(code_ptr <= code + compiler->size);
jump = compiler->jumps;
while (jump) {
generate_jump_or_mov_addr(jump, executable_offset);
jump = jump->next;
}
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_offset = executable_offset;
compiler->executable_size = (sljit_uw)(code_ptr - code);
code = (sljit_u8*)SLJIT_ADD_EXEC_OFFSET(code, executable_offset);
SLJIT_UPDATE_WX_FLAGS(code, (sljit_u8*)SLJIT_ADD_EXEC_OFFSET(code_ptr, executable_offset), 1);
return (void*)code;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_has_cpu_feature(sljit_s32 feature_type)
{
switch (feature_type) {
case SLJIT_HAS_FPU:
#ifdef SLJIT_IS_FPU_AVAILABLE
return (SLJIT_IS_FPU_AVAILABLE) != 0;
#elif (defined SLJIT_DETECT_SSE2 && SLJIT_DETECT_SSE2)
if (cpu_feature_list == 0)
get_cpu_features();
return (cpu_feature_list & CPU_FEATURE_SSE2) != 0;
#else /* SLJIT_DETECT_SSE2 */
return 1;
#endif /* SLJIT_DETECT_SSE2 */
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
case SLJIT_HAS_VIRTUAL_REGISTERS:
return 1;
#endif /* SLJIT_CONFIG_X86_32 */
case SLJIT_HAS_CLZ:
if (cpu_feature_list == 0)
get_cpu_features();
return (cpu_feature_list & CPU_FEATURE_LZCNT) ? 1 : 2;
case SLJIT_HAS_CTZ:
if (cpu_feature_list == 0)
get_cpu_features();
return (cpu_feature_list & CPU_FEATURE_TZCNT) ? 1 : 2;
case SLJIT_HAS_CMOV:
if (cpu_feature_list == 0)
get_cpu_features();
return (cpu_feature_list & CPU_FEATURE_CMOV) != 0;
case SLJIT_HAS_REV:
case SLJIT_HAS_ROT:
case SLJIT_HAS_PREFETCH:
case SLJIT_HAS_COPY_F32:
case SLJIT_HAS_COPY_F64:
case SLJIT_HAS_ATOMIC:
case SLJIT_HAS_MEMORY_BARRIER:
return 1;
#if !(defined SLJIT_IS_FPU_AVAILABLE) || SLJIT_IS_FPU_AVAILABLE
case SLJIT_HAS_AVX:
if (cpu_feature_list == 0)
get_cpu_features();
return (cpu_feature_list & CPU_FEATURE_AVX) != 0;
case SLJIT_HAS_AVX2:
if (cpu_feature_list == 0)
get_cpu_features();
return (cpu_feature_list & CPU_FEATURE_AVX2) != 0;
case SLJIT_HAS_SIMD:
if (cpu_feature_list == 0)
get_cpu_features();
return (cpu_feature_list & CPU_FEATURE_SSE41) != 0;
#endif /* SLJIT_IS_FPU_AVAILABLE */
default:
return 0;
}
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_cmp_info(sljit_s32 type)
{
switch (type) {
case SLJIT_ORDERED_EQUAL:
case SLJIT_UNORDERED_OR_NOT_EQUAL:
return 2;
}
return 0;
}
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
#define BINARY_OPCODE(opcode) (((opcode ## _EAX_i32) << 24) | ((opcode ## _r_rm) << 16) | ((opcode ## _rm_r) << 8) | (opcode))
#define BINARY_IMM32(op_imm, immw, arg, argw) \
do { \
inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, immw, arg, argw); \
FAIL_IF(!inst); \
*(inst + 1) |= (op_imm); \
} while (0)
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
#define BINARY_IMM(op_imm, op_mr, immw, arg, argw) \
do { \
if (IS_HALFWORD(immw) || compiler->mode32) { \
BINARY_IMM32(op_imm, immw, arg, argw); \
} \
else { \
FAIL_IF(emit_load_imm64(compiler, FAST_IS_REG(arg) ? TMP_REG2 : TMP_REG1, immw)); \
inst = emit_x86_instruction(compiler, 1, FAST_IS_REG(arg) ? TMP_REG2 : TMP_REG1, 0, arg, argw); \
FAIL_IF(!inst); \
*inst = (op_mr); \
} \
} while (0)
#define BINARY_EAX_IMM(op_eax_imm, immw) \
FAIL_IF(emit_do_imm32(compiler, (!compiler->mode32) ? REX_W : 0, (op_eax_imm), immw))
#else /* !SLJIT_CONFIG_X86_64 */
#define BINARY_IMM(op_imm, op_mr, immw, arg, argw) \
BINARY_IMM32(op_imm, immw, arg, argw)
#define BINARY_EAX_IMM(op_eax_imm, immw) \
FAIL_IF(emit_do_imm(compiler, (op_eax_imm), immw))
#endif /* SLJIT_CONFIG_X86_64 */
static sljit_s32 emit_byte(struct sljit_compiler *compiler, sljit_u8 byte)
{
sljit_u8 *inst = (sljit_u8*)ensure_buf(compiler, 1 + 1);
FAIL_IF(!inst);
INC_SIZE(1);
*inst = byte;
return SLJIT_SUCCESS;
}
static sljit_s32 emit_mov(struct sljit_compiler *compiler,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw);
#define EMIT_MOV(compiler, dst, dstw, src, srcw) \
FAIL_IF(emit_mov(compiler, dst, dstw, src, srcw));
static sljit_s32 emit_groupf(struct sljit_compiler *compiler,
sljit_uw op,
sljit_s32 dst, sljit_s32 src, sljit_sw srcw);
static sljit_s32 emit_groupf_ext(struct sljit_compiler *compiler,
sljit_uw op,
sljit_s32 dst, sljit_s32 src, sljit_sw srcw);
static SLJIT_INLINE sljit_s32 emit_sse2_store(struct sljit_compiler *compiler,
sljit_s32 single, sljit_s32 dst, sljit_sw dstw, sljit_s32 src);
static SLJIT_INLINE sljit_s32 emit_sse2_load(struct sljit_compiler *compiler,
sljit_s32 single, sljit_s32 dst, sljit_s32 src, sljit_sw srcw);
static sljit_s32 emit_cmp_binary(struct sljit_compiler *compiler,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w);
static sljit_s32 emit_cmov_generic(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_reg,
sljit_s32 src, sljit_sw srcw);
static SLJIT_INLINE sljit_s32 emit_endbranch(struct sljit_compiler *compiler)
{
#if (defined SLJIT_CONFIG_X86_CET && SLJIT_CONFIG_X86_CET)
/* Emit endbr32/endbr64 when CET is enabled. */
sljit_u8 *inst;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!inst);
INC_SIZE(4);
inst[0] = GROUP_F3;
inst[1] = GROUP_0F;
inst[2] = 0x1e;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
inst[3] = 0xfb;
#else /* !SLJIT_CONFIG_X86_32 */
inst[3] = 0xfa;
#endif /* SLJIT_CONFIG_X86_32 */
#else /* !SLJIT_CONFIG_X86_CET */
SLJIT_UNUSED_ARG(compiler);
#endif /* SLJIT_CONFIG_X86_CET */
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_X86_CET && SLJIT_CONFIG_X86_CET) && defined (__SHSTK__)
static SLJIT_INLINE sljit_s32 emit_rdssp(struct sljit_compiler *compiler, sljit_s32 reg)
{
sljit_u8 *inst;
sljit_s32 size;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
size = 5;
#else
size = 4;
#endif
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
*inst++ = GROUP_F3;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
*inst++ = REX_W | (reg_map[reg] <= 7 ? 0 : REX_B);
#endif
inst[0] = GROUP_0F;
inst[1] = 0x1e;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
inst[2] = U8(MOD_REG | (0x1 << 3) | reg_lmap[reg]);
#else
inst[2] = U8(MOD_REG | (0x1 << 3) | reg_map[reg]);
#endif
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 emit_incssp(struct sljit_compiler *compiler, sljit_s32 reg)
{
sljit_u8 *inst;
sljit_s32 size;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
size = 5;
#else
size = 4;
#endif
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
*inst++ = GROUP_F3;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
*inst++ = REX_W | (reg_map[reg] <= 7 ? 0 : REX_B);
#endif
inst[0] = GROUP_0F;
inst[1] = 0xae;
inst[2] = (0x3 << 6) | (0x5 << 3) | (reg_map[reg] & 0x7);
return SLJIT_SUCCESS;
}
#endif /* SLJIT_CONFIG_X86_CET && __SHSTK__ */
static SLJIT_INLINE sljit_s32 cpu_has_shadow_stack(void)
{
#if (defined SLJIT_CONFIG_X86_CET && SLJIT_CONFIG_X86_CET) && defined (__SHSTK__)
return _get_ssp() != 0;
#else /* !SLJIT_CONFIG_X86_CET || !__SHSTK__ */
return 0;
#endif /* SLJIT_CONFIG_X86_CET && __SHSTK__ */
}
static SLJIT_INLINE sljit_s32 adjust_shadow_stack(struct sljit_compiler *compiler,
sljit_s32 src, sljit_sw srcw)
{
#if (defined SLJIT_CONFIG_X86_CET && SLJIT_CONFIG_X86_CET) && defined (__SHSTK__)
sljit_u8 *inst, *jz_after_cmp_inst;
sljit_uw size_jz_after_cmp_inst;
sljit_uw size_before_rdssp_inst = compiler->size;
/* Generate "RDSSP TMP_REG1". */
FAIL_IF(emit_rdssp(compiler, TMP_REG1));
/* Load return address on shadow stack into TMP_REG1. */
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_MEM1(TMP_REG1), 0);
/* Compare return address against TMP_REG1. */
FAIL_IF(emit_cmp_binary (compiler, TMP_REG1, 0, src, srcw));
/* Generate JZ to skip shadow stack ajdustment when shadow
stack matches normal stack. */
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!inst);
INC_SIZE(2);
*inst++ = get_jump_code(SLJIT_EQUAL) - 0x10;
size_jz_after_cmp_inst = compiler->size;
jz_after_cmp_inst = inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
/* REX_W is not necessary. */
compiler->mode32 = 1;
#endif
/* Load 1 into TMP_REG1. */
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, 1);
/* Generate "INCSSP TMP_REG1". */
FAIL_IF(emit_incssp(compiler, TMP_REG1));
/* Jump back to "RDSSP TMP_REG1" to check shadow stack again. */
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!inst);
INC_SIZE(2);
inst[0] = JMP_i8;
inst[1] = size_before_rdssp_inst - compiler->size;
*jz_after_cmp_inst = compiler->size - size_jz_after_cmp_inst;
#else /* !SLJIT_CONFIG_X86_CET || !__SHSTK__ */
SLJIT_UNUSED_ARG(compiler);
SLJIT_UNUSED_ARG(src);
SLJIT_UNUSED_ARG(srcw);
#endif /* SLJIT_CONFIG_X86_CET && __SHSTK__ */
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
#include "sljitNativeX86_32.c"
#else
#include "sljitNativeX86_64.c"
#endif
static sljit_s32 emit_mov(struct sljit_compiler *compiler,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
if (FAST_IS_REG(src)) {
inst = emit_x86_instruction(compiler, 1, src, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_r;
return SLJIT_SUCCESS;
}
if (src == SLJIT_IMM) {
if (FAST_IS_REG(dst)) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return emit_do_imm(compiler, MOV_r_i32 | reg_map[dst], srcw);
#else
if (!compiler->mode32) {
if (NOT_HALFWORD(srcw))
return emit_load_imm64(compiler, dst, srcw);
}
else
return emit_do_imm32(compiler, (reg_map[dst] >= 8) ? REX_B : 0, U8(MOV_r_i32 | reg_lmap[dst]), srcw);
#endif
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (!compiler->mode32 && NOT_HALFWORD(srcw)) {
/* Immediate to memory move. Only SLJIT_MOV operation copies
an immediate directly into memory so TMP_REG1 can be used. */
FAIL_IF(emit_load_imm64(compiler, TMP_REG1, srcw));
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_r;
return SLJIT_SUCCESS;
}
#endif
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_i32;
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(dst)) {
inst = emit_x86_instruction(compiler, 1, dst, 0, src, srcw);
FAIL_IF(!inst);
*inst = MOV_r_rm;
return SLJIT_SUCCESS;
}
/* Memory to memory move. Only SLJIT_MOV operation copies
data from memory to memory so TMP_REG1 can be used. */
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src, srcw);
FAIL_IF(!inst);
*inst = MOV_r_rm;
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_r;
return SLJIT_SUCCESS;
}
static sljit_s32 emit_cmov_generic(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_reg,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
sljit_uw size;
SLJIT_ASSERT(type >= SLJIT_EQUAL && type <= SLJIT_ORDERED_LESS_EQUAL);
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!inst);
INC_SIZE(2);
inst[0] = U8(get_jump_code((sljit_uw)type ^ 0x1) - 0x10);
size = compiler->size;
EMIT_MOV(compiler, dst_reg, 0, src, srcw);
inst[1] = U8(compiler->size - size);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op0(struct sljit_compiler *compiler, sljit_s32 op)
{
sljit_u8 *inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_uw size;
#endif
CHECK_ERROR();
CHECK(check_sljit_emit_op0(compiler, op));
switch (GET_OPCODE(op)) {
case SLJIT_BREAKPOINT:
return emit_byte(compiler, INT3);
case SLJIT_NOP:
return emit_byte(compiler, NOP);
case SLJIT_LMUL_UW:
case SLJIT_LMUL_SW:
case SLJIT_DIVMOD_UW:
case SLJIT_DIVMOD_SW:
case SLJIT_DIV_UW:
case SLJIT_DIV_SW:
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
#ifdef _WIN64
SLJIT_ASSERT(
reg_map[SLJIT_R0] == 0
&& reg_map[SLJIT_R1] == 2
&& reg_map[TMP_REG1] > 7);
#else
SLJIT_ASSERT(
reg_map[SLJIT_R0] == 0
&& reg_map[SLJIT_R1] < 7
&& reg_map[TMP_REG1] == 2);
#endif
compiler->mode32 = op & SLJIT_32;
#endif
SLJIT_COMPILE_ASSERT((SLJIT_DIVMOD_UW & 0x2) == 0 && SLJIT_DIV_UW - 0x2 == SLJIT_DIVMOD_UW, bad_div_opcode_assignments);
op = GET_OPCODE(op);
if ((op | 0x2) == SLJIT_DIV_UW) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64)
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R1, 0);
inst = emit_x86_instruction(compiler, 1, SLJIT_R1, 0, SLJIT_R1, 0);
#else
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, TMP_REG1, 0);
#endif
FAIL_IF(!inst);
*inst = XOR_r_rm;
}
if ((op | 0x2) == SLJIT_DIV_SW) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32) || defined(_WIN64)
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R1, 0);
#endif
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
FAIL_IF(emit_byte(compiler, CDQ));
#else
if (!compiler->mode32) {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!inst);
INC_SIZE(2);
inst[0] = REX_W;
inst[1] = CDQ;
} else
FAIL_IF(emit_byte(compiler, CDQ));
#endif
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!inst);
INC_SIZE(2);
inst[0] = GROUP_F7;
inst[1] = MOD_REG | ((op >= SLJIT_DIVMOD_UW) ? reg_map[TMP_REG1] : reg_map[SLJIT_R1]);
#else /* !SLJIT_CONFIG_X86_32 */
#ifdef _WIN64
size = (!compiler->mode32 || op >= SLJIT_DIVMOD_UW) ? 3 : 2;
#else /* !_WIN64 */
size = (!compiler->mode32) ? 3 : 2;
#endif /* _WIN64 */
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
#ifdef _WIN64
if (!compiler->mode32)
*inst++ = REX_W | ((op >= SLJIT_DIVMOD_UW) ? REX_B : 0);
else if (op >= SLJIT_DIVMOD_UW)
*inst++ = REX_B;
inst[0] = GROUP_F7;
inst[1] = MOD_REG | ((op >= SLJIT_DIVMOD_UW) ? reg_lmap[TMP_REG1] : reg_lmap[SLJIT_R1]);
#else /* !_WIN64 */
if (!compiler->mode32)
*inst++ = REX_W;
inst[0] = GROUP_F7;
inst[1] = MOD_REG | reg_map[SLJIT_R1];
#endif /* _WIN64 */
#endif /* SLJIT_CONFIG_X86_32 */
switch (op) {
case SLJIT_LMUL_UW:
inst[1] |= MUL;
break;
case SLJIT_LMUL_SW:
inst[1] |= IMUL;
break;
case SLJIT_DIVMOD_UW:
case SLJIT_DIV_UW:
inst[1] |= DIV;
break;
case SLJIT_DIVMOD_SW:
case SLJIT_DIV_SW:
inst[1] |= IDIV;
break;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64) && !defined(_WIN64)
if (op <= SLJIT_DIVMOD_SW)
EMIT_MOV(compiler, SLJIT_R1, 0, TMP_REG1, 0);
#else
if (op >= SLJIT_DIV_UW)
EMIT_MOV(compiler, SLJIT_R1, 0, TMP_REG1, 0);
#endif
break;
case SLJIT_MEMORY_BARRIER:
inst = (sljit_u8*)ensure_buf(compiler, 1 + 3);
FAIL_IF(!inst);
INC_SIZE(3);
inst[0] = GROUP_0F;
inst[1] = 0xae;
inst[2] = 0xf0;
return SLJIT_SUCCESS;
case SLJIT_ENDBR:
return emit_endbranch(compiler);
case SLJIT_SKIP_FRAMES_BEFORE_RETURN:
return skip_frames_before_return(compiler);
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_mov_byte(struct sljit_compiler *compiler, sljit_s32 sign,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
sljit_s32 dst_r;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
if (src == SLJIT_IMM) {
if (FAST_IS_REG(dst)) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return emit_do_imm(compiler, MOV_r_i32 | reg_map[dst], srcw);
#else
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, 0);
FAIL_IF(!inst);
*inst = MOV_rm_i32;
return SLJIT_SUCCESS;
#endif
}
inst = emit_x86_instruction(compiler, 1 | EX86_BYTE_ARG | EX86_NO_REXW, SLJIT_IMM, srcw, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm8_i8;
return SLJIT_SUCCESS;
}
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
if ((dst & SLJIT_MEM) && FAST_IS_REG(src)) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (reg_map[src] >= 4) {
SLJIT_ASSERT(dst_r == TMP_REG1);
EMIT_MOV(compiler, TMP_REG1, 0, src, 0);
} else
dst_r = src;
#else
dst_r = src;
#endif
} else {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (FAST_IS_REG(src) && reg_map[src] >= 4) {
/* Both src and dst are registers. */
SLJIT_ASSERT(FAST_IS_REG(dst));
if (src == dst && !sign) {
inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 0xff, dst, 0);
FAIL_IF(!inst);
*(inst + 1) |= AND;
return SLJIT_SUCCESS;
}
EMIT_MOV(compiler, TMP_REG1, 0, src, 0);
src = TMP_REG1;
srcw = 0;
}
#endif /* !SLJIT_CONFIG_X86_32 */
/* src can be memory addr or reg_map[src] < 4 on x86_32 architectures. */
FAIL_IF(emit_groupf(compiler, sign ? MOVSX_r_rm8 : MOVZX_r_rm8, dst_r, src, srcw));
}
if (dst & SLJIT_MEM) {
inst = emit_x86_instruction(compiler, 1 | EX86_REX | EX86_NO_REXW, dst_r, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm8_r8;
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_prefetch(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
inst = emit_x86_instruction(compiler, 2, 0, 0, src, srcw);
FAIL_IF(!inst);
inst[0] = GROUP_0F;
inst[1] = PREFETCH;
if (op == SLJIT_PREFETCH_L1)
inst[2] |= (1 << 3);
else if (op == SLJIT_PREFETCH_L2)
inst[2] |= (2 << 3);
else if (op == SLJIT_PREFETCH_L3)
inst[2] |= (3 << 3);
return SLJIT_SUCCESS;
}
static sljit_s32 emit_mov_half(struct sljit_compiler *compiler, sljit_s32 sign,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
sljit_s32 dst_r;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
if (src == SLJIT_IMM) {
if (FAST_IS_REG(dst)) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
return emit_do_imm(compiler, MOV_r_i32 | reg_map[dst], srcw);
#else
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, srcw, dst, 0);
FAIL_IF(!inst);
*inst = MOV_rm_i32;
return SLJIT_SUCCESS;
#endif
}
inst = emit_x86_instruction(compiler, 1 | EX86_HALF_ARG | EX86_NO_REXW | EX86_PREF_66, SLJIT_IMM, srcw, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_i32;
return SLJIT_SUCCESS;
}
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
if ((dst & SLJIT_MEM) && FAST_IS_REG(src))
dst_r = src;
else
FAIL_IF(emit_groupf(compiler, sign ? MOVSX_r_rm16 : MOVZX_r_rm16, dst_r, src, srcw));
if (dst & SLJIT_MEM) {
inst = emit_x86_instruction(compiler, 1 | EX86_NO_REXW | EX86_PREF_66, dst_r, 0, dst, dstw);
FAIL_IF(!inst);
*inst = MOV_rm_r;
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_unary(struct sljit_compiler *compiler, sljit_u8 opcode,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
if (dst == src && dstw == srcw) {
/* Same input and output */
inst = emit_x86_instruction(compiler, 1, 0, 0, dst, dstw);
FAIL_IF(!inst);
inst[0] = GROUP_F7;
inst[1] |= opcode;
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(dst)) {
EMIT_MOV(compiler, dst, 0, src, srcw);
inst = emit_x86_instruction(compiler, 1, 0, 0, dst, 0);
FAIL_IF(!inst);
inst[0] = GROUP_F7;
inst[1] |= opcode;
return SLJIT_SUCCESS;
}
EMIT_MOV(compiler, TMP_REG1, 0, src, srcw);
inst = emit_x86_instruction(compiler, 1, 0, 0, TMP_REG1, 0);
FAIL_IF(!inst);
inst[0] = GROUP_F7;
inst[1] |= opcode;
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
static const sljit_sw emit_clz_arg = 32 + 31;
static const sljit_sw emit_ctz_arg = 32;
#endif
static sljit_s32 emit_clz_ctz(struct sljit_compiler *compiler, sljit_s32 is_clz,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8* inst;
sljit_s32 dst_r;
sljit_sw max;
SLJIT_ASSERT(cpu_feature_list != 0);
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
if (is_clz ? (cpu_feature_list & CPU_FEATURE_LZCNT) : (cpu_feature_list & CPU_FEATURE_TZCNT)) {
FAIL_IF(emit_groupf(compiler, (is_clz ? LZCNT_r_rm : TZCNT_r_rm) | EX86_PREF_F3, dst_r, src, srcw));
if (dst & SLJIT_MEM)
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
FAIL_IF(emit_groupf(compiler, is_clz ? BSR_r_rm : BSF_r_rm, dst_r, src, srcw));
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
max = is_clz ? (32 + 31) : 32;
if (cpu_feature_list & CPU_FEATURE_CMOV) {
if (dst_r != TMP_REG1) {
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, max);
inst = emit_x86_instruction(compiler, 2, dst_r, 0, TMP_REG1, 0);
}
else
inst = emit_x86_instruction(compiler, 2, dst_r, 0, SLJIT_MEM0(), is_clz ? (sljit_sw)&emit_clz_arg : (sljit_sw)&emit_ctz_arg);
FAIL_IF(!inst);
inst[0] = GROUP_0F;
inst[1] = CMOVE_r_rm;
}
else
FAIL_IF(emit_cmov_generic(compiler, SLJIT_EQUAL, dst_r, SLJIT_IMM, max));
if (is_clz) {
inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, 31, dst_r, 0);
FAIL_IF(!inst);
*(inst + 1) |= XOR;
}
#else
if (is_clz)
max = compiler->mode32 ? (32 + 31) : (64 + 63);
else
max = compiler->mode32 ? 32 : 64;
if (cpu_feature_list & CPU_FEATURE_CMOV) {
EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_IMM, max);
FAIL_IF(emit_groupf(compiler, CMOVE_r_rm, dst_r, TMP_REG2, 0));
} else
FAIL_IF(emit_cmov_generic(compiler, SLJIT_EQUAL, dst_r, SLJIT_IMM, max));
if (is_clz) {
inst = emit_x86_instruction(compiler, 1 | EX86_BIN_INS, SLJIT_IMM, max >> 1, dst_r, 0);
FAIL_IF(!inst);
*(inst + 1) |= XOR;
}
#endif
if (dst & SLJIT_MEM)
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
static sljit_s32 emit_bswap(struct sljit_compiler *compiler,
sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_u8 *inst;
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
sljit_uw size;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_u8 rex = 0;
#else /* !SLJIT_CONFIG_X86_64 */
sljit_s32 dst_is_ereg = op & SLJIT_32;
#endif /* SLJIT_CONFIG_X86_64 */
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (op == SLJIT_REV_U32 || op == SLJIT_REV_S32)
compiler->mode32 = 1;
#else /* !SLJIT_CONFIG_X86_64 */
op &= ~SLJIT_32;
#endif /* SLJIT_CONFIG_X86_64 */
if (src != dst_r) {
/* Only the lower 16 bit is read for eregs. */
if (op == SLJIT_REV_U16 || op == SLJIT_REV_S16)
FAIL_IF(emit_mov_half(compiler, 0, dst_r, 0, src, srcw));
else
EMIT_MOV(compiler, dst_r, 0, src, srcw);
}
size = 2;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (!compiler->mode32)
rex = REX_W;
if (reg_map[dst_r] >= 8)
rex |= REX_B;
if (rex != 0)
size++;
#endif /* SLJIT_CONFIG_X86_64 */
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (rex != 0)
*inst++ = rex;
inst[0] = GROUP_0F;
inst[1] = BSWAP_r | reg_lmap[dst_r];
#else /* !SLJIT_CONFIG_X86_64 */
inst[0] = GROUP_0F;
inst[1] = BSWAP_r | reg_map[dst_r];
#endif /* SLJIT_CONFIG_X86_64 */
if (op == SLJIT_REV_U16 || op == SLJIT_REV_S16) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
size = compiler->mode32 ? 16 : 48;
#else /* !SLJIT_CONFIG_X86_64 */
size = 16;
#endif /* SLJIT_CONFIG_X86_64 */
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, (sljit_sw)size, dst_r, 0);
FAIL_IF(!inst);
if (op == SLJIT_REV_U16)
inst[1] |= SHR;
else
inst[1] |= SAR;
}
if (dst & SLJIT_MEM) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (dst_is_ereg)
op = SLJIT_REV;
#endif /* SLJIT_CONFIG_X86_32 */
if (op == SLJIT_REV_U16 || op == SLJIT_REV_S16)
return emit_mov_half(compiler, 0, dst, dstw, TMP_REG1, 0);
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (op == SLJIT_REV_S32) {
compiler->mode32 = 0;
inst = emit_x86_instruction(compiler, 1, dst, 0, dst, 0);
FAIL_IF(!inst);
*inst = MOVSXD_r_rm;
}
#endif /* SLJIT_CONFIG_X86_64 */
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op1(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_s32 dst_is_ereg = 0;
#else /* !SLJIT_CONFIG_X86_32 */
sljit_s32 op_flags = GET_ALL_FLAGS(op);
#endif /* SLJIT_CONFIG_X86_32 */
CHECK_ERROR();
CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
CHECK_EXTRA_REGS(dst, dstw, dst_is_ereg = 1);
CHECK_EXTRA_REGS(src, srcw, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op_flags & SLJIT_32;
#endif /* SLJIT_CONFIG_X86_64 */
op = GET_OPCODE(op);
if (op >= SLJIT_MOV && op <= SLJIT_MOV_P) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif /* SLJIT_CONFIG_X86_64 */
if (FAST_IS_REG(src) && src == dst) {
if (!TYPE_CAST_NEEDED(op))
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (op_flags & SLJIT_32) {
if (src & SLJIT_MEM) {
if (op == SLJIT_MOV_S32)
op = SLJIT_MOV_U32;
}
else if (src == SLJIT_IMM) {
if (op == SLJIT_MOV_U32)
op = SLJIT_MOV_S32;
}
}
#endif /* SLJIT_CONFIG_X86_64 */
if (src == SLJIT_IMM) {
switch (op) {
case SLJIT_MOV_U8:
srcw = (sljit_u8)srcw;
break;
case SLJIT_MOV_S8:
srcw = (sljit_s8)srcw;
break;
case SLJIT_MOV_U16:
srcw = (sljit_u16)srcw;
break;
case SLJIT_MOV_S16:
srcw = (sljit_s16)srcw;
break;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
case SLJIT_MOV_U32:
srcw = (sljit_u32)srcw;
break;
case SLJIT_MOV_S32:
srcw = (sljit_s32)srcw;
break;
#endif /* SLJIT_CONFIG_X86_64 */
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (SLJIT_UNLIKELY(dst_is_ereg))
return emit_mov(compiler, dst, dstw, src, srcw);
#endif /* SLJIT_CONFIG_X86_32 */
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (SLJIT_UNLIKELY(dst_is_ereg) && (!(op == SLJIT_MOV || op == SLJIT_MOV_U32 || op == SLJIT_MOV_S32 || op == SLJIT_MOV_P) || (src & SLJIT_MEM))) {
SLJIT_ASSERT(dst == SLJIT_MEM1(SLJIT_SP));
dst = TMP_REG1;
}
#endif /* SLJIT_CONFIG_X86_32 */
switch (op) {
case SLJIT_MOV:
case SLJIT_MOV_P:
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
case SLJIT_MOV_U32:
case SLJIT_MOV_S32:
case SLJIT_MOV32:
#endif /* SLJIT_CONFIG_X86_32 */
EMIT_MOV(compiler, dst, dstw, src, srcw);
break;
case SLJIT_MOV_U8:
FAIL_IF(emit_mov_byte(compiler, 0, dst, dstw, src, srcw));
break;
case SLJIT_MOV_S8:
FAIL_IF(emit_mov_byte(compiler, 1, dst, dstw, src, srcw));
break;
case SLJIT_MOV_U16:
FAIL_IF(emit_mov_half(compiler, 0, dst, dstw, src, srcw));
break;
case SLJIT_MOV_S16:
FAIL_IF(emit_mov_half(compiler, 1, dst, dstw, src, srcw));
break;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
case SLJIT_MOV_U32:
FAIL_IF(emit_mov_int(compiler, 0, dst, dstw, src, srcw));
break;
case SLJIT_MOV_S32:
FAIL_IF(emit_mov_int(compiler, 1, dst, dstw, src, srcw));
break;
case SLJIT_MOV32:
compiler->mode32 = 1;
EMIT_MOV(compiler, dst, dstw, src, srcw);
compiler->mode32 = 0;
break;
#endif /* SLJIT_CONFIG_X86_64 */
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (SLJIT_UNLIKELY(dst_is_ereg) && dst == TMP_REG1)
return emit_mov(compiler, SLJIT_MEM1(SLJIT_SP), dstw, TMP_REG1, 0);
#endif /* SLJIT_CONFIG_X86_32 */
return SLJIT_SUCCESS;
}
switch (op) {
case SLJIT_CLZ:
case SLJIT_CTZ:
return emit_clz_ctz(compiler, (op == SLJIT_CLZ), dst, dstw, src, srcw);
case SLJIT_REV:
case SLJIT_REV_U16:
case SLJIT_REV_S16:
case SLJIT_REV_U32:
case SLJIT_REV_S32:
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (dst_is_ereg)
op |= SLJIT_32;
#endif /* SLJIT_CONFIG_X86_32 */
return emit_bswap(compiler, op, dst, dstw, src, srcw);
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_cum_binary(struct sljit_compiler *compiler,
sljit_u32 op_types,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
sljit_u8 op_eax_imm = U8(op_types >> 24);
sljit_u8 op_rm = U8((op_types >> 16) & 0xff);
sljit_u8 op_mr = U8((op_types >> 8) & 0xff);
sljit_u8 op_imm = U8(op_types & 0xff);
if (dst == src1 && dstw == src1w) {
if (src2 == SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(op_eax_imm, src2w);
}
else {
BINARY_IMM(op_imm, op_mr, src2w, dst, dstw);
}
}
else if (FAST_IS_REG(dst)) {
inst = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
else if (FAST_IS_REG(src2)) {
/* Special exception for sljit_emit_op_flags. */
inst = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
else {
EMIT_MOV(compiler, TMP_REG1, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
return SLJIT_SUCCESS;
}
/* Only for cumulative operations. */
if (dst == src2 && dstw == src2w) {
if (src1 == SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((dst == SLJIT_R0) && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) {
#else
if ((dst == SLJIT_R0) && (src1w > 127 || src1w < -128)) {
#endif
BINARY_EAX_IMM(op_eax_imm, src1w);
}
else {
BINARY_IMM(op_imm, op_mr, src1w, dst, dstw);
}
}
else if (FAST_IS_REG(dst)) {
inst = emit_x86_instruction(compiler, 1, dst, dstw, src1, src1w);
FAIL_IF(!inst);
*inst = op_rm;
}
else if (FAST_IS_REG(src1)) {
inst = emit_x86_instruction(compiler, 1, src1, src1w, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
else {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
return SLJIT_SUCCESS;
}
/* General version. */
if (FAST_IS_REG(dst)) {
EMIT_MOV(compiler, dst, 0, src1, src1w);
if (src2 == SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, dst, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
}
else {
/* This version requires less memory writing. */
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
if (src2 == SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_non_cum_binary(struct sljit_compiler *compiler,
sljit_u32 op_types,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
sljit_u8 op_eax_imm = U8(op_types >> 24);
sljit_u8 op_rm = U8((op_types >> 16) & 0xff);
sljit_u8 op_mr = U8((op_types >> 8) & 0xff);
sljit_u8 op_imm = U8(op_types & 0xff);
if (dst == src1 && dstw == src1w) {
if (src2 == SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if ((dst == SLJIT_R0) && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(op_eax_imm, src2w);
}
else {
BINARY_IMM(op_imm, op_mr, src2w, dst, dstw);
}
}
else if (FAST_IS_REG(dst)) {
inst = emit_x86_instruction(compiler, 1, dst, dstw, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
else if (FAST_IS_REG(src2)) {
inst = emit_x86_instruction(compiler, 1, src2, src2w, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
else {
EMIT_MOV(compiler, TMP_REG1, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst, dstw);
FAIL_IF(!inst);
*inst = op_mr;
}
return SLJIT_SUCCESS;
}
/* General version. */
if (FAST_IS_REG(dst) && dst != src2) {
EMIT_MOV(compiler, dst, 0, src1, src1w);
if (src2 == SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, dst, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, dst, 0, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
}
else {
/* This version requires less memory writing. */
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
if (src2 == SLJIT_IMM) {
BINARY_IMM(op_imm, op_mr, src2w, TMP_REG1, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = op_rm;
}
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_mul(struct sljit_compiler *compiler,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
/* Register destination. */
if (dst_r == src1 && src2 != SLJIT_IMM) {
FAIL_IF(emit_groupf(compiler, IMUL_r_rm, dst_r, src2, src2w));
} else if (dst_r == src2 && src1 != SLJIT_IMM) {
FAIL_IF(emit_groupf(compiler, IMUL_r_rm, dst_r, src1, src1w));
} else if (src1 == SLJIT_IMM) {
if (src2 == SLJIT_IMM) {
EMIT_MOV(compiler, dst_r, 0, SLJIT_IMM, src2w);
src2 = dst_r;
src2w = 0;
}
if (src1w <= 127 && src1w >= -128) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i8;
FAIL_IF(emit_byte(compiler, U8(src1w)));
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
else {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i32;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!inst);
INC_SIZE(4);
sljit_unaligned_store_sw(inst, src1w);
}
#else
else if (IS_HALFWORD(src1w)) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src2, src2w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i32;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!inst);
INC_SIZE(4);
sljit_unaligned_store_s32(inst, (sljit_s32)src1w);
}
else {
if (dst_r != src2)
EMIT_MOV(compiler, dst_r, 0, src2, src2w);
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src1w));
FAIL_IF(emit_groupf(compiler, IMUL_r_rm, dst_r, TMP_REG2, 0));
}
#endif
}
else if (src2 == SLJIT_IMM) {
/* Note: src1 is NOT immediate. */
if (src2w <= 127 && src2w >= -128) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i8;
FAIL_IF(emit_byte(compiler, U8(src2w)));
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
else {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i32;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!inst);
INC_SIZE(4);
sljit_unaligned_store_sw(inst, src2w);
}
#else
else if (IS_HALFWORD(src2w)) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, src1, src1w);
FAIL_IF(!inst);
*inst = IMUL_r_rm_i32;
inst = (sljit_u8*)ensure_buf(compiler, 1 + 4);
FAIL_IF(!inst);
INC_SIZE(4);
sljit_unaligned_store_s32(inst, (sljit_s32)src2w);
} else {
if (dst_r != src1)
EMIT_MOV(compiler, dst_r, 0, src1, src1w);
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w));
FAIL_IF(emit_groupf(compiler, IMUL_r_rm, dst_r, TMP_REG2, 0));
}
#endif
} else {
/* Neither argument is immediate. */
if (ADDRESSING_DEPENDS_ON(src2, dst_r))
dst_r = TMP_REG1;
EMIT_MOV(compiler, dst_r, 0, src1, src1w);
FAIL_IF(emit_groupf(compiler, IMUL_r_rm, dst_r, src2, src2w));
}
if (dst & SLJIT_MEM)
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
static sljit_s32 emit_lea_binary(struct sljit_compiler *compiler,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
sljit_s32 dst_r, done = 0;
/* These cases better be left to handled by normal way. */
if (dst == src1 && dstw == src1w)
return SLJIT_ERR_UNSUPPORTED;
if (dst == src2 && dstw == src2w)
return SLJIT_ERR_UNSUPPORTED;
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
if (FAST_IS_REG(src1)) {
if (FAST_IS_REG(src2)) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM2(src1, src2), 0);
FAIL_IF(!inst);
*inst = LEA_r_m;
done = 1;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src2 == SLJIT_IMM && (compiler->mode32 || IS_HALFWORD(src2w))) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), (sljit_s32)src2w);
#else
if (src2 == SLJIT_IMM) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src1), src2w);
#endif
FAIL_IF(!inst);
*inst = LEA_r_m;
done = 1;
}
}
else if (FAST_IS_REG(src2)) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src1 == SLJIT_IMM && (compiler->mode32 || IS_HALFWORD(src1w))) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), (sljit_s32)src1w);
#else
if (src1 == SLJIT_IMM) {
inst = emit_x86_instruction(compiler, 1, dst_r, 0, SLJIT_MEM1(src2), src1w);
#endif
FAIL_IF(!inst);
*inst = LEA_r_m;
done = 1;
}
}
if (done) {
if (dst_r == TMP_REG1)
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
return SLJIT_ERR_UNSUPPORTED;
}
static sljit_s32 emit_cmp_binary(struct sljit_compiler *compiler,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src1 == SLJIT_R0 && src2 == SLJIT_IMM && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if (src1 == SLJIT_R0 && src2 == SLJIT_IMM && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(CMP_EAX_i32, src2w);
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(src1)) {
if (src2 == SLJIT_IMM) {
BINARY_IMM(CMP, CMP_rm_r, src2w, src1, 0);
}
else {
inst = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = CMP_r_rm;
}
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(src2) && src1 != SLJIT_IMM) {
inst = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w);
FAIL_IF(!inst);
*inst = CMP_rm_r;
return SLJIT_SUCCESS;
}
if (src2 == SLJIT_IMM) {
if (src1 == SLJIT_IMM) {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
src1 = TMP_REG1;
src1w = 0;
}
BINARY_IMM(CMP, CMP_rm_r, src2w, src1, src1w);
}
else {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = CMP_r_rm;
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_test_binary(struct sljit_compiler *compiler,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src1 == SLJIT_R0 && src2 == SLJIT_IMM && (src2w > 127 || src2w < -128) && (compiler->mode32 || IS_HALFWORD(src2w))) {
#else
if (src1 == SLJIT_R0 && src2 == SLJIT_IMM && (src2w > 127 || src2w < -128)) {
#endif
BINARY_EAX_IMM(TEST_EAX_i32, src2w);
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (src2 == SLJIT_R0 && src1 == SLJIT_IMM && (src1w > 127 || src1w < -128) && (compiler->mode32 || IS_HALFWORD(src1w))) {
#else
if (src2 == SLJIT_R0 && src1 == SLJIT_IMM && (src1w > 127 || src1w < -128)) {
#endif
BINARY_EAX_IMM(TEST_EAX_i32, src1w);
return SLJIT_SUCCESS;
}
if (src1 != SLJIT_IMM) {
if (src2 == SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (IS_HALFWORD(src2w) || compiler->mode32) {
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, src1w);
FAIL_IF(!inst);
*inst = GROUP_F7;
} else {
FAIL_IF(emit_load_imm64(compiler, FAST_IS_REG(src1) ? TMP_REG2 : TMP_REG1, src2w));
inst = emit_x86_instruction(compiler, 1, FAST_IS_REG(src1) ? TMP_REG2 : TMP_REG1, 0, src1, src1w);
FAIL_IF(!inst);
*inst = TEST_rm_r;
}
#else
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, src1, src1w);
FAIL_IF(!inst);
*inst = GROUP_F7;
#endif
return SLJIT_SUCCESS;
}
else if (FAST_IS_REG(src1)) {
inst = emit_x86_instruction(compiler, 1, src1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = TEST_rm_r;
return SLJIT_SUCCESS;
}
}
if (src2 != SLJIT_IMM) {
if (src1 == SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (IS_HALFWORD(src1w) || compiler->mode32) {
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src1w, src2, src2w);
FAIL_IF(!inst);
*inst = GROUP_F7;
}
else {
FAIL_IF(emit_load_imm64(compiler, TMP_REG1, src1w));
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = TEST_rm_r;
}
#else
inst = emit_x86_instruction(compiler, 1, src1, src1w, src2, src2w);
FAIL_IF(!inst);
*inst = GROUP_F7;
#endif
return SLJIT_SUCCESS;
}
else if (FAST_IS_REG(src2)) {
inst = emit_x86_instruction(compiler, 1, src2, 0, src1, src1w);
FAIL_IF(!inst);
*inst = TEST_rm_r;
return SLJIT_SUCCESS;
}
}
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
if (src2 == SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (IS_HALFWORD(src2w) || compiler->mode32) {
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REG1, 0);
FAIL_IF(!inst);
*inst = GROUP_F7;
}
else {
FAIL_IF(emit_load_imm64(compiler, TMP_REG2, src2w));
inst = emit_x86_instruction(compiler, 1, TMP_REG2, 0, TMP_REG1, 0);
FAIL_IF(!inst);
*inst = TEST_rm_r;
}
#else
inst = emit_x86_instruction(compiler, 1, SLJIT_IMM, src2w, TMP_REG1, 0);
FAIL_IF(!inst);
*inst = GROUP_F7;
#endif
}
else {
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, src2, src2w);
FAIL_IF(!inst);
*inst = TEST_rm_r;
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_shift(struct sljit_compiler *compiler,
sljit_u8 mode,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_s32 mode32;
#endif
sljit_u8* inst;
if (src2 == SLJIT_IMM || src2 == SLJIT_PREF_SHIFT_REG) {
if (dst == src1 && dstw == src1w) {
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, dstw);
FAIL_IF(!inst);
inst[1] |= mode;
return SLJIT_SUCCESS;
}
if (dst == SLJIT_PREF_SHIFT_REG && src2 == SLJIT_PREF_SHIFT_REG) {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
FAIL_IF(!inst);
inst[1] |= mode;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(dst)) {
EMIT_MOV(compiler, dst, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, dst, 0);
FAIL_IF(!inst);
inst[1] |= mode;
return SLJIT_SUCCESS;
}
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, src2, src2w, TMP_REG1, 0);
FAIL_IF(!inst);
inst[1] |= mode;
EMIT_MOV(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
if (dst == SLJIT_PREF_SHIFT_REG) {
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
FAIL_IF(!inst);
inst[1] |= mode;
return emit_mov(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
}
if (FAST_IS_REG(dst) && dst != src2 && dst != TMP_REG1 && !ADDRESSING_DEPENDS_ON(src2, dst)) {
if (src1 != dst)
EMIT_MOV(compiler, dst, 0, src1, src1w);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
mode32 = compiler->mode32;
compiler->mode32 = 0;
#endif
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_PREF_SHIFT_REG, 0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = mode32;
#endif
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, dst, 0);
FAIL_IF(!inst);
inst[1] |= mode;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = mode32;
#endif
return SLJIT_SUCCESS;
}
/* This case is complex since ecx itself may be used for
addressing, and this case must be supported as well. */
EMIT_MOV(compiler, TMP_REG1, 0, src1, src1w);
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), 0, SLJIT_PREF_SHIFT_REG, 0);
#else /* !SLJIT_CONFIG_X86_32 */
mode32 = compiler->mode32;
compiler->mode32 = 0;
EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_PREF_SHIFT_REG, 0);
compiler->mode32 = mode32;
#endif /* SLJIT_CONFIG_X86_32 */
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src2, src2w);
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
FAIL_IF(!inst);
inst[1] |= mode;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, SLJIT_MEM1(SLJIT_SP), 0);
#else
compiler->mode32 = 0;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG2, 0);
compiler->mode32 = mode32;
#endif /* SLJIT_CONFIG_X86_32 */
if (dst != TMP_REG1)
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
static sljit_s32 emit_shift_with_flags(struct sljit_compiler *compiler,
sljit_u8 mode, sljit_s32 set_flags,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
/* The CPU does not set flags if the shift count is 0. */
if (src2 == SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
src2w &= compiler->mode32 ? 0x1f : 0x3f;
#else /* !SLJIT_CONFIG_X86_64 */
src2w &= 0x1f;
#endif /* SLJIT_CONFIG_X86_64 */
if (src2w != 0)
return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w);
if (!set_flags)
return emit_mov(compiler, dst, dstw, src1, src1w);
/* OR dst, src, 0 */
return emit_cum_binary(compiler, BINARY_OPCODE(OR),
dst, dstw, src1, src1w, SLJIT_IMM, 0);
}
if (!set_flags)
return emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w);
if (!FAST_IS_REG(dst))
FAIL_IF(emit_cmp_binary(compiler, src1, src1w, SLJIT_IMM, 0));
FAIL_IF(emit_shift(compiler, mode, dst, dstw, src1, src1w, src2, src2w));
if (FAST_IS_REG(dst))
return emit_cmp_binary(compiler, dst, dstw, SLJIT_IMM, 0);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, 0, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
CHECK_EXTRA_REGS(src1, src1w, (void)0);
CHECK_EXTRA_REGS(src2, src2w, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op & SLJIT_32;
#endif
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
if (!HAS_FLAGS(op)) {
if (emit_lea_binary(compiler, dst, dstw, src1, src1w, src2, src2w) != SLJIT_ERR_UNSUPPORTED)
return compiler->error;
}
return emit_cum_binary(compiler, BINARY_OPCODE(ADD),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ADDC:
return emit_cum_binary(compiler, BINARY_OPCODE(ADC),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUB:
if (src1 == SLJIT_IMM && src1w == 0)
return emit_unary(compiler, NEG_rm, dst, dstw, src2, src2w);
if (!HAS_FLAGS(op)) {
if (src2 == SLJIT_IMM && emit_lea_binary(compiler, dst, dstw, src1, src1w, SLJIT_IMM, -src2w) != SLJIT_ERR_UNSUPPORTED)
return compiler->error;
if (FAST_IS_REG(dst) && src2 == dst) {
FAIL_IF(emit_non_cum_binary(compiler, BINARY_OPCODE(SUB), dst, 0, dst, 0, src1, src1w));
return emit_unary(compiler, NEG_rm, dst, 0, dst, 0);
}
}
return emit_non_cum_binary(compiler, BINARY_OPCODE(SUB),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUBC:
return emit_non_cum_binary(compiler, BINARY_OPCODE(SBB),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
return emit_mul(compiler, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
return emit_cum_binary(compiler, BINARY_OPCODE(AND),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_OR:
return emit_cum_binary(compiler, BINARY_OPCODE(OR),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_XOR:
if (!HAS_FLAGS(op)) {
if (src2 == SLJIT_IMM && src2w == -1)
return emit_unary(compiler, NOT_rm, dst, dstw, src1, src1w);
if (src1 == SLJIT_IMM && src1w == -1)
return emit_unary(compiler, NOT_rm, dst, dstw, src2, src2w);
}
return emit_cum_binary(compiler, BINARY_OPCODE(XOR),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
case SLJIT_MSHL:
return emit_shift_with_flags(compiler, SHL, HAS_FLAGS(op),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_LSHR:
case SLJIT_MLSHR:
return emit_shift_with_flags(compiler, SHR, HAS_FLAGS(op),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ASHR:
case SLJIT_MASHR:
return emit_shift_with_flags(compiler, SAR, HAS_FLAGS(op),
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ROTL:
return emit_shift_with_flags(compiler, ROL, 0,
dst, dstw, src1, src1w, src2, src2w);
case SLJIT_ROTR:
return emit_shift_with_flags(compiler, ROR, 0,
dst, dstw, src1, src1w, src2, src2w);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2u(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_s32 opcode = GET_OPCODE(op);
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, 1, 0, 0, src1, src1w, src2, src2w));
if (opcode != SLJIT_SUB && opcode != SLJIT_AND) {
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_op2(compiler, op, TMP_REG1, 0, src1, src1w, src2, src2w);
}
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
CHECK_EXTRA_REGS(src1, src1w, (void)0);
CHECK_EXTRA_REGS(src2, src2w, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op & SLJIT_32;
#endif
if (opcode == SLJIT_SUB)
return emit_cmp_binary(compiler, src1, src1w, src2, src2w);
return emit_test_binary(compiler, src1, src1w, src2, src2w);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op2r(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst_reg,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_u8* inst;
sljit_sw dstw = 0;
CHECK_ERROR();
CHECK(check_sljit_emit_op2r(compiler, op, dst_reg, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
CHECK_EXTRA_REGS(dst_reg, dstw, (void)0);
CHECK_EXTRA_REGS(src1, src1w, (void)0);
CHECK_EXTRA_REGS(src2, src2w, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op & SLJIT_32;
#endif
switch (GET_OPCODE(op)) {
case SLJIT_MULADD:
FAIL_IF(emit_mul(compiler, TMP_REG1, 0, src1, src1w, src2, src2w));
inst = emit_x86_instruction(compiler, 1, TMP_REG1, 0, dst_reg, dstw);
FAIL_IF(!inst);
*inst = ADD_rm_r;
return SLJIT_SUCCESS;
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_shift_into(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst_reg,
sljit_s32 src1_reg,
sljit_s32 src2_reg,
sljit_s32 src3, sljit_sw src3w)
{
sljit_s32 is_rotate, is_left, move_src1;
sljit_u8* inst;
sljit_sw src1w = 0;
sljit_sw dstw = 0;
/* The whole register must be saved even for 32 bit operations. */
sljit_u8 restore_ecx = 0;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_sw src2w = 0;
sljit_s32 restore_sp4 = 0;
#endif /* SLJIT_CONFIG_X86_32 */
CHECK_ERROR();
CHECK(check_sljit_emit_shift_into(compiler, op, dst_reg, src1_reg, src2_reg, src3, src3w));
ADJUST_LOCAL_OFFSET(src3, src3w);
CHECK_EXTRA_REGS(dst_reg, dstw, (void)0);
CHECK_EXTRA_REGS(src3, src3w, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op & SLJIT_32;
#endif /* SLJIT_CONFIG_X86_64 */
if (src3 == SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
src3w &= 0x1f;
#else /* !SLJIT_CONFIG_X86_32 */
src3w &= (op & SLJIT_32) ? 0x1f : 0x3f;
#endif /* SLJIT_CONFIG_X86_32 */
if (src3w == 0)
return SLJIT_SUCCESS;
}
is_left = (GET_OPCODE(op) == SLJIT_SHL || GET_OPCODE(op) == SLJIT_MSHL);
is_rotate = (src1_reg == src2_reg);
CHECK_EXTRA_REGS(src1_reg, src1w, (void)0);
CHECK_EXTRA_REGS(src2_reg, src2w, (void)0);
if (is_rotate)
return emit_shift(compiler, is_left ? ROL : ROR, dst_reg, dstw, src1_reg, src1w, src3, src3w);
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (src2_reg & SLJIT_MEM) {
EMIT_MOV(compiler, TMP_REG1, 0, src2_reg, src2w);
src2_reg = TMP_REG1;
}
#endif /* SLJIT_CONFIG_X86_32 */
if (dst_reg == SLJIT_PREF_SHIFT_REG && src3 != SLJIT_IMM && (src3 != SLJIT_PREF_SHIFT_REG || src1_reg != SLJIT_PREF_SHIFT_REG)) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
EMIT_MOV(compiler, TMP_REG1, 0, src1_reg, src1w);
src1_reg = TMP_REG1;
src1w = 0;
#else /* !SLJIT_CONFIG_X86_64 */
if (src2_reg != TMP_REG1) {
EMIT_MOV(compiler, TMP_REG1, 0, src1_reg, src1w);
src1_reg = TMP_REG1;
src1w = 0;
} else if ((src1_reg & SLJIT_MEM) || src1_reg == SLJIT_PREF_SHIFT_REG) {
restore_sp4 = (src3 == SLJIT_R0) ? SLJIT_R1 : SLJIT_R0;
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), sizeof(sljit_s32), restore_sp4, 0);
EMIT_MOV(compiler, restore_sp4, 0, src1_reg, src1w);
src1_reg = restore_sp4;
src1w = 0;
} else {
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), sizeof(sljit_s32), src1_reg, 0);
restore_sp4 = src1_reg;
}
#endif /* SLJIT_CONFIG_X86_64 */
if (src3 != SLJIT_PREF_SHIFT_REG)
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src3, src3w);
} else {
if (src2_reg == SLJIT_PREF_SHIFT_REG && src3 != SLJIT_IMM && src3 != SLJIT_PREF_SHIFT_REG) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif /* SLJIT_CONFIG_X86_64 */
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_PREF_SHIFT_REG, 0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op & SLJIT_32;
#endif /* SLJIT_CONFIG_X86_64 */
src2_reg = TMP_REG1;
restore_ecx = 1;
}
move_src1 = 0;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (dst_reg != src1_reg) {
if (dst_reg != src3) {
EMIT_MOV(compiler, dst_reg, 0, src1_reg, src1w);
src1_reg = dst_reg;
src1w = 0;
} else
move_src1 = 1;
}
#else /* !SLJIT_CONFIG_X86_64 */
if (dst_reg & SLJIT_MEM) {
if (src2_reg != TMP_REG1) {
EMIT_MOV(compiler, TMP_REG1, 0, src1_reg, src1w);
src1_reg = TMP_REG1;
src1w = 0;
} else if ((src1_reg & SLJIT_MEM) || src1_reg == SLJIT_PREF_SHIFT_REG) {
restore_sp4 = (src3 == SLJIT_R0) ? SLJIT_R1 : SLJIT_R0;
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), sizeof(sljit_s32), restore_sp4, 0);
EMIT_MOV(compiler, restore_sp4, 0, src1_reg, src1w);
src1_reg = restore_sp4;
src1w = 0;
} else {
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), sizeof(sljit_s32), src1_reg, 0);
restore_sp4 = src1_reg;
}
} else if (dst_reg != src1_reg) {
if (dst_reg != src3) {
EMIT_MOV(compiler, dst_reg, 0, src1_reg, src1w);
src1_reg = dst_reg;
src1w = 0;
} else
move_src1 = 1;
}
#endif /* SLJIT_CONFIG_X86_64 */
if (src3 != SLJIT_IMM && src3 != SLJIT_PREF_SHIFT_REG) {
if (!restore_ecx) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_PREF_SHIFT_REG, 0);
compiler->mode32 = op & SLJIT_32;
restore_ecx = 1;
#else /* !SLJIT_CONFIG_X86_64 */
if (src1_reg != TMP_REG1 && src2_reg != TMP_REG1) {
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_PREF_SHIFT_REG, 0);
restore_ecx = 1;
} else {
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), 0, SLJIT_PREF_SHIFT_REG, 0);
restore_ecx = 2;
}
#endif /* SLJIT_CONFIG_X86_64 */
}
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, src3, src3w);
}
if (move_src1) {
EMIT_MOV(compiler, dst_reg, 0, src1_reg, src1w);
src1_reg = dst_reg;
src1w = 0;
}
}
inst = emit_x86_instruction(compiler, 2, src2_reg, 0, src1_reg, src1w);
FAIL_IF(!inst);
inst[0] = GROUP_0F;
if (src3 == SLJIT_IMM) {
inst[1] = U8((is_left ? SHLD : SHRD) - 1);
/* Immediate argument is added separately. */
FAIL_IF(emit_byte(compiler, U8(src3w)));
} else
inst[1] = U8(is_left ? SHLD : SHRD);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (restore_ecx) {
compiler->mode32 = 0;
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, TMP_REG1, 0);
}
if (src1_reg != dst_reg) {
compiler->mode32 = op & SLJIT_32;
return emit_mov(compiler, dst_reg, dstw, src1_reg, 0);
}
#else /* !SLJIT_CONFIG_X86_64 */
if (restore_ecx)
EMIT_MOV(compiler, SLJIT_PREF_SHIFT_REG, 0, restore_ecx == 1 ? TMP_REG1 : SLJIT_MEM1(SLJIT_SP), 0);
if (src1_reg != dst_reg)
EMIT_MOV(compiler, dst_reg, dstw, src1_reg, 0);
if (restore_sp4)
return emit_mov(compiler, restore_sp4, 0, SLJIT_MEM1(SLJIT_SP), sizeof(sljit_s32));
#endif /* SLJIT_CONFIG_X86_32 */
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_src(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op_src(compiler, op, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
CHECK_EXTRA_REGS(src, srcw, (void)0);
switch (op) {
case SLJIT_FAST_RETURN:
return emit_fast_return(compiler, src, srcw);
case SLJIT_SKIP_FRAMES_BEFORE_FAST_RETURN:
/* Don't adjust shadow stack if it isn't enabled. */
if (!cpu_has_shadow_stack ())
return SLJIT_SUCCESS;
return adjust_shadow_stack(compiler, src, srcw);
case SLJIT_PREFETCH_L1:
case SLJIT_PREFETCH_L2:
case SLJIT_PREFETCH_L3:
case SLJIT_PREFETCH_ONCE:
return emit_prefetch(compiler, op, src, srcw);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_dst(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op_dst(compiler, op, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
switch (op) {
case SLJIT_FAST_ENTER:
return emit_fast_enter(compiler, dst, dstw);
case SLJIT_GET_RETURN_ADDRESS:
return sljit_emit_get_return_address(compiler, dst, dstw);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_register_index(sljit_s32 type, sljit_s32 reg)
{
CHECK_REG_INDEX(check_sljit_get_register_index(type, reg));
if (type == SLJIT_GP_REGISTER) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (reg >= SLJIT_R3 && reg <= SLJIT_R8)
return -1;
#endif /* SLJIT_CONFIG_X86_32 */
return reg_map[reg];
}
if (type != SLJIT_FLOAT_REGISTER && type != SLJIT_SIMD_REG_128 && type != SLJIT_SIMD_REG_256 && type != SLJIT_SIMD_REG_512)
return -1;
return freg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_u32 size)
{
sljit_u8 *inst;
CHECK_ERROR();
CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
SLJIT_MEMCPY(inst, instruction, size);
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
/* Alignment(3) + 4 * 16 bytes. */
static sljit_u32 sse2_data[3 + (4 * 4)];
static sljit_u32 *sse2_buffer;
static void init_compiler(void)
{
get_cpu_features();
/* Align to 16 bytes. */
sse2_buffer = (sljit_u32*)(((sljit_uw)sse2_data + 15) & ~(sljit_uw)0xf);
/* Single precision constants (each constant is 16 byte long). */
sse2_buffer[0] = 0x80000000;
sse2_buffer[4] = 0x7fffffff;
/* Double precision constants (each constant is 16 byte long). */
sse2_buffer[8] = 0;
sse2_buffer[9] = 0x80000000;
sse2_buffer[12] = 0xffffffff;
sse2_buffer[13] = 0x7fffffff;
}
static sljit_s32 emit_groupf(struct sljit_compiler *compiler,
sljit_uw op,
sljit_s32 dst, sljit_s32 src, sljit_sw srcw)
{
sljit_u8 *inst = emit_x86_instruction(compiler, 2 | (op & ~(sljit_uw)0xff), dst, 0, src, srcw);
FAIL_IF(!inst);
inst[0] = GROUP_0F;
inst[1] = op & 0xff;
return SLJIT_SUCCESS;
}
static sljit_s32 emit_groupf_ext(struct sljit_compiler *compiler,
sljit_uw op,
sljit_s32 dst, sljit_s32 src, sljit_sw srcw)
{
sljit_u8 *inst;
SLJIT_ASSERT((op & EX86_SSE2) && ((op & VEX_OP_0F38) || (op & VEX_OP_0F3A)));
inst = emit_x86_instruction(compiler, 3 | (op & ~((sljit_uw)0xff | VEX_OP_0F38 | VEX_OP_0F3A)), dst, 0, src, srcw);
FAIL_IF(!inst);
inst[0] = GROUP_0F;
inst[1] = U8((op & VEX_OP_0F38) ? 0x38 : 0x3A);
inst[2] = op & 0xff;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 emit_sse2_load(struct sljit_compiler *compiler,
sljit_s32 single, sljit_s32 dst, sljit_s32 src, sljit_sw srcw)
{
return emit_groupf(compiler, MOVSD_x_xm | (single ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2, dst, src, srcw);
}
static SLJIT_INLINE sljit_s32 emit_sse2_store(struct sljit_compiler *compiler,
sljit_s32 single, sljit_s32 dst, sljit_sw dstw, sljit_s32 src)
{
return emit_groupf(compiler, MOVSD_xm_x | (single ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2, src, dst, dstw);
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_sw_from_f64(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r;
CHECK_EXTRA_REGS(dst, dstw, (void)0);
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (GET_OPCODE(op) == SLJIT_CONV_SW_FROM_F64)
compiler->mode32 = 0;
#endif
FAIL_IF(emit_groupf(compiler, CVTTSD2SI_r_xm | EX86_SELECT_F2_F3(op) | EX86_SSE2_OP2, dst_r, src, srcw));
if (dst & SLJIT_MEM)
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_conv_f64_from_sw(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG;
CHECK_EXTRA_REGS(src, srcw, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_SW)
compiler->mode32 = 0;
#endif
if (src == SLJIT_IMM) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_S32)
srcw = (sljit_s32)srcw;
#endif
EMIT_MOV(compiler, TMP_REG1, 0, src, srcw);
src = TMP_REG1;
srcw = 0;
}
FAIL_IF(emit_groupf(compiler, CVTSI2SD_x_rm | EX86_SELECT_F2_F3(op) | EX86_SSE2_OP1, dst_r, src, srcw));
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
if (dst_r == TMP_FREG)
return emit_sse2_store(compiler, op & SLJIT_32, dst, dstw, TMP_FREG);
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_s32 sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
switch (GET_FLAG_TYPE(op)) {
case SLJIT_ORDERED_EQUAL:
/* Also: SLJIT_UNORDERED_OR_NOT_EQUAL */
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, TMP_FREG, src1, src1w));
FAIL_IF(emit_groupf(compiler, CMPS_x_xm | EX86_SELECT_F2_F3(op) | EX86_SSE2, TMP_FREG, src2, src2w));
/* EQ */
FAIL_IF(emit_byte(compiler, 0));
src1 = TMP_FREG;
src2 = TMP_FREG;
src2w = 0;
break;
case SLJIT_ORDERED_LESS:
case SLJIT_UNORDERED_OR_GREATER:
/* Also: SLJIT_UNORDERED_OR_GREATER_EQUAL, SLJIT_ORDERED_LESS_EQUAL */
if (!FAST_IS_REG(src2)) {
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, TMP_FREG, src2, src2w));
src2 = TMP_FREG;
}
return emit_groupf(compiler, UCOMISD_x_xm | EX86_SELECT_66(op) | EX86_SSE2, src2, src1, src1w);
}
if (!FAST_IS_REG(src1)) {
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, TMP_FREG, src1, src1w));
src1 = TMP_FREG;
}
return emit_groupf(compiler, UCOMISD_x_xm | EX86_SELECT_66(op) | EX86_SSE2, src1, src2, src2w);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop1(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 dst_r;
sljit_u8 *inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
CHECK_ERROR();
SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);
if (GET_OPCODE(op) == SLJIT_MOV_F64) {
if (FAST_IS_REG(dst))
return emit_sse2_load(compiler, op & SLJIT_32, dst, src, srcw);
if (FAST_IS_REG(src))
return emit_sse2_store(compiler, op & SLJIT_32, dst, dstw, src);
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, TMP_FREG, src, srcw));
return emit_sse2_store(compiler, op & SLJIT_32, dst, dstw, TMP_FREG);
}
if (GET_OPCODE(op) == SLJIT_CONV_F64_FROM_F32) {
dst_r = FAST_IS_REG(dst) ? dst : TMP_FREG;
if (FAST_IS_REG(src)) {
/* We overwrite the high bits of source. From SLJIT point of view,
this is not an issue.
Note: In SSE3, we could also use MOVDDUP and MOVSLDUP. */
FAIL_IF(emit_groupf(compiler, UNPCKLPD_x_xm | ((op & SLJIT_32) ? EX86_PREF_66 : 0) | EX86_SSE2, src, src, 0));
} else {
FAIL_IF(emit_sse2_load(compiler, !(op & SLJIT_32), TMP_FREG, src, srcw));
src = TMP_FREG;
}
FAIL_IF(emit_groupf(compiler, CVTPD2PS_x_xm | ((op & SLJIT_32) ? EX86_PREF_66 : 0) | EX86_SSE2, dst_r, src, 0));
if (dst_r == TMP_FREG)
return emit_sse2_store(compiler, op & SLJIT_32, dst, dstw, TMP_FREG);
return SLJIT_SUCCESS;
}
if (FAST_IS_REG(dst)) {
dst_r = (dst == src) ? TMP_FREG : dst;
if (src & SLJIT_MEM)
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, TMP_FREG, src, srcw));
FAIL_IF(emit_groupf(compiler, PCMPEQD_x_xm | EX86_PREF_66 | EX86_SSE2, dst_r, dst_r, 0));
inst = emit_x86_instruction(compiler, 2 | EX86_PREF_66 | EX86_SSE2_OP2, 0, 0, dst_r, 0);
inst[0] = GROUP_0F;
/* Same as PSRLD_x / PSRLQ_x */
inst[1] = (op & SLJIT_32) ? PSLLD_x_i8 : PSLLQ_x_i8;
if (GET_OPCODE(op) == SLJIT_ABS_F64) {
inst[2] |= 2 << 3;
FAIL_IF(emit_byte(compiler, 1));
} else {
inst[2] |= 6 << 3;
FAIL_IF(emit_byte(compiler, ((op & SLJIT_32) ? 31 : 63)));
}
if (dst_r != TMP_FREG)
dst_r = (src & SLJIT_MEM) ? TMP_FREG : src;
return emit_groupf(compiler, (GET_OPCODE(op) == SLJIT_NEG_F64 ? XORPD_x_xm : ANDPD_x_xm) | EX86_SSE2, dst, dst_r, 0);
}
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, TMP_FREG, src, srcw));
switch (GET_OPCODE(op)) {
case SLJIT_NEG_F64:
FAIL_IF(emit_groupf(compiler, XORPD_x_xm | EX86_SELECT_66(op) | EX86_SSE2, TMP_FREG, SLJIT_MEM0(), (sljit_sw)((op & SLJIT_32) ? sse2_buffer : sse2_buffer + 8)));
break;
case SLJIT_ABS_F64:
FAIL_IF(emit_groupf(compiler, ANDPD_x_xm | EX86_SELECT_66(op) | EX86_SSE2, TMP_FREG, SLJIT_MEM0(), (sljit_sw)((op & SLJIT_32) ? sse2_buffer + 4 : sse2_buffer + 12)));
break;
}
return emit_sse2_store(compiler, op & SLJIT_32, dst, dstw, TMP_FREG);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_s32 dst_r;
CHECK_ERROR();
CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
if (FAST_IS_REG(dst)) {
dst_r = dst;
if (dst == src1)
; /* Do nothing here. */
else if (dst == src2 && (GET_OPCODE(op) == SLJIT_ADD_F64 || GET_OPCODE(op) == SLJIT_MUL_F64)) {
/* Swap arguments. */
src2 = src1;
src2w = src1w;
} else if (dst != src2)
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, dst_r, src1, src1w));
else {
dst_r = TMP_FREG;
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, TMP_FREG, src1, src1w));
}
} else {
dst_r = TMP_FREG;
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, TMP_FREG, src1, src1w));
}
switch (GET_OPCODE(op)) {
case SLJIT_ADD_F64:
FAIL_IF(emit_groupf(compiler, ADDSD_x_xm | EX86_SELECT_F2_F3(op) | EX86_SSE2, dst_r, src2, src2w));
break;
case SLJIT_SUB_F64:
FAIL_IF(emit_groupf(compiler, SUBSD_x_xm | EX86_SELECT_F2_F3(op) | EX86_SSE2, dst_r, src2, src2w));
break;
case SLJIT_MUL_F64:
FAIL_IF(emit_groupf(compiler, MULSD_x_xm | EX86_SELECT_F2_F3(op) | EX86_SSE2, dst_r, src2, src2w));
break;
case SLJIT_DIV_F64:
FAIL_IF(emit_groupf(compiler, DIVSD_x_xm | EX86_SELECT_F2_F3(op) | EX86_SSE2, dst_r, src2, src2w));
break;
}
if (dst_r != dst)
return emit_sse2_store(compiler, op & SLJIT_32, dst, dstw, TMP_FREG);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fop2r(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst_freg,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2, sljit_sw src2w)
{
sljit_uw pref;
CHECK_ERROR();
CHECK(check_sljit_emit_fop2r(compiler, op, dst_freg, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif
if (dst_freg == src1) {
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, TMP_FREG, src2, src2w));
pref = EX86_SELECT_66(op) | EX86_SSE2;
FAIL_IF(emit_groupf(compiler, XORPD_x_xm | pref, TMP_FREG, src1, src1w));
FAIL_IF(emit_groupf(compiler, ANDPD_x_xm | pref, TMP_FREG, SLJIT_MEM0(), (sljit_sw)((op & SLJIT_32) ? sse2_buffer : sse2_buffer + 8)));
return emit_groupf(compiler, XORPD_x_xm | pref, dst_freg, TMP_FREG, 0);
}
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, TMP_FREG, src1, src1w));
src1 = TMP_FREG;
src1w = 0;
}
if (dst_freg != src2)
FAIL_IF(emit_sse2_load(compiler, op & SLJIT_32, dst_freg, src2, src2w));
pref = EX86_SELECT_66(op) | EX86_SSE2;
FAIL_IF(emit_groupf(compiler, XORPD_x_xm | pref, dst_freg, src1, src1w));
FAIL_IF(emit_groupf(compiler, ANDPD_x_xm | pref, dst_freg, SLJIT_MEM0(), (sljit_sw)((op & SLJIT_32) ? sse2_buffer : sse2_buffer + 8)));
return emit_groupf(compiler, XORPD_x_xm | pref, dst_freg, src1, src1w);
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
sljit_u8 *inst;
struct sljit_label *label;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_label(compiler));
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
inst = (sljit_u8*)ensure_buf(compiler, 1);
PTR_FAIL_IF(!inst);
inst[0] = SLJIT_INST_LABEL;
return label;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_s32 type)
{
sljit_u8 *inst;
struct sljit_jump *jump;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_jump(compiler, type));
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF_NULL(jump);
set_jump(jump, compiler, (sljit_u32)((type & SLJIT_REWRITABLE_JUMP) | ((type & 0xff) << TYPE_SHIFT)));
type &= 0xff;
jump->addr = compiler->size;
/* Worst case size. */
compiler->size += (type >= SLJIT_JUMP) ? JUMP_MAX_SIZE : CJUMP_MAX_SIZE;
inst = (sljit_u8*)ensure_buf(compiler, 1);
PTR_FAIL_IF_NULL(inst);
inst[0] = SLJIT_INST_JUMP;
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_ijump(struct sljit_compiler *compiler, sljit_s32 type, sljit_s32 src, sljit_sw srcw)
{
sljit_u8 *inst;
struct sljit_jump *jump;
CHECK_ERROR();
CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
CHECK_EXTRA_REGS(src, srcw, (void)0);
if (src == SLJIT_IMM) {
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF_NULL(jump);
set_jump(jump, compiler, (sljit_u32)(JUMP_ADDR | (type << TYPE_SHIFT)));
jump->u.target = (sljit_uw)srcw;
jump->addr = compiler->size;
/* Worst case size. */
compiler->size += JUMP_MAX_SIZE;
inst = (sljit_u8*)ensure_buf(compiler, 1);
FAIL_IF_NULL(inst);
inst[0] = SLJIT_INST_JUMP;
} else {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
/* REX_W is not necessary (src is not immediate). */
compiler->mode32 = 1;
#endif
inst = emit_x86_instruction(compiler, 1, 0, 0, src, srcw);
FAIL_IF(!inst);
inst[0] = GROUP_FF;
inst[1] = U8(inst[1] | ((type >= SLJIT_FAST_CALL) ? CALL_rm : JMP_rm));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst, sljit_sw dstw,
sljit_s32 type)
{
sljit_u8 *inst;
sljit_u8 cond_set;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_s32 reg;
sljit_uw size;
#endif /* !SLJIT_CONFIG_X86_64 */
/* ADJUST_LOCAL_OFFSET and CHECK_EXTRA_REGS might overwrite these values. */
sljit_s32 dst_save = dst;
sljit_sw dstw_save = dstw;
CHECK_ERROR();
CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, type));
ADJUST_LOCAL_OFFSET(dst, dstw);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
/* setcc = jcc + 0x10. */
cond_set = U8(get_jump_code((sljit_uw)type) + 0x10);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (GET_OPCODE(op) == SLJIT_OR && !GET_ALL_FLAGS(op) && FAST_IS_REG(dst)) {
size = 3 + 2;
if (reg_map[TMP_REG1] >= 4)
size += 1 + 1;
else if (reg_map[dst] >= 4)
size++;
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
/* Set low register to conditional flag. */
if (reg_map[TMP_REG1] >= 4)
*inst++ = (reg_map[TMP_REG1] <= 7) ? REX : REX_B;
inst[0] = GROUP_0F;
inst[1] = cond_set;
inst[2] = MOD_REG | reg_lmap[TMP_REG1];
inst += 3;
if (reg_map[TMP_REG1] >= 4 || reg_map[dst] >= 4)
*inst++ = U8(REX | (reg_map[TMP_REG1] <= 7 ? 0 : REX_R) | (reg_map[dst] <= 7 ? 0 : REX_B));
inst[0] = OR_rm8_r8;
inst[1] = U8(MOD_REG | (reg_lmap[TMP_REG1] << 3) | reg_lmap[dst]);
return SLJIT_SUCCESS;
}
reg = (GET_OPCODE(op) < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG1;
size = 3 + (reg_map[reg] >= 4) + 4;
inst = (sljit_u8*)ensure_buf(compiler, 1 + size);
FAIL_IF(!inst);
INC_SIZE(size);
/* Set low register to conditional flag. */
if (reg_map[reg] >= 4)
*inst++ = (reg_map[reg] <= 7) ? REX : REX_B;
inst[0] = GROUP_0F;
inst[1] = cond_set;
inst[2] = MOD_REG | reg_lmap[reg];
inst[3] = REX_W | (reg_map[reg] <= 7 ? 0 : (REX_B | REX_R));
/* The movzx instruction does not affect flags. */
inst[4] = GROUP_0F;
inst[5] = MOVZX_r_rm8;
inst[6] = U8(MOD_REG | (reg_lmap[reg] << 3) | reg_lmap[reg]);
if (reg != TMP_REG1)
return SLJIT_SUCCESS;
if (GET_OPCODE(op) < SLJIT_ADD) {
compiler->mode32 = GET_OPCODE(op) != SLJIT_MOV;
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
}
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_op2(compiler, op, dst_save, dstw_save, dst_save, dstw_save, TMP_REG1, 0);
#else /* !SLJIT_CONFIG_X86_64 */
SLJIT_ASSERT(reg_map[TMP_REG1] < 4);
/* The SLJIT_CONFIG_X86_32 code path starts here. */
if (GET_OPCODE(op) < SLJIT_ADD && FAST_IS_REG(dst) && reg_map[dst] <= 4) {
/* Low byte is accessible. */
inst = (sljit_u8*)ensure_buf(compiler, 1 + 3 + 3);
FAIL_IF(!inst);
INC_SIZE(3 + 3);
/* Set low byte to conditional flag. */
inst[0] = GROUP_0F;
inst[1] = cond_set;
inst[2] = U8(MOD_REG | reg_map[dst]);
inst[3] = GROUP_0F;
inst[4] = MOVZX_r_rm8;
inst[5] = U8(MOD_REG | (reg_map[dst] << 3) | reg_map[dst]);
return SLJIT_SUCCESS;
}
if (GET_OPCODE(op) == SLJIT_OR && !GET_ALL_FLAGS(op) && FAST_IS_REG(dst) && reg_map[dst] <= 4) {
inst = (sljit_u8*)ensure_buf(compiler, 1 + 3 + 2);
FAIL_IF(!inst);
INC_SIZE(3 + 2);
/* Set low byte to conditional flag. */
inst[0] = GROUP_0F;
inst[1] = cond_set;
inst[2] = U8(MOD_REG | reg_map[TMP_REG1]);
inst[3] = OR_rm8_r8;
inst[4] = U8(MOD_REG | (reg_map[TMP_REG1] << 3) | reg_map[dst]);
return SLJIT_SUCCESS;
}
inst = (sljit_u8*)ensure_buf(compiler, 1 + 3 + 3);
FAIL_IF(!inst);
INC_SIZE(3 + 3);
/* Set low byte to conditional flag. */
inst[0] = GROUP_0F;
inst[1] = cond_set;
inst[2] = U8(MOD_REG | reg_map[TMP_REG1]);
inst[3] = GROUP_0F;
inst[4] = MOVZX_r_rm8;
inst[5] = U8(MOD_REG | (reg_map[TMP_REG1] << 3) | reg_map[TMP_REG1]);
if (GET_OPCODE(op) < SLJIT_ADD)
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_op2(compiler, op, dst_save, dstw_save, dst_save, dstw_save, TMP_REG1, 0);
#endif /* SLJIT_CONFIG_X86_64 */
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_fselect(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_freg,
sljit_s32 src1, sljit_sw src1w,
sljit_s32 src2_freg)
{
sljit_u8* inst;
sljit_uw size;
CHECK_ERROR();
CHECK(check_sljit_emit_fselect(compiler, type, dst_freg, src1, src1w, src2_freg));
ADJUST_LOCAL_OFFSET(src1, src1w);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif /* SLJIT_CONFIG_X86_64 */
if (dst_freg != src2_freg) {
if (dst_freg == src1) {
src1 = src2_freg;
src1w = 0;
type ^= 0x1;
} else
FAIL_IF(emit_sse2_load(compiler, type & SLJIT_32, dst_freg, src2_freg, 0));
}
inst = (sljit_u8*)ensure_buf(compiler, 1 + 2);
FAIL_IF(!inst);
INC_SIZE(2);
inst[0] = U8(get_jump_code((sljit_uw)(type & ~SLJIT_32) ^ 0x1) - 0x10);
size = compiler->size;
FAIL_IF(emit_sse2_load(compiler, type & SLJIT_32, dst_freg, src1, src1w));
inst[1] = U8(compiler->size - size);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_mov(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 vreg,
sljit_s32 srcdst, sljit_sw srcdstw)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_s32 alignment = SLJIT_SIMD_GET_ELEM2_SIZE(type);
sljit_uw op;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_mov(compiler, type, vreg, srcdst, srcdstw));
ADJUST_LOCAL_OFFSET(srcdst, srcdstw);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif /* SLJIT_CONFIG_X86_64 */
switch (reg_size) {
case 4:
op = EX86_SSE2;
break;
case 5:
if (!(cpu_feature_list & CPU_FEATURE_AVX2))
return SLJIT_ERR_UNSUPPORTED;
op = EX86_SSE2 | VEX_256;
break;
default:
return SLJIT_ERR_UNSUPPORTED;
}
if (!(srcdst & SLJIT_MEM))
alignment = reg_size;
if (type & SLJIT_SIMD_FLOAT) {
if (elem_size == 2 || elem_size == 3) {
op |= alignment >= reg_size ? MOVAPS_x_xm : MOVUPS_x_xm;
if (elem_size == 3)
op |= EX86_PREF_66;
if (type & SLJIT_SIMD_STORE)
op += 1;
} else
return SLJIT_ERR_UNSUPPORTED;
} else {
op |= ((type & SLJIT_SIMD_STORE) ? MOVDQA_xm_x : MOVDQA_x_xm)
| (alignment >= reg_size ? EX86_PREF_66 : EX86_PREF_F3);
}
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if ((op & VEX_256) || ((cpu_feature_list & CPU_FEATURE_AVX) && (compiler->options & SLJIT_ENTER_USE_VEX)))
return emit_vex_instruction(compiler, op, vreg, 0, srcdst, srcdstw);
return emit_groupf(compiler, op, vreg, srcdst, srcdstw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_replicate(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 vreg,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_s32 use_vex = (cpu_feature_list & CPU_FEATURE_AVX) && (compiler->options & SLJIT_ENTER_USE_VEX);
sljit_u8 *inst;
sljit_u8 opcode = 0;
sljit_uw op;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_replicate(compiler, type, vreg, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (!(type & SLJIT_SIMD_FLOAT)) {
CHECK_EXTRA_REGS(src, srcw, (void)0);
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if ((type & SLJIT_SIMD_FLOAT) ? (elem_size < 2 || elem_size > 3) : (elem_size > 2))
return SLJIT_ERR_UNSUPPORTED;
#else /* !SLJIT_CONFIG_X86_32 */
compiler->mode32 = 1;
if (elem_size > 3 || ((type & SLJIT_SIMD_FLOAT) && elem_size < 2))
return SLJIT_ERR_UNSUPPORTED;
#endif /* SLJIT_CONFIG_X86_32 */
if (reg_size != 4 && (reg_size != 5 || !(cpu_feature_list & CPU_FEATURE_AVX2)))
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (reg_size == 5)
use_vex = 1;
if (use_vex && src != SLJIT_IMM) {
op = 0;
switch (elem_size) {
case 0:
if (cpu_feature_list & CPU_FEATURE_AVX2)
op = VPBROADCASTB_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2;
break;
case 1:
if (cpu_feature_list & CPU_FEATURE_AVX2)
op = VPBROADCASTW_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2;
break;
case 2:
if (type & SLJIT_SIMD_FLOAT) {
if ((cpu_feature_list & CPU_FEATURE_AVX2) || ((cpu_feature_list & CPU_FEATURE_AVX) && (src & SLJIT_MEM)))
op = VBROADCASTSS_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2;
} else if (cpu_feature_list & CPU_FEATURE_AVX2)
op = VPBROADCASTD_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2;
break;
default:
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (!(type & SLJIT_SIMD_FLOAT)) {
if (cpu_feature_list & CPU_FEATURE_AVX2)
op = VPBROADCASTQ_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2;
break;
}
#endif /* SLJIT_CONFIG_X86_64 */
if (reg_size == 5)
op = VBROADCASTSD_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2;
break;
}
if (op != 0) {
if (!(src & SLJIT_MEM) && !(type & SLJIT_SIMD_FLOAT)) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (elem_size >= 3)
compiler->mode32 = 0;
#endif /* SLJIT_CONFIG_X86_64 */
FAIL_IF(emit_vex_instruction(compiler, MOVD_x_rm | VEX_AUTO_W | EX86_PREF_66 | EX86_SSE2_OP1, vreg, 0, src, srcw));
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif /* SLJIT_CONFIG_X86_64 */
src = vreg;
srcw = 0;
}
if (reg_size == 5)
op |= VEX_256;
return emit_vex_instruction(compiler, op, vreg, 0, src, srcw);
}
}
if (type & SLJIT_SIMD_FLOAT) {
if (src == SLJIT_IMM) {
if (use_vex)
return emit_vex_instruction(compiler, XORPD_x_xm | (reg_size == 5 ? VEX_256 : 0) | (elem_size == 3 ? EX86_PREF_66 : 0) | EX86_SSE2 | VEX_SSE2_OPV, vreg, vreg, vreg, 0);
return emit_groupf(compiler, XORPD_x_xm | (elem_size == 3 ? EX86_PREF_66 : 0) | EX86_SSE2, vreg, vreg, 0);
}
SLJIT_ASSERT(reg_size == 4);
if (use_vex) {
if (elem_size == 3)
return emit_vex_instruction(compiler, MOVDDUP_x_xm | EX86_PREF_F2 | EX86_SSE2, vreg, 0, src, srcw);
SLJIT_ASSERT(!(src & SLJIT_MEM));
FAIL_IF(emit_vex_instruction(compiler, SHUFPS_x_xm | EX86_SSE2 | VEX_SSE2_OPV, vreg, src, src, 0));
return emit_byte(compiler, 0);
}
if (elem_size == 2 && vreg != src) {
FAIL_IF(emit_sse2_load(compiler, 1, vreg, src, srcw));
src = vreg;
srcw = 0;
}
op = (elem_size == 2 ? SHUFPS_x_xm : MOVDDUP_x_xm) | (elem_size == 2 ? 0 : EX86_PREF_F2) | EX86_SSE2;
FAIL_IF(emit_groupf(compiler, op, vreg, src, srcw));
if (elem_size == 2)
return emit_byte(compiler, 0);
return SLJIT_SUCCESS;
}
if (src == SLJIT_IMM) {
if (elem_size == 0) {
srcw = (sljit_u8)srcw;
srcw |= srcw << 8;
srcw |= srcw << 16;
elem_size = 2;
} else if (elem_size == 1) {
srcw = (sljit_u16)srcw;
srcw |= srcw << 16;
elem_size = 2;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (elem_size == 2 && (sljit_s32)srcw == -1)
srcw = -1;
#endif /* SLJIT_CONFIG_X86_64 */
if (srcw == 0 || srcw == -1) {
if (use_vex)
return emit_vex_instruction(compiler, (srcw == 0 ? PXOR_x_xm : PCMPEQD_x_xm) | (reg_size == 5 ? VEX_256 : 0) | EX86_PREF_66 | EX86_SSE2 | VEX_SSE2_OPV, vreg, vreg, vreg, 0);
return emit_groupf(compiler, (srcw == 0 ? PXOR_x_xm : PCMPEQD_x_xm) | EX86_PREF_66 | EX86_SSE2, vreg, vreg, 0);
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (elem_size == 3)
FAIL_IF(emit_load_imm64(compiler, TMP_REG1, srcw));
else
#endif /* SLJIT_CONFIG_X86_64 */
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, srcw);
src = TMP_REG1;
srcw = 0;
}
op = 2;
opcode = MOVD_x_rm;
switch (elem_size) {
case 0:
if (!FAST_IS_REG(src)) {
opcode = 0x3a /* Prefix of PINSRB_x_rm_i8. */;
op = 3;
}
break;
case 1:
if (!FAST_IS_REG(src))
opcode = PINSRW_x_rm_i8;
break;
case 2:
break;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
case 3:
/* MOVQ */
compiler->mode32 = 0;
break;
#endif /* SLJIT_CONFIG_X86_64 */
}
if (use_vex) {
if (opcode != MOVD_x_rm) {
op = (opcode == 0x3a) ? (PINSRB_x_rm_i8 | VEX_OP_0F3A) : opcode;
FAIL_IF(emit_vex_instruction(compiler, op | EX86_PREF_66 | EX86_SSE2_OP1 | VEX_SSE2_OPV, vreg, vreg, src, srcw));
} else
FAIL_IF(emit_vex_instruction(compiler, MOVD_x_rm | VEX_AUTO_W | EX86_PREF_66 | EX86_SSE2_OP1, vreg, 0, src, srcw));
} else {
inst = emit_x86_instruction(compiler, op | EX86_PREF_66 | EX86_SSE2_OP1, vreg, 0, src, srcw);
FAIL_IF(!inst);
inst[0] = GROUP_0F;
inst[1] = opcode;
if (op == 3) {
SLJIT_ASSERT(opcode == 0x3a);
inst[2] = PINSRB_x_rm_i8;
}
}
if ((cpu_feature_list & CPU_FEATURE_AVX2) && use_vex && elem_size >= 2) {
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
op = VPBROADCASTD_x_xm;
#else /* !SLJIT_CONFIG_X86_32 */
op = (elem_size == 3) ? VPBROADCASTQ_x_xm : VPBROADCASTD_x_xm;
#endif /* SLJIT_CONFIG_X86_32 */
return emit_vex_instruction(compiler, op | ((reg_size == 5) ? VEX_256 : 0) | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2, vreg, 0, vreg, 0);
}
SLJIT_ASSERT(reg_size == 4);
if (opcode != MOVD_x_rm)
FAIL_IF(emit_byte(compiler, 0));
switch (elem_size) {
case 0:
if (use_vex) {
FAIL_IF(emit_vex_instruction(compiler, PXOR_x_xm | EX86_PREF_66 | EX86_SSE2 | VEX_SSE2_OPV, TMP_FREG, TMP_FREG, TMP_FREG, 0));
return emit_vex_instruction(compiler, PSHUFB_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2 | VEX_SSE2_OPV, vreg, vreg, TMP_FREG, 0);
}
FAIL_IF(emit_groupf(compiler, PXOR_x_xm | EX86_PREF_66 | EX86_SSE2, TMP_FREG, TMP_FREG, 0));
return emit_groupf_ext(compiler, PSHUFB_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2, vreg, TMP_FREG, 0);
case 1:
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, PSHUFLW_x_xm | EX86_PREF_F2 | EX86_SSE2, vreg, 0, vreg, 0));
else
FAIL_IF(emit_groupf(compiler, PSHUFLW_x_xm | EX86_PREF_F2 | EX86_SSE2, vreg, vreg, 0));
FAIL_IF(emit_byte(compiler, 0));
/* fallthrough */
default:
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, PSHUFD_x_xm | EX86_PREF_66 | EX86_SSE2, vreg, 0, vreg, 0));
else
FAIL_IF(emit_groupf(compiler, PSHUFD_x_xm | EX86_PREF_66 | EX86_SSE2, vreg, vreg, 0));
return emit_byte(compiler, 0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
case 3:
compiler->mode32 = 1;
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, PSHUFD_x_xm | EX86_PREF_66 | EX86_SSE2, vreg, 0, vreg, 0));
else
FAIL_IF(emit_groupf(compiler, PSHUFD_x_xm | EX86_PREF_66 | EX86_SSE2, vreg, vreg, 0));
return emit_byte(compiler, 0x44);
#endif /* SLJIT_CONFIG_X86_64 */
}
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_mov(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 vreg, sljit_s32 lane_index,
sljit_s32 srcdst, sljit_sw srcdstw)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_s32 use_vex = (cpu_feature_list & CPU_FEATURE_AVX) && (compiler->options & SLJIT_ENTER_USE_VEX);
sljit_u8 *inst;
sljit_u8 opcode = 0;
sljit_uw op;
sljit_s32 vreg_orig = vreg;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_s32 srcdst_is_ereg = 0;
sljit_s32 srcdst_orig = 0;
sljit_sw srcdstw_orig = 0;
#endif /* SLJIT_CONFIG_X86_32 */
CHECK_ERROR();
CHECK(check_sljit_emit_simd_lane_mov(compiler, type, vreg, lane_index, srcdst, srcdstw));
ADJUST_LOCAL_OFFSET(srcdst, srcdstw);
if (reg_size == 5) {
if (!(cpu_feature_list & CPU_FEATURE_AVX2))
return SLJIT_ERR_UNSUPPORTED;
use_vex = 1;
} else if (reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if ((type & SLJIT_SIMD_FLOAT) ? (elem_size < 2 || elem_size > 3) : elem_size > 2)
return SLJIT_ERR_UNSUPPORTED;
#else /* SLJIT_CONFIG_X86_32 */
if (elem_size > 3 || ((type & SLJIT_SIMD_FLOAT) && elem_size < 2))
return SLJIT_ERR_UNSUPPORTED;
#endif /* SLJIT_CONFIG_X86_32 */
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#else /* !SLJIT_CONFIG_X86_64 */
if (!(type & SLJIT_SIMD_FLOAT)) {
CHECK_EXTRA_REGS(srcdst, srcdstw, srcdst_is_ereg = 1);
if ((type & SLJIT_SIMD_STORE) && ((srcdst_is_ereg && elem_size < 2) || (elem_size == 0 && (type & SLJIT_SIMD_LANE_SIGNED) && FAST_IS_REG(srcdst) && reg_map[srcdst] >= 4))) {
srcdst_orig = srcdst;
srcdstw_orig = srcdstw;
srcdst = TMP_REG1;
srcdstw = 0;
}
}
#endif /* SLJIT_CONFIG_X86_64 */
if (type & SLJIT_SIMD_LANE_ZERO) {
if (lane_index == 0) {
if (!(type & SLJIT_SIMD_FLOAT)) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (elem_size == 3) {
compiler->mode32 = 0;
elem_size = 2;
}
#endif /* SLJIT_CONFIG_X86_64 */
if (srcdst == SLJIT_IMM) {
if (elem_size == 0)
srcdstw = (sljit_u8)srcdstw;
else if (elem_size == 1)
srcdstw = (sljit_u16)srcdstw;
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, srcdstw);
srcdst = TMP_REG1;
srcdstw = 0;
elem_size = 2;
}
if (elem_size == 2) {
if (use_vex)
return emit_vex_instruction(compiler, MOVD_x_rm | VEX_AUTO_W | EX86_PREF_66 | EX86_SSE2_OP1, vreg, 0, srcdst, srcdstw);
return emit_groupf(compiler, MOVD_x_rm | EX86_PREF_66 | EX86_SSE2_OP1, vreg, srcdst, srcdstw);
}
} else if (srcdst & SLJIT_MEM) {
SLJIT_ASSERT(elem_size == 2 || elem_size == 3);
if (use_vex)
return emit_vex_instruction(compiler, MOVSD_x_xm | (elem_size == 2 ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2, vreg, 0, srcdst, srcdstw);
return emit_groupf(compiler, MOVSD_x_xm | (elem_size == 2 ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2, vreg, srcdst, srcdstw);
} else if (elem_size == 3) {
if (use_vex)
return emit_vex_instruction(compiler, MOVQ_x_xm | EX86_PREF_F3 | EX86_SSE2, vreg, 0, srcdst, 0);
return emit_groupf(compiler, MOVQ_x_xm | EX86_PREF_F3 | EX86_SSE2, vreg, srcdst, 0);
} else if (use_vex) {
FAIL_IF(emit_vex_instruction(compiler, XORPD_x_xm | EX86_SSE2 | VEX_SSE2_OPV, TMP_FREG, TMP_FREG, TMP_FREG, 0));
return emit_vex_instruction(compiler, MOVSD_x_xm | EX86_PREF_F3 | EX86_SSE2 | VEX_SSE2_OPV, vreg, TMP_FREG, srcdst, 0);
}
}
if (reg_size == 5 && lane_index >= (1 << (4 - elem_size))) {
vreg = TMP_FREG;
lane_index -= (1 << (4 - elem_size));
} else if ((type & SLJIT_SIMD_FLOAT) && vreg == srcdst) {
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, MOVSD_x_xm | (elem_size == 2 ? EX86_PREF_F3 : EX86_PREF_F2) | EX86_SSE2 | VEX_SSE2_OPV, TMP_FREG, TMP_FREG, srcdst, srcdstw));
else
FAIL_IF(emit_sse2_load(compiler, elem_size == 2, TMP_FREG, srcdst, srcdstw));
srcdst = TMP_FREG;
srcdstw = 0;
}
op = ((!(type & SLJIT_SIMD_FLOAT) || elem_size != 2) ? EX86_PREF_66 : 0)
| ((type & SLJIT_SIMD_FLOAT) ? XORPD_x_xm : PXOR_x_xm) | EX86_SSE2;
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, op | (reg_size == 5 ? VEX_256 : 0) | VEX_SSE2_OPV, vreg, vreg, vreg, 0));
else
FAIL_IF(emit_groupf(compiler, op, vreg, vreg, 0));
} else if (reg_size == 5 && lane_index >= (1 << (4 - elem_size))) {
FAIL_IF(emit_vex_instruction(compiler, ((type & SLJIT_SIMD_FLOAT) ? VEXTRACTF128_x_ym : VEXTRACTI128_x_ym) | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | EX86_SSE2, vreg, 0, TMP_FREG, 0));
FAIL_IF(emit_byte(compiler, 1));
vreg = TMP_FREG;
lane_index -= (1 << (4 - elem_size));
}
if (type & SLJIT_SIMD_FLOAT) {
if (elem_size == 3) {
if (srcdst & SLJIT_MEM) {
if (type & SLJIT_SIMD_STORE)
op = lane_index == 0 ? MOVLPD_m_x : MOVHPD_m_x;
else
op = lane_index == 0 ? MOVLPD_x_m : MOVHPD_x_m;
/* VEX prefix clears upper bits of the target register. */
if (use_vex && ((type & SLJIT_SIMD_STORE) || reg_size == 4 || vreg == TMP_FREG))
FAIL_IF(emit_vex_instruction(compiler, op | EX86_PREF_66 | EX86_SSE2
| ((type & SLJIT_SIMD_STORE) ? 0 : VEX_SSE2_OPV), vreg, (type & SLJIT_SIMD_STORE) ? 0 : vreg, srcdst, srcdstw));
else
FAIL_IF(emit_groupf(compiler, op | EX86_PREF_66 | EX86_SSE2, vreg, srcdst, srcdstw));
/* In case of store, vreg is not TMP_FREG. */
} else if (type & SLJIT_SIMD_STORE) {
if (lane_index == 1) {
if (use_vex)
return emit_vex_instruction(compiler, MOVHLPS_x_x | EX86_SSE2 | VEX_SSE2_OPV, srcdst, srcdst, vreg, 0);
return emit_groupf(compiler, MOVHLPS_x_x | EX86_SSE2, srcdst, vreg, 0);
}
if (use_vex)
return emit_vex_instruction(compiler, MOVSD_x_xm | EX86_PREF_F2 | EX86_SSE2 | VEX_SSE2_OPV, srcdst, srcdst, vreg, 0);
return emit_sse2_load(compiler, 0, srcdst, vreg, 0);
} else if (use_vex && (reg_size == 4 || vreg == TMP_FREG)) {
if (lane_index == 1)
FAIL_IF(emit_vex_instruction(compiler, MOVLHPS_x_x | EX86_SSE2 | VEX_SSE2_OPV, vreg, vreg, srcdst, 0));
else
FAIL_IF(emit_vex_instruction(compiler, MOVSD_x_xm | EX86_PREF_F2 | EX86_SSE2 | VEX_SSE2_OPV, vreg, vreg, srcdst, 0));
} else {
if (lane_index == 1)
FAIL_IF(emit_groupf(compiler, MOVLHPS_x_x | EX86_SSE2, vreg, srcdst, 0));
else
FAIL_IF(emit_sse2_load(compiler, 0, vreg, srcdst, 0));
}
} else if (type & SLJIT_SIMD_STORE) {
if (lane_index == 0) {
if (use_vex)
return emit_vex_instruction(compiler, MOVSD_xm_x | EX86_PREF_F3 | EX86_SSE2 | ((srcdst & SLJIT_MEM) ? 0 : VEX_SSE2_OPV),
vreg, ((srcdst & SLJIT_MEM) ? 0 : srcdst), srcdst, srcdstw);
return emit_sse2_store(compiler, 1, srcdst, srcdstw, vreg);
}
if (srcdst & SLJIT_MEM) {
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, EXTRACTPS_x_xm | EX86_PREF_66 | VEX_OP_0F3A | EX86_SSE2, vreg, 0, srcdst, srcdstw));
else
FAIL_IF(emit_groupf_ext(compiler, EXTRACTPS_x_xm | EX86_PREF_66 | VEX_OP_0F3A | EX86_SSE2, vreg, srcdst, srcdstw));
return emit_byte(compiler, U8(lane_index));
}
if (use_vex) {
FAIL_IF(emit_vex_instruction(compiler, SHUFPS_x_xm | EX86_SSE2 | VEX_SSE2_OPV, srcdst, vreg, vreg, 0));
return emit_byte(compiler, U8(lane_index));
}
if (srcdst == vreg)
op = SHUFPS_x_xm | EX86_SSE2;
else {
switch (lane_index) {
case 1:
op = MOVSHDUP_x_xm | EX86_PREF_F3 | EX86_SSE2;
break;
case 2:
op = MOVHLPS_x_x | EX86_SSE2;
break;
default:
SLJIT_ASSERT(lane_index == 3);
op = PSHUFD_x_xm | EX86_PREF_66 | EX86_SSE2;
break;
}
}
FAIL_IF(emit_groupf(compiler, op, srcdst, vreg, 0));
op &= 0xff;
if (op == SHUFPS_x_xm || op == PSHUFD_x_xm)
return emit_byte(compiler, U8(lane_index));
return SLJIT_SUCCESS;
} else {
if (lane_index != 0 || (srcdst & SLJIT_MEM)) {
FAIL_IF(emit_groupf_ext(compiler, INSERTPS_x_xm | EX86_PREF_66 | VEX_OP_0F3A | EX86_SSE2, vreg, srcdst, srcdstw));
FAIL_IF(emit_byte(compiler, U8(lane_index << 4)));
} else
FAIL_IF(emit_sse2_store(compiler, 1, vreg, 0, srcdst));
}
if (vreg != TMP_FREG || (type & SLJIT_SIMD_STORE))
return SLJIT_SUCCESS;
SLJIT_ASSERT(reg_size == 5);
if (type & SLJIT_SIMD_LANE_ZERO) {
FAIL_IF(emit_vex_instruction(compiler, VPERMPD_y_ym | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | VEX_W | EX86_SSE2, vreg_orig, 0, TMP_FREG, 0));
return emit_byte(compiler, 0x4e);
}
FAIL_IF(emit_vex_instruction(compiler, VINSERTF128_y_y_xm | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | EX86_SSE2 | VEX_SSE2_OPV, vreg_orig, vreg_orig, TMP_FREG, 0));
return emit_byte(compiler, 1);
}
if (srcdst == SLJIT_IMM) {
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_IMM, srcdstw);
srcdst = TMP_REG1;
srcdstw = 0;
}
op = 3;
switch (elem_size) {
case 0:
opcode = (type & SLJIT_SIMD_STORE) ? PEXTRB_rm_x_i8 : PINSRB_x_rm_i8;
break;
case 1:
if (!(type & SLJIT_SIMD_STORE)) {
op = 2;
opcode = PINSRW_x_rm_i8;
} else
opcode = PEXTRW_rm_x_i8;
break;
case 2:
opcode = (type & SLJIT_SIMD_STORE) ? PEXTRD_rm_x_i8 : PINSRD_x_rm_i8;
break;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
case 3:
/* PINSRQ / PEXTRQ */
opcode = (type & SLJIT_SIMD_STORE) ? PEXTRD_rm_x_i8 : PINSRD_x_rm_i8;
compiler->mode32 = 0;
break;
#endif /* SLJIT_CONFIG_X86_64 */
}
if (use_vex && (type & SLJIT_SIMD_STORE)) {
op = opcode | ((op == 3) ? VEX_OP_0F3A : 0);
FAIL_IF(emit_vex_instruction(compiler, op | EX86_PREF_66 | VEX_AUTO_W | EX86_SSE2_OP1 | VEX_SSE2_OPV, vreg, 0, srcdst, srcdstw));
} else {
inst = emit_x86_instruction(compiler, op | EX86_PREF_66 | EX86_SSE2_OP1, vreg, 0, srcdst, srcdstw);
FAIL_IF(!inst);
inst[0] = GROUP_0F;
if (op == 3) {
inst[1] = 0x3a;
inst[2] = opcode;
} else
inst[1] = opcode;
}
FAIL_IF(emit_byte(compiler, U8(lane_index)));
if (!(type & SLJIT_SIMD_LANE_SIGNED) || (srcdst & SLJIT_MEM)) {
if (vreg == TMP_FREG && !(type & SLJIT_SIMD_STORE)) {
SLJIT_ASSERT(reg_size == 5);
if (type & SLJIT_SIMD_LANE_ZERO) {
FAIL_IF(emit_vex_instruction(compiler, VPERMQ_y_ym | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | VEX_W | EX86_SSE2, vreg_orig, 0, TMP_FREG, 0));
return emit_byte(compiler, 0x4e);
}
FAIL_IF(emit_vex_instruction(compiler, VINSERTI128_y_y_xm | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | EX86_SSE2 | VEX_SSE2_OPV, vreg_orig, vreg_orig, TMP_FREG, 0));
return emit_byte(compiler, 1);
}
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (srcdst_orig & SLJIT_MEM)
return emit_mov(compiler, srcdst_orig, srcdstw_orig, TMP_REG1, 0);
#endif /* SLJIT_CONFIG_X86_32 */
return SLJIT_SUCCESS;
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (elem_size >= 3)
return SLJIT_SUCCESS;
compiler->mode32 = (type & SLJIT_32);
op = 2;
if (elem_size == 0)
op |= EX86_REX;
if (elem_size == 2) {
if (type & SLJIT_32)
return SLJIT_SUCCESS;
SLJIT_ASSERT(!(compiler->mode32));
op = 1;
}
inst = emit_x86_instruction(compiler, op, srcdst, 0, srcdst, 0);
FAIL_IF(!inst);
if (op != 1) {
inst[0] = GROUP_0F;
inst[1] = U8((elem_size == 0) ? MOVSX_r_rm8 : MOVSX_r_rm16);
} else
inst[0] = MOVSXD_r_rm;
#else /* !SLJIT_CONFIG_X86_64 */
if (elem_size >= 2)
return SLJIT_SUCCESS;
FAIL_IF(emit_groupf(compiler, (elem_size == 0) ? MOVSX_r_rm8 : MOVSX_r_rm16,
(srcdst_orig != 0 && FAST_IS_REG(srcdst_orig)) ? srcdst_orig : srcdst, srcdst, 0));
if (srcdst_orig & SLJIT_MEM)
return emit_mov(compiler, srcdst_orig, srcdstw_orig, TMP_REG1, 0);
#endif /* SLJIT_CONFIG_X86_64 */
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_lane_replicate(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 vreg,
sljit_s32 src, sljit_s32 src_lane_index)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_s32 use_vex = (cpu_feature_list & CPU_FEATURE_AVX) && (compiler->options & SLJIT_ENTER_USE_VEX);
sljit_uw pref;
sljit_u8 byte;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_s32 opcode3 = TMP_REG1;
#else /* !SLJIT_CONFIG_X86_32 */
sljit_s32 opcode3 = SLJIT_S0;
#endif /* SLJIT_CONFIG_X86_32 */
CHECK_ERROR();
CHECK(check_sljit_emit_simd_lane_replicate(compiler, type, vreg, src, src_lane_index));
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif /* SLJIT_CONFIG_X86_64 */
SLJIT_ASSERT(reg_map[opcode3] == 3);
if (reg_size == 5) {
if (!(cpu_feature_list & CPU_FEATURE_AVX2))
return SLJIT_ERR_UNSUPPORTED;
use_vex = 1;
} else if (reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_FLOAT) {
pref = 0;
byte = U8(src_lane_index);
if (elem_size == 3) {
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (reg_size == 5) {
if (src_lane_index == 0)
return emit_vex_instruction(compiler, VBROADCASTSD_x_xm | VEX_256 | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2, vreg, 0, src, 0);
FAIL_IF(emit_vex_instruction(compiler, VPERMPD_y_ym | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | VEX_W | EX86_SSE2, vreg, 0, src, 0));
byte = U8(byte | (byte << 2));
return emit_byte(compiler, U8(byte | (byte << 4)));
}
if (src_lane_index == 0) {
if (use_vex)
return emit_vex_instruction(compiler, MOVDDUP_x_xm | EX86_PREF_F2 | EX86_SSE2, vreg, 0, src, 0);
return emit_groupf(compiler, MOVDDUP_x_xm | EX86_PREF_F2 | EX86_SSE2, vreg, src, 0);
}
/* Changes it to SHUFPD_x_xm. */
pref = EX86_PREF_66;
} else if (elem_size != 2)
return SLJIT_ERR_UNSUPPORTED;
else if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (reg_size == 5) {
SLJIT_ASSERT(elem_size == 2);
if (src_lane_index == 0)
return emit_vex_instruction(compiler, VBROADCASTSS_x_xm | VEX_256 | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2, vreg, 0, src, 0);
FAIL_IF(emit_vex_instruction(compiler, VPERMPD_y_ym | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | VEX_W | EX86_SSE2, vreg, 0, src, 0));
byte = 0x44;
if (src_lane_index >= 4) {
byte = 0xee;
src_lane_index -= 4;
}
FAIL_IF(emit_byte(compiler, byte));
FAIL_IF(emit_vex_instruction(compiler, SHUFPS_x_xm | VEX_256 | pref | EX86_SSE2 | VEX_SSE2_OPV, vreg, vreg, vreg, 0));
byte = U8(src_lane_index);
} else if (use_vex) {
FAIL_IF(emit_vex_instruction(compiler, SHUFPS_x_xm | pref | EX86_SSE2 | VEX_SSE2_OPV, vreg, src, src, 0));
} else {
if (vreg != src)
FAIL_IF(emit_groupf(compiler, MOVAPS_x_xm | pref | EX86_SSE2, vreg, src, 0));
FAIL_IF(emit_groupf(compiler, SHUFPS_x_xm | pref | EX86_SSE2, vreg, vreg, 0));
}
if (elem_size == 2) {
byte = U8(byte | (byte << 2));
byte = U8(byte | (byte << 4));
} else
byte = U8(byte | (byte << 1));
return emit_byte(compiler, U8(byte));
}
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (elem_size == 0) {
if (reg_size == 5 && src_lane_index >= 16) {
FAIL_IF(emit_vex_instruction(compiler, VPERMQ_y_ym | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | VEX_W | EX86_SSE2, vreg, 0, src, 0));
FAIL_IF(emit_byte(compiler, src_lane_index >= 24 ? 0xff : 0xaa));
src_lane_index &= 0x7;
src = vreg;
}
if (src_lane_index != 0 || (vreg != src && (!(cpu_feature_list & CPU_FEATURE_AVX2) || !use_vex))) {
pref = 0;
if ((src_lane_index & 0x3) == 0) {
pref = EX86_PREF_66;
byte = U8(src_lane_index >> 2);
} else if (src_lane_index < 8 && (src_lane_index & 0x1) == 0) {
pref = EX86_PREF_F2;
byte = U8(src_lane_index >> 1);
} else {
if (!use_vex) {
if (vreg != src)
FAIL_IF(emit_groupf(compiler, MOVDQA_x_xm | EX86_PREF_66 | EX86_SSE2, vreg, src, 0));
FAIL_IF(emit_groupf(compiler, PSRLDQ_x | EX86_PREF_66 | EX86_SSE2_OP2, opcode3, vreg, 0));
} else
FAIL_IF(emit_vex_instruction(compiler, PSRLDQ_x | EX86_PREF_66 | EX86_SSE2_OP2 | VEX_SSE2_OPV, opcode3, vreg, src, 0));
FAIL_IF(emit_byte(compiler, U8(src_lane_index)));
}
if (pref != 0) {
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, PSHUFLW_x_xm | pref | EX86_SSE2, vreg, 0, src, 0));
else
FAIL_IF(emit_groupf(compiler, PSHUFLW_x_xm | pref | EX86_SSE2, vreg, src, 0));
FAIL_IF(emit_byte(compiler, byte));
}
src = vreg;
}
if (use_vex && (cpu_feature_list & CPU_FEATURE_AVX2))
return emit_vex_instruction(compiler, VPBROADCASTB_x_xm | (reg_size == 5 ? VEX_256 : 0) | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2, vreg, 0, src, 0);
SLJIT_ASSERT(reg_size == 4);
FAIL_IF(emit_groupf(compiler, PXOR_x_xm | EX86_PREF_66 | EX86_SSE2, TMP_FREG, TMP_FREG, 0));
return emit_groupf_ext(compiler, PSHUFB_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2, vreg, TMP_FREG, 0);
}
if ((cpu_feature_list & CPU_FEATURE_AVX2) && use_vex && src_lane_index == 0 && elem_size <= 3) {
switch (elem_size) {
case 1:
pref = VPBROADCASTW_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2;
break;
case 2:
pref = VPBROADCASTD_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2;
break;
default:
pref = VPBROADCASTQ_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2;
break;
}
if (reg_size == 5)
pref |= VEX_256;
return emit_vex_instruction(compiler, pref, vreg, 0, src, 0);
}
if (reg_size == 5) {
switch (elem_size) {
case 1:
byte = U8(src_lane_index & 0x3);
src_lane_index >>= 2;
pref = PSHUFLW_x_xm | VEX_256 | ((src_lane_index & 1) == 0 ? EX86_PREF_F2 : EX86_PREF_F3) | EX86_SSE2;
break;
case 2:
byte = U8(src_lane_index & 0x3);
src_lane_index >>= 1;
pref = PSHUFD_x_xm | VEX_256 | EX86_PREF_66 | EX86_SSE2;
break;
case 3:
pref = 0;
break;
default:
FAIL_IF(emit_vex_instruction(compiler, VPERMQ_y_ym | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | VEX_W | EX86_SSE2, vreg, 0, src, 0));
return emit_byte(compiler, U8(src_lane_index == 0 ? 0x44 : 0xee));
}
if (pref != 0) {
FAIL_IF(emit_vex_instruction(compiler, pref, vreg, 0, src, 0));
byte = U8(byte | (byte << 2));
FAIL_IF(emit_byte(compiler, U8(byte | (byte << 4))));
if (src_lane_index == 0)
return emit_vex_instruction(compiler, VPBROADCASTQ_x_xm | VEX_256 | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2, vreg, 0, vreg, 0);
src = vreg;
}
FAIL_IF(emit_vex_instruction(compiler, VPERMQ_y_ym | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | VEX_W | EX86_SSE2, vreg, 0, src, 0));
byte = U8(src_lane_index);
byte = U8(byte | (byte << 2));
return emit_byte(compiler, U8(byte | (byte << 4)));
}
switch (elem_size) {
case 1:
byte = U8(src_lane_index & 0x3);
src_lane_index >>= 1;
pref = (src_lane_index & 2) == 0 ? EX86_PREF_F2 : EX86_PREF_F3;
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, PSHUFLW_x_xm | pref | EX86_SSE2, vreg, 0, src, 0));
else
FAIL_IF(emit_groupf(compiler, PSHUFLW_x_xm | pref | EX86_SSE2, vreg, src, 0));
byte = U8(byte | (byte << 2));
FAIL_IF(emit_byte(compiler, U8(byte | (byte << 4))));
if ((cpu_feature_list & CPU_FEATURE_AVX2) && use_vex && pref == EX86_PREF_F2)
return emit_vex_instruction(compiler, VPBROADCASTD_x_xm | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2, vreg, 0, vreg, 0);
src = vreg;
/* fallthrough */
case 2:
byte = U8(src_lane_index);
byte = U8(byte | (byte << 2));
break;
default:
byte = U8(src_lane_index << 1);
byte = U8(byte | (byte << 2) | 0x4);
break;
}
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, PSHUFD_x_xm | EX86_PREF_66 | EX86_SSE2, vreg, 0, src, 0));
else
FAIL_IF(emit_groupf(compiler, PSHUFD_x_xm | EX86_PREF_66 | EX86_SSE2, vreg, src, 0));
return emit_byte(compiler, U8(byte | (byte << 4)));
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_extend(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 vreg,
sljit_s32 src, sljit_sw srcw)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_s32 elem2_size = SLJIT_SIMD_GET_ELEM2_SIZE(type);
sljit_s32 use_vex = (cpu_feature_list & CPU_FEATURE_AVX) && (compiler->options & SLJIT_ENTER_USE_VEX);
sljit_u8 opcode;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_extend(compiler, type, vreg, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif /* SLJIT_CONFIG_X86_64 */
if (reg_size == 5) {
if (!(cpu_feature_list & CPU_FEATURE_AVX2))
return SLJIT_ERR_UNSUPPORTED;
use_vex = 1;
} else if (reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_FLOAT) {
if (elem_size != 2 || elem2_size != 3)
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (use_vex)
return emit_vex_instruction(compiler, CVTPS2PD_x_xm | ((reg_size == 5) ? VEX_256 : 0) | EX86_SSE2, vreg, 0, src, srcw);
return emit_groupf(compiler, CVTPS2PD_x_xm | EX86_SSE2, vreg, src, srcw);
}
switch (elem_size) {
case 0:
if (elem2_size == 1)
opcode = (type & SLJIT_SIMD_EXTEND_SIGNED) ? PMOVSXBW_x_xm : PMOVZXBW_x_xm;
else if (elem2_size == 2)
opcode = (type & SLJIT_SIMD_EXTEND_SIGNED) ? PMOVSXBD_x_xm : PMOVZXBD_x_xm;
else if (elem2_size == 3)
opcode = (type & SLJIT_SIMD_EXTEND_SIGNED) ? PMOVSXBQ_x_xm : PMOVZXBQ_x_xm;
else
return SLJIT_ERR_UNSUPPORTED;
break;
case 1:
if (elem2_size == 2)
opcode = (type & SLJIT_SIMD_EXTEND_SIGNED) ? PMOVSXWD_x_xm : PMOVZXWD_x_xm;
else if (elem2_size == 3)
opcode = (type & SLJIT_SIMD_EXTEND_SIGNED) ? PMOVSXWQ_x_xm : PMOVZXWQ_x_xm;
else
return SLJIT_ERR_UNSUPPORTED;
break;
case 2:
if (elem2_size == 3)
opcode = (type & SLJIT_SIMD_EXTEND_SIGNED) ? PMOVSXDQ_x_xm : PMOVZXDQ_x_xm;
else
return SLJIT_ERR_UNSUPPORTED;
break;
default:
return SLJIT_ERR_UNSUPPORTED;
}
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if (use_vex)
return emit_vex_instruction(compiler, opcode | ((reg_size == 5) ? VEX_256 : 0) | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2, vreg, 0, src, srcw);
return emit_groupf_ext(compiler, opcode | EX86_PREF_66 | VEX_OP_0F38 | EX86_SSE2, vreg, src, srcw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_sign(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 vreg,
sljit_s32 dst, sljit_sw dstw)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_s32 use_vex = (cpu_feature_list & CPU_FEATURE_AVX) && (compiler->options & SLJIT_ENTER_USE_VEX);
sljit_s32 dst_r;
sljit_uw op;
sljit_u8 *inst;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_sign(compiler, type, vreg, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif /* SLJIT_CONFIG_X86_64 */
if (elem_size > 3 || ((type & SLJIT_SIMD_FLOAT) && elem_size < 2))
return SLJIT_ERR_UNSUPPORTED;
if (reg_size == 4) {
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
op = EX86_PREF_66 | EX86_SSE2_OP2;
switch (elem_size) {
case 1:
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, PACKSSWB_x_xm | EX86_PREF_66 | EX86_SSE2 | VEX_SSE2_OPV, TMP_FREG, vreg, vreg, 0));
else
FAIL_IF(emit_groupf(compiler, PACKSSWB_x_xm | EX86_PREF_66 | EX86_SSE2, TMP_FREG, vreg, 0));
vreg = TMP_FREG;
break;
case 2:
op = EX86_SSE2_OP2;
break;
}
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
op |= (elem_size < 2) ? PMOVMSKB_r_x : MOVMSKPS_r_x;
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, op, dst_r, 0, vreg, 0));
else
FAIL_IF(emit_groupf(compiler, op, dst_r, vreg, 0));
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = type & SLJIT_32;
#endif /* SLJIT_CONFIG_X86_64 */
if (elem_size == 1) {
inst = emit_x86_instruction(compiler, 1 | EX86_SHIFT_INS, SLJIT_IMM, 8, dst_r, 0);
FAIL_IF(!inst);
inst[1] |= SHR;
}
if (dst_r == TMP_REG1)
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
return SLJIT_SUCCESS;
}
if (reg_size != 5 || !(cpu_feature_list & CPU_FEATURE_AVX2))
return SLJIT_ERR_UNSUPPORTED;
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
dst_r = FAST_IS_REG(dst) ? dst : TMP_REG1;
if (elem_size == 1) {
FAIL_IF(emit_vex_instruction(compiler, VEXTRACTI128_x_ym | VEX_256 | EX86_PREF_66 | VEX_OP_0F3A | EX86_SSE2, vreg, 0, TMP_FREG, 0));
FAIL_IF(emit_byte(compiler, 1));
FAIL_IF(emit_vex_instruction(compiler, PACKSSWB_x_xm | VEX_256 | EX86_PREF_66 | EX86_SSE2 | VEX_SSE2_OPV, TMP_FREG, vreg, TMP_FREG, 0));
FAIL_IF(emit_groupf(compiler, PMOVMSKB_r_x | EX86_PREF_66 | EX86_SSE2_OP2, dst_r, TMP_FREG, 0));
} else {
op = MOVMSKPS_r_x | VEX_256 | EX86_SSE2_OP2;
if (elem_size == 0)
op = PMOVMSKB_r_x | VEX_256 | EX86_PREF_66 | EX86_SSE2_OP2;
else if (elem_size == 3)
op |= EX86_PREF_66;
FAIL_IF(emit_vex_instruction(compiler, op, dst_r, 0, vreg, 0));
}
if (dst_r == TMP_REG1) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = type & SLJIT_32;
#endif /* SLJIT_CONFIG_X86_64 */
return emit_mov(compiler, dst, dstw, TMP_REG1, 0);
}
return SLJIT_SUCCESS;
}
static sljit_s32 emit_simd_mov(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_vreg, sljit_s32 src_vreg)
{
sljit_uw op = ((type & SLJIT_SIMD_FLOAT) ? MOVAPS_x_xm : MOVDQA_x_xm) | EX86_SSE2;
SLJIT_ASSERT(SLJIT_SIMD_GET_REG_SIZE(type) == 4);
if (!(type & SLJIT_SIMD_FLOAT) || SLJIT_SIMD_GET_ELEM_SIZE(type) == 3)
op |= EX86_PREF_66;
return emit_groupf(compiler, op, dst_vreg, src_vreg, 0);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_simd_op2(struct sljit_compiler *compiler, sljit_s32 type,
sljit_s32 dst_vreg, sljit_s32 src1_vreg, sljit_s32 src2, sljit_sw src2w)
{
sljit_s32 reg_size = SLJIT_SIMD_GET_REG_SIZE(type);
sljit_s32 elem_size = SLJIT_SIMD_GET_ELEM_SIZE(type);
sljit_s32 use_vex = (cpu_feature_list & CPU_FEATURE_AVX) && (compiler->options & SLJIT_ENTER_USE_VEX);
sljit_uw op = 0;
sljit_uw mov_op = 0;
CHECK_ERROR();
CHECK(check_sljit_emit_simd_op2(compiler, type, dst_vreg, src1_vreg, src2, src2w));
ADJUST_LOCAL_OFFSET(src2, src2w);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 1;
#endif /* SLJIT_CONFIG_X86_64 */
if (reg_size == 5) {
if (!(cpu_feature_list & CPU_FEATURE_AVX2))
return SLJIT_ERR_UNSUPPORTED;
} else if (reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
if ((type & SLJIT_SIMD_FLOAT) && (elem_size < 2 || elem_size > 3))
return SLJIT_ERR_UNSUPPORTED;
switch (SLJIT_SIMD_GET_OPCODE(type)) {
case SLJIT_SIMD_OP2_AND:
op = (type & SLJIT_SIMD_FLOAT) ? ANDPD_x_xm : PAND_x_xm;
if (!(type & SLJIT_SIMD_FLOAT) || elem_size == 3)
op |= EX86_PREF_66;
break;
case SLJIT_SIMD_OP2_OR:
op = (type & SLJIT_SIMD_FLOAT) ? ORPD_x_xm : POR_x_xm;
if (!(type & SLJIT_SIMD_FLOAT) || elem_size == 3)
op |= EX86_PREF_66;
break;
case SLJIT_SIMD_OP2_XOR:
op = (type & SLJIT_SIMD_FLOAT) ? XORPD_x_xm : PXOR_x_xm;
if (!(type & SLJIT_SIMD_FLOAT) || elem_size == 3)
op |= EX86_PREF_66;
break;
case SLJIT_SIMD_OP2_SHUFFLE:
if (reg_size != 4)
return SLJIT_ERR_UNSUPPORTED;
op = PSHUFB_x_xm | EX86_PREF_66 | VEX_OP_0F38;
break;
}
if (type & SLJIT_SIMD_TEST)
return SLJIT_SUCCESS;
if ((src2 & SLJIT_MEM) && SLJIT_SIMD_GET_ELEM2_SIZE(type) < reg_size) {
mov_op = ((type & SLJIT_SIMD_FLOAT) ? (MOVUPS_x_xm | (elem_size == 3 ? EX86_PREF_66 : 0)) : (MOVDQU_x_xm | EX86_PREF_F3)) | EX86_SSE2;
if (use_vex)
FAIL_IF(emit_vex_instruction(compiler, mov_op, TMP_FREG, 0, src2, src2w));
else
FAIL_IF(emit_groupf(compiler, mov_op, TMP_FREG, src2, src2w));
src2 = TMP_FREG;
src2w = 0;
}
if (reg_size == 5 || use_vex) {
if (reg_size == 5)
op |= VEX_256;
return emit_vex_instruction(compiler, op | EX86_SSE2 | VEX_SSE2_OPV, dst_vreg, src1_vreg, src2, src2w);
}
if (dst_vreg != src1_vreg) {
if (dst_vreg == src2) {
if (SLJIT_SIMD_GET_OPCODE(type) == SLJIT_SIMD_OP2_SHUFFLE) {
FAIL_IF(emit_simd_mov(compiler, type, TMP_FREG, src2));
FAIL_IF(emit_simd_mov(compiler, type, dst_vreg, src1_vreg));
src2 = TMP_FREG;
src2w = 0;
} else
src2 = src1_vreg;
} else
FAIL_IF(emit_simd_mov(compiler, type, dst_vreg, src1_vreg));
}
if (op & (VEX_OP_0F38 | VEX_OP_0F3A))
return emit_groupf_ext(compiler, op | EX86_SSE2, dst_vreg, src2, src2w);
return emit_groupf(compiler, op | EX86_SSE2, dst_vreg, src2, src2w);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_load(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 dst_reg,
sljit_s32 mem_reg)
{
CHECK_ERROR();
CHECK(check_sljit_emit_atomic_load(compiler, op, dst_reg, mem_reg));
if ((op & SLJIT_ATOMIC_USE_LS) || GET_OPCODE(op) == SLJIT_MOV_S8 || GET_OPCODE(op) == SLJIT_MOV_S16 || GET_OPCODE(op) == SLJIT_MOV_S32)
return SLJIT_ERR_UNSUPPORTED;
if (op & SLJIT_ATOMIC_TEST)
return SLJIT_SUCCESS;
SLJIT_SKIP_CHECKS(compiler);
return sljit_emit_op1(compiler, op & ~SLJIT_ATOMIC_USE_CAS, dst_reg, 0, SLJIT_MEM1(mem_reg), 0);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_emit_atomic_store(struct sljit_compiler *compiler, sljit_s32 op,
sljit_s32 src_reg,
sljit_s32 mem_reg,
sljit_s32 temp_reg)
{
sljit_uw pref;
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_s32 saved_reg = TMP_REG1;
sljit_s32 swap_tmp = 0;
sljit_sw srcw = 0;
sljit_sw tempw = 0;
#endif /* SLJIT_CONFIG_X86_32 */
CHECK_ERROR();
CHECK(check_sljit_emit_atomic_store(compiler, op, src_reg, mem_reg, temp_reg));
CHECK_EXTRA_REGS(src_reg, srcw, (void)0);
CHECK_EXTRA_REGS(temp_reg, tempw, (void)0);
SLJIT_ASSERT(FAST_IS_REG(src_reg) || src_reg == SLJIT_MEM1(SLJIT_SP));
SLJIT_ASSERT(FAST_IS_REG(temp_reg) || temp_reg == SLJIT_MEM1(SLJIT_SP));
if ((op & SLJIT_ATOMIC_USE_LS) || GET_OPCODE(op) == SLJIT_MOV_S8 || GET_OPCODE(op) == SLJIT_MOV_S16 || GET_OPCODE(op) == SLJIT_MOV_S32)
return SLJIT_ERR_UNSUPPORTED;
if (op & SLJIT_ATOMIC_TEST)
return SLJIT_SUCCESS;
op = GET_OPCODE(op);
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (temp_reg == SLJIT_TMP_DEST_REG) {
FAIL_IF(emit_byte(compiler, XCHG_EAX_r | reg_map[TMP_REG1]));
if (src_reg == SLJIT_R0)
src_reg = TMP_REG1;
if (mem_reg == SLJIT_R0)
mem_reg = TMP_REG1;
temp_reg = SLJIT_R0;
swap_tmp = 1;
}
/* Src is virtual register or its low byte is not accessible. */
if ((src_reg & SLJIT_MEM) || (op == SLJIT_MOV_U8 && reg_map[src_reg] >= 4)) {
SLJIT_ASSERT(src_reg != SLJIT_R1 && temp_reg != SLJIT_TMP_DEST_REG);
if (swap_tmp) {
saved_reg = (mem_reg != SLJIT_R1) ? SLJIT_R1 : SLJIT_R2;
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), 0, saved_reg, 0);
EMIT_MOV(compiler, saved_reg, 0, src_reg, srcw);
} else
EMIT_MOV(compiler, TMP_REG1, 0, src_reg, srcw);
src_reg = saved_reg;
if (mem_reg == src_reg)
mem_reg = saved_reg;
}
#endif /* SLJIT_CONFIG_X86_32 */
if (temp_reg != SLJIT_R0) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
EMIT_MOV(compiler, TMP_REG2, 0, SLJIT_R0, 0);
EMIT_MOV(compiler, SLJIT_R0, 0, temp_reg, 0);
if (src_reg == SLJIT_R0)
src_reg = TMP_REG2;
if (mem_reg == SLJIT_R0)
mem_reg = TMP_REG2;
#else /* !SLJIT_CONFIG_X86_64 */
SLJIT_ASSERT(!swap_tmp);
if (src_reg == TMP_REG1) {
if (mem_reg == SLJIT_R0) {
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), 0, SLJIT_R1, 0);
EMIT_MOV(compiler, SLJIT_R1, 0, SLJIT_R0, 0);
EMIT_MOV(compiler, SLJIT_R0, 0, temp_reg, tempw);
mem_reg = SLJIT_R1;
saved_reg = SLJIT_R1;
} else {
EMIT_MOV(compiler, SLJIT_MEM1(SLJIT_SP), 0, SLJIT_R0, 0);
EMIT_MOV(compiler, SLJIT_R0, 0, temp_reg, tempw);
saved_reg = SLJIT_R0;
}
} else {
EMIT_MOV(compiler, TMP_REG1, 0, SLJIT_R0, 0);
EMIT_MOV(compiler, SLJIT_R0, 0, temp_reg, tempw);
if (src_reg == SLJIT_R0)
src_reg = TMP_REG1;
if (mem_reg == SLJIT_R0)
mem_reg = TMP_REG1;
}
#endif /* SLJIT_CONFIG_X86_64 */
}
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = op != SLJIT_MOV && op != SLJIT_MOV_P;
#endif /* SLJIT_CONFIG_X86_64 */
/* Lock prefix. */
FAIL_IF(emit_byte(compiler, GROUP_LOCK));
pref = 0;
if (op == SLJIT_MOV_U16)
pref = EX86_HALF_ARG | EX86_PREF_66;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (op == SLJIT_MOV_U8)
pref = EX86_REX;
#endif /* SLJIT_CONFIG_X86_64 */
FAIL_IF(emit_groupf(compiler, (op == SLJIT_MOV_U8 ? CMPXCHG_rm8_r : CMPXCHG_rm_r) | pref, src_reg, SLJIT_MEM1(mem_reg), 0));
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
if (swap_tmp) {
SLJIT_ASSERT(temp_reg == SLJIT_R0);
FAIL_IF(emit_byte(compiler, XCHG_EAX_r | reg_map[TMP_REG1]));
if (saved_reg != TMP_REG1)
return emit_mov(compiler, saved_reg, 0, SLJIT_MEM1(SLJIT_SP), 0);
return SLJIT_SUCCESS;
}
#endif /* SLJIT_CONFIG_X86_32 */
if (temp_reg != SLJIT_R0) {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
return emit_mov(compiler, SLJIT_R0, 0, TMP_REG2, 0);
#else /* !SLJIT_CONFIG_X86_64 */
EMIT_MOV(compiler, SLJIT_R0, 0, (saved_reg == SLJIT_R0) ? SLJIT_MEM1(SLJIT_SP) : saved_reg, 0);
if (saved_reg == SLJIT_R1)
return emit_mov(compiler, SLJIT_R1, 0, SLJIT_MEM1(SLJIT_SP), 0);
#endif /* SLJIT_CONFIG_X86_64 */
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_s32 sljit_get_local_base(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw offset)
{
CHECK_ERROR();
CHECK(check_sljit_get_local_base(compiler, dst, dstw, offset));
ADJUST_LOCAL_OFFSET(dst, dstw);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
#endif
ADJUST_LOCAL_OFFSET(SLJIT_MEM1(SLJIT_SP), offset);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (NOT_HALFWORD(offset)) {
FAIL_IF(emit_load_imm64(compiler, TMP_REG1, offset));
#if (defined SLJIT_DEBUG && SLJIT_DEBUG)
SLJIT_ASSERT(emit_lea_binary(compiler, dst, dstw, SLJIT_SP, 0, TMP_REG1, 0) != SLJIT_ERR_UNSUPPORTED);
return compiler->error;
#else
return emit_lea_binary(compiler, dst, dstw, SLJIT_SP, 0, TMP_REG1, 0);
#endif
}
#endif
if (offset != 0)
return emit_lea_binary(compiler, dst, dstw, SLJIT_SP, 0, SLJIT_IMM, offset);
return emit_mov(compiler, dst, dstw, SLJIT_SP, 0);
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw, sljit_sw init_value)
{
sljit_u8 *inst;
struct sljit_const *const_;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_s32 reg;
#endif
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
ADJUST_LOCAL_OFFSET(dst, dstw);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
reg = FAST_IS_REG(dst) ? dst : TMP_REG1;
if (emit_load_imm64(compiler, reg, init_value))
return NULL;
#else
if (emit_mov(compiler, dst, dstw, SLJIT_IMM, init_value))
return NULL;
#endif
inst = (sljit_u8*)ensure_buf(compiler, 1);
PTR_FAIL_IF(!inst);
inst[0] = SLJIT_INST_CONST;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (dst & SLJIT_MEM)
if (emit_mov(compiler, dst, dstw, TMP_REG1, 0))
return NULL;
#endif
return const_;
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_mov_addr(struct sljit_compiler *compiler, sljit_s32 dst, sljit_sw dstw)
{
struct sljit_jump *jump;
sljit_u8 *inst;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
sljit_s32 reg;
#endif /* SLJIT_CONFIG_X86_64 */
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_mov_addr(compiler, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
CHECK_EXTRA_REGS(dst, dstw, (void)0);
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_mov_addr(jump, compiler, 0);
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
compiler->mode32 = 0;
reg = FAST_IS_REG(dst) ? dst : TMP_REG1;
PTR_FAIL_IF(emit_load_imm64(compiler, reg, 0));
jump->addr = compiler->size;
if (reg_map[reg] >= 8)
jump->flags |= MOV_ADDR_HI;
#else /* !SLJIT_CONFIG_X86_64 */
PTR_FAIL_IF(emit_mov(compiler, dst, dstw, SLJIT_IMM, 0));
#endif /* SLJIT_CONFIG_X86_64 */
inst = (sljit_u8*)ensure_buf(compiler, 1);
PTR_FAIL_IF(!inst);
inst[0] = SLJIT_INST_MOV_ADDR;
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_mov(compiler, dst, dstw, TMP_REG1, 0));
#endif /* SLJIT_CONFIG_X86_64 */
return jump;
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_jump_addr(sljit_uw addr, sljit_uw new_target, sljit_sw executable_offset)
{
SLJIT_UNUSED_ARG(executable_offset);
SLJIT_UPDATE_WX_FLAGS((void*)addr, (void*)(addr + sizeof(sljit_uw)), 0);
#if (defined SLJIT_CONFIG_X86_32 && SLJIT_CONFIG_X86_32)
sljit_unaligned_store_sw((void*)addr, (sljit_sw)(new_target - (addr + 4) - (sljit_uw)executable_offset));
#else
sljit_unaligned_store_sw((void*)addr, (sljit_sw)new_target);
#endif
SLJIT_UPDATE_WX_FLAGS((void*)addr, (void*)(addr + sizeof(sljit_uw)), 1);
}
SLJIT_API_FUNC_ATTRIBUTE void sljit_set_const(sljit_uw addr, sljit_sw new_constant, sljit_sw executable_offset)
{
SLJIT_UNUSED_ARG(executable_offset);
SLJIT_UPDATE_WX_FLAGS((void*)addr, (void*)(addr + sizeof(sljit_sw)), 0);
sljit_unaligned_store_sw((void*)addr, new_constant);
SLJIT_UPDATE_WX_FLAGS((void*)addr, (void*)(addr + sizeof(sljit_sw)), 1);
}