godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/Shape/MutableCompoundShape.cpp
2025-04-12 18:40:44 +02:00

598 lines
20 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Collision/Shape/MutableCompoundShape.h>
#include <Jolt/Physics/Collision/Shape/CompoundShapeVisitors.h>
#include <Jolt/Core/Profiler.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(MutableCompoundShapeSettings)
{
JPH_ADD_BASE_CLASS(MutableCompoundShapeSettings, CompoundShapeSettings)
}
ShapeSettings::ShapeResult MutableCompoundShapeSettings::Create() const
{
// Build a mutable compound shape
if (mCachedResult.IsEmpty())
Ref<Shape> shape = new MutableCompoundShape(*this, mCachedResult);
return mCachedResult;
}
MutableCompoundShape::MutableCompoundShape(const MutableCompoundShapeSettings &inSettings, ShapeResult &outResult) :
CompoundShape(EShapeSubType::MutableCompound, inSettings, outResult)
{
mSubShapes.reserve(inSettings.mSubShapes.size());
for (const CompoundShapeSettings::SubShapeSettings &shape : inSettings.mSubShapes)
{
// Start constructing the runtime sub shape
SubShape out_shape;
if (!out_shape.FromSettings(shape, outResult))
return;
mSubShapes.push_back(out_shape);
}
AdjustCenterOfMass();
CalculateSubShapeBounds(0, (uint)mSubShapes.size());
// Check if we're not exceeding the amount of sub shape id bits
if (GetSubShapeIDBitsRecursive() > SubShapeID::MaxBits)
{
outResult.SetError("Compound hierarchy is too deep and exceeds the amount of available sub shape ID bits");
return;
}
outResult.Set(this);
}
Ref<MutableCompoundShape> MutableCompoundShape::Clone() const
{
Ref<MutableCompoundShape> clone = new MutableCompoundShape();
clone->SetUserData(GetUserData());
clone->mCenterOfMass = mCenterOfMass;
clone->mLocalBounds = mLocalBounds;
clone->mSubShapes = mSubShapes;
clone->mInnerRadius = mInnerRadius;
clone->mSubShapeBounds = mSubShapeBounds;
return clone;
}
void MutableCompoundShape::AdjustCenterOfMass()
{
// First calculate the delta of the center of mass
float mass = 0.0f;
Vec3 center_of_mass = Vec3::sZero();
for (const CompoundShape::SubShape &sub_shape : mSubShapes)
{
MassProperties child = sub_shape.mShape->GetMassProperties();
mass += child.mMass;
center_of_mass += sub_shape.GetPositionCOM() * child.mMass;
}
if (mass > 0.0f)
center_of_mass /= mass;
// Now adjust all shapes to recenter around center of mass
for (CompoundShape::SubShape &sub_shape : mSubShapes)
sub_shape.SetPositionCOM(sub_shape.GetPositionCOM() - center_of_mass);
// Update bounding boxes
for (Bounds &bounds : mSubShapeBounds)
{
Vec4 xxxx = center_of_mass.SplatX();
Vec4 yyyy = center_of_mass.SplatY();
Vec4 zzzz = center_of_mass.SplatZ();
bounds.mMinX -= xxxx;
bounds.mMinY -= yyyy;
bounds.mMinZ -= zzzz;
bounds.mMaxX -= xxxx;
bounds.mMaxY -= yyyy;
bounds.mMaxZ -= zzzz;
}
mLocalBounds.Translate(-center_of_mass);
// And adjust the center of mass for this shape in the opposite direction
mCenterOfMass += center_of_mass;
}
void MutableCompoundShape::CalculateLocalBounds()
{
uint num_blocks = GetNumBlocks();
if (num_blocks > 0)
{
// Initialize min/max for first block
const Bounds *bounds = mSubShapeBounds.data();
Vec4 min_x = bounds->mMinX;
Vec4 min_y = bounds->mMinY;
Vec4 min_z = bounds->mMinZ;
Vec4 max_x = bounds->mMaxX;
Vec4 max_y = bounds->mMaxY;
Vec4 max_z = bounds->mMaxZ;
// Accumulate other blocks
const Bounds *bounds_end = bounds + num_blocks;
for (++bounds; bounds < bounds_end; ++bounds)
{
min_x = Vec4::sMin(min_x, bounds->mMinX);
min_y = Vec4::sMin(min_y, bounds->mMinY);
min_z = Vec4::sMin(min_z, bounds->mMinZ);
max_x = Vec4::sMax(max_x, bounds->mMaxX);
max_y = Vec4::sMax(max_y, bounds->mMaxY);
max_z = Vec4::sMax(max_z, bounds->mMaxZ);
}
// Calculate resulting bounding box
mLocalBounds.mMin.SetX(min_x.ReduceMin());
mLocalBounds.mMin.SetY(min_y.ReduceMin());
mLocalBounds.mMin.SetZ(min_z.ReduceMin());
mLocalBounds.mMax.SetX(max_x.ReduceMax());
mLocalBounds.mMax.SetY(max_y.ReduceMax());
mLocalBounds.mMax.SetZ(max_z.ReduceMax());
}
else
{
// There are no subshapes, make the bounding box empty
mLocalBounds.mMin = mLocalBounds.mMax = Vec3::sZero();
}
// Cache the inner radius as it can take a while to recursively iterate over all sub shapes
CalculateInnerRadius();
}
void MutableCompoundShape::EnsureSubShapeBoundsCapacity()
{
// Check if we have enough space
uint new_capacity = ((uint)mSubShapes.size() + 3) >> 2;
if (mSubShapeBounds.size() < new_capacity)
mSubShapeBounds.resize(new_capacity);
}
void MutableCompoundShape::CalculateSubShapeBounds(uint inStartIdx, uint inNumber)
{
// Ensure that we have allocated the required space for mSubShapeBounds
EnsureSubShapeBoundsCapacity();
// Loop over blocks of 4 sub shapes
for (uint sub_shape_idx_start = inStartIdx & ~uint(3), sub_shape_idx_end = inStartIdx + inNumber; sub_shape_idx_start < sub_shape_idx_end; sub_shape_idx_start += 4)
{
Mat44 bounds_min;
Mat44 bounds_max;
AABox sub_shape_bounds;
for (uint col = 0; col < 4; ++col)
{
uint sub_shape_idx = sub_shape_idx_start + col;
if (sub_shape_idx < mSubShapes.size()) // else reuse sub_shape_bounds from previous iteration
{
const SubShape &sub_shape = mSubShapes[sub_shape_idx];
// Transform the shape's bounds into our local space
Mat44 transform = Mat44::sRotationTranslation(sub_shape.GetRotation(), sub_shape.GetPositionCOM());
// Get the bounding box
sub_shape_bounds = sub_shape.mShape->GetWorldSpaceBounds(transform, Vec3::sOne());
}
// Put the bounds as columns in a matrix
bounds_min.SetColumn3(col, sub_shape_bounds.mMin);
bounds_max.SetColumn3(col, sub_shape_bounds.mMax);
}
// Transpose to go to structure of arrays format
Mat44 bounds_min_t = bounds_min.Transposed();
Mat44 bounds_max_t = bounds_max.Transposed();
// Store in our bounds array
Bounds &bounds = mSubShapeBounds[sub_shape_idx_start >> 2];
bounds.mMinX = bounds_min_t.GetColumn4(0);
bounds.mMinY = bounds_min_t.GetColumn4(1);
bounds.mMinZ = bounds_min_t.GetColumn4(2);
bounds.mMaxX = bounds_max_t.GetColumn4(0);
bounds.mMaxY = bounds_max_t.GetColumn4(1);
bounds.mMaxZ = bounds_max_t.GetColumn4(2);
}
CalculateLocalBounds();
}
uint MutableCompoundShape::AddShape(Vec3Arg inPosition, QuatArg inRotation, const Shape *inShape, uint32 inUserData, uint inIndex)
{
SubShape sub_shape;
sub_shape.mShape = inShape;
sub_shape.mUserData = inUserData;
sub_shape.SetTransform(inPosition, inRotation, mCenterOfMass);
if (inIndex >= mSubShapes.size())
{
uint shape_idx = uint(mSubShapes.size());
mSubShapes.push_back(sub_shape);
CalculateSubShapeBounds(shape_idx, 1);
return shape_idx;
}
else
{
mSubShapes.insert(mSubShapes.begin() + inIndex, sub_shape);
CalculateSubShapeBounds(inIndex, uint(mSubShapes.size()) - inIndex);
return inIndex;
}
}
void MutableCompoundShape::RemoveShape(uint inIndex)
{
mSubShapes.erase(mSubShapes.begin() + inIndex);
// We always need to recalculate the bounds of the sub shapes as we test blocks
// of 4 sub shapes at a time and removed shapes get their bounds updated
// to repeat the bounds of the previous sub shape
uint num_bounds = (uint)mSubShapes.size() - inIndex;
CalculateSubShapeBounds(inIndex, num_bounds);
}
void MutableCompoundShape::ModifyShape(uint inIndex, Vec3Arg inPosition, QuatArg inRotation)
{
SubShape &sub_shape = mSubShapes[inIndex];
sub_shape.SetTransform(inPosition, inRotation, mCenterOfMass);
CalculateSubShapeBounds(inIndex, 1);
}
void MutableCompoundShape::ModifyShape(uint inIndex, Vec3Arg inPosition, QuatArg inRotation, const Shape *inShape)
{
SubShape &sub_shape = mSubShapes[inIndex];
sub_shape.mShape = inShape;
sub_shape.SetTransform(inPosition, inRotation, mCenterOfMass);
CalculateSubShapeBounds(inIndex, 1);
}
void MutableCompoundShape::ModifyShapes(uint inStartIndex, uint inNumber, const Vec3 *inPositions, const Quat *inRotations, uint inPositionStride, uint inRotationStride)
{
JPH_ASSERT(inStartIndex + inNumber <= mSubShapes.size());
const Vec3 *pos = inPositions;
const Quat *rot = inRotations;
for (SubShape *dest = &mSubShapes[inStartIndex], *dest_end = dest + inNumber; dest < dest_end; ++dest)
{
// Update transform
dest->SetTransform(*pos, *rot, mCenterOfMass);
// Advance pointer in position / rotation buffer
pos = reinterpret_cast<const Vec3 *>(reinterpret_cast<const uint8 *>(pos) + inPositionStride);
rot = reinterpret_cast<const Quat *>(reinterpret_cast<const uint8 *>(rot) + inRotationStride);
}
CalculateSubShapeBounds(inStartIndex, inNumber);
}
template <class Visitor>
inline void MutableCompoundShape::WalkSubShapes(Visitor &ioVisitor) const
{
// Loop over all blocks of 4 bounding boxes
for (uint block = 0, num_blocks = GetNumBlocks(); block < num_blocks; ++block)
{
// Test the bounding boxes
const Bounds &bounds = mSubShapeBounds[block];
typename Visitor::Result result = ioVisitor.TestBlock(bounds.mMinX, bounds.mMinY, bounds.mMinZ, bounds.mMaxX, bounds.mMaxY, bounds.mMaxZ);
// Check if any of the bounding boxes collided
if (ioVisitor.ShouldVisitBlock(result))
{
// Go through the individual boxes
uint sub_shape_start_idx = block << 2;
for (uint col = 0, max_col = min<uint>(4, (uint)mSubShapes.size() - sub_shape_start_idx); col < max_col; ++col) // Don't read beyond the end of the subshapes array
if (ioVisitor.ShouldVisitSubShape(result, col)) // Because the early out fraction can change, we need to retest every shape
{
// Test sub shape
uint sub_shape_idx = sub_shape_start_idx + col;
const SubShape &sub_shape = mSubShapes[sub_shape_idx];
ioVisitor.VisitShape(sub_shape, sub_shape_idx);
// If no better collision is available abort
if (ioVisitor.ShouldAbort())
break;
}
}
}
}
bool MutableCompoundShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const
{
JPH_PROFILE_FUNCTION();
struct Visitor : public CastRayVisitor
{
using CastRayVisitor::CastRayVisitor;
using Result = Vec4;
JPH_INLINE Result TestBlock(Vec4Arg inBoundsMinX, Vec4Arg inBoundsMinY, Vec4Arg inBoundsMinZ, Vec4Arg inBoundsMaxX, Vec4Arg inBoundsMaxY, Vec4Arg inBoundsMaxZ) const
{
return TestBounds(inBoundsMinX, inBoundsMinY, inBoundsMinZ, inBoundsMaxX, inBoundsMaxY, inBoundsMaxZ);
}
JPH_INLINE bool ShouldVisitBlock(Vec4Arg inResult) const
{
UVec4 closer = Vec4::sLess(inResult, Vec4::sReplicate(mHit.mFraction));
return closer.TestAnyTrue();
}
JPH_INLINE bool ShouldVisitSubShape(Vec4Arg inResult, uint inIndexInBlock) const
{
return inResult[inIndexInBlock] < mHit.mFraction;
}
};
Visitor visitor(inRay, this, inSubShapeIDCreator, ioHit);
WalkSubShapes(visitor);
return visitor.mReturnValue;
}
void MutableCompoundShape::CastRay(const RayCast &inRay, const RayCastSettings &inRayCastSettings, const SubShapeIDCreator &inSubShapeIDCreator, CastRayCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
JPH_PROFILE_FUNCTION();
// Test shape filter
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
return;
struct Visitor : public CastRayVisitorCollector
{
using CastRayVisitorCollector::CastRayVisitorCollector;
using Result = Vec4;
JPH_INLINE Result TestBlock(Vec4Arg inBoundsMinX, Vec4Arg inBoundsMinY, Vec4Arg inBoundsMinZ, Vec4Arg inBoundsMaxX, Vec4Arg inBoundsMaxY, Vec4Arg inBoundsMaxZ) const
{
return TestBounds(inBoundsMinX, inBoundsMinY, inBoundsMinZ, inBoundsMaxX, inBoundsMaxY, inBoundsMaxZ);
}
JPH_INLINE bool ShouldVisitBlock(Vec4Arg inResult) const
{
UVec4 closer = Vec4::sLess(inResult, Vec4::sReplicate(mCollector.GetEarlyOutFraction()));
return closer.TestAnyTrue();
}
JPH_INLINE bool ShouldVisitSubShape(Vec4Arg inResult, uint inIndexInBlock) const
{
return inResult[inIndexInBlock] < mCollector.GetEarlyOutFraction();
}
};
Visitor visitor(inRay, inRayCastSettings, this, inSubShapeIDCreator, ioCollector, inShapeFilter);
WalkSubShapes(visitor);
}
void MutableCompoundShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
JPH_PROFILE_FUNCTION();
// Test shape filter
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
return;
struct Visitor : public CollidePointVisitor
{
using CollidePointVisitor::CollidePointVisitor;
using Result = UVec4;
JPH_INLINE Result TestBlock(Vec4Arg inBoundsMinX, Vec4Arg inBoundsMinY, Vec4Arg inBoundsMinZ, Vec4Arg inBoundsMaxX, Vec4Arg inBoundsMaxY, Vec4Arg inBoundsMaxZ) const
{
return TestBounds(inBoundsMinX, inBoundsMinY, inBoundsMinZ, inBoundsMaxX, inBoundsMaxY, inBoundsMaxZ);
}
JPH_INLINE bool ShouldVisitBlock(UVec4Arg inResult) const
{
return inResult.TestAnyTrue();
}
JPH_INLINE bool ShouldVisitSubShape(UVec4Arg inResult, uint inIndexInBlock) const
{
return inResult[inIndexInBlock] != 0;
}
};
Visitor visitor(inPoint, this, inSubShapeIDCreator, ioCollector, inShapeFilter);
WalkSubShapes(visitor);
}
void MutableCompoundShape::sCastShapeVsCompound(const ShapeCast &inShapeCast, const ShapeCastSettings &inShapeCastSettings, const Shape *inShape, Vec3Arg inScale, const ShapeFilter &inShapeFilter, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, CastShapeCollector &ioCollector)
{
JPH_PROFILE_FUNCTION();
struct Visitor : public CastShapeVisitor
{
using CastShapeVisitor::CastShapeVisitor;
using Result = Vec4;
JPH_INLINE Result TestBlock(Vec4Arg inBoundsMinX, Vec4Arg inBoundsMinY, Vec4Arg inBoundsMinZ, Vec4Arg inBoundsMaxX, Vec4Arg inBoundsMaxY, Vec4Arg inBoundsMaxZ) const
{
return TestBounds(inBoundsMinX, inBoundsMinY, inBoundsMinZ, inBoundsMaxX, inBoundsMaxY, inBoundsMaxZ);
}
JPH_INLINE bool ShouldVisitBlock(Vec4Arg inResult) const
{
UVec4 closer = Vec4::sLess(inResult, Vec4::sReplicate(mCollector.GetPositiveEarlyOutFraction()));
return closer.TestAnyTrue();
}
JPH_INLINE bool ShouldVisitSubShape(Vec4Arg inResult, uint inIndexInBlock) const
{
return inResult[inIndexInBlock] < mCollector.GetPositiveEarlyOutFraction();
}
};
JPH_ASSERT(inShape->GetSubType() == EShapeSubType::MutableCompound);
const MutableCompoundShape *shape = static_cast<const MutableCompoundShape *>(inShape);
Visitor visitor(inShapeCast, inShapeCastSettings, shape, inScale, inShapeFilter, inCenterOfMassTransform2, inSubShapeIDCreator1, inSubShapeIDCreator2, ioCollector);
shape->WalkSubShapes(visitor);
}
void MutableCompoundShape::CollectTransformedShapes(const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale, const SubShapeIDCreator &inSubShapeIDCreator, TransformedShapeCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
JPH_PROFILE_FUNCTION();
// Test shape filter
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
return;
struct Visitor : public CollectTransformedShapesVisitor
{
using CollectTransformedShapesVisitor::CollectTransformedShapesVisitor;
using Result = UVec4;
JPH_INLINE Result TestBlock(Vec4Arg inBoundsMinX, Vec4Arg inBoundsMinY, Vec4Arg inBoundsMinZ, Vec4Arg inBoundsMaxX, Vec4Arg inBoundsMaxY, Vec4Arg inBoundsMaxZ) const
{
return TestBounds(inBoundsMinX, inBoundsMinY, inBoundsMinZ, inBoundsMaxX, inBoundsMaxY, inBoundsMaxZ);
}
JPH_INLINE bool ShouldVisitBlock(UVec4Arg inResult) const
{
return inResult.TestAnyTrue();
}
JPH_INLINE bool ShouldVisitSubShape(UVec4Arg inResult, uint inIndexInBlock) const
{
return inResult[inIndexInBlock] != 0;
}
};
Visitor visitor(inBox, this, inPositionCOM, inRotation, inScale, inSubShapeIDCreator, ioCollector, inShapeFilter);
WalkSubShapes(visitor);
}
int MutableCompoundShape::GetIntersectingSubShapes(const AABox &inBox, uint *outSubShapeIndices, int inMaxSubShapeIndices) const
{
JPH_PROFILE_FUNCTION();
GetIntersectingSubShapesVisitorMC<AABox> visitor(inBox, outSubShapeIndices, inMaxSubShapeIndices);
WalkSubShapes(visitor);
return visitor.GetNumResults();
}
int MutableCompoundShape::GetIntersectingSubShapes(const OrientedBox &inBox, uint *outSubShapeIndices, int inMaxSubShapeIndices) const
{
JPH_PROFILE_FUNCTION();
GetIntersectingSubShapesVisitorMC<OrientedBox> visitor(inBox, outSubShapeIndices, inMaxSubShapeIndices);
WalkSubShapes(visitor);
return visitor.GetNumResults();
}
void MutableCompoundShape::sCollideCompoundVsShape(const Shape *inShape1, const Shape *inShape2, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector, const ShapeFilter &inShapeFilter)
{
JPH_PROFILE_FUNCTION();
JPH_ASSERT(inShape1->GetSubType() == EShapeSubType::MutableCompound);
const MutableCompoundShape *shape1 = static_cast<const MutableCompoundShape *>(inShape1);
struct Visitor : public CollideCompoundVsShapeVisitor
{
using CollideCompoundVsShapeVisitor::CollideCompoundVsShapeVisitor;
using Result = UVec4;
JPH_INLINE Result TestBlock(Vec4Arg inBoundsMinX, Vec4Arg inBoundsMinY, Vec4Arg inBoundsMinZ, Vec4Arg inBoundsMaxX, Vec4Arg inBoundsMaxY, Vec4Arg inBoundsMaxZ) const
{
return TestBounds(inBoundsMinX, inBoundsMinY, inBoundsMinZ, inBoundsMaxX, inBoundsMaxY, inBoundsMaxZ);
}
JPH_INLINE bool ShouldVisitBlock(UVec4Arg inResult) const
{
return inResult.TestAnyTrue();
}
JPH_INLINE bool ShouldVisitSubShape(UVec4Arg inResult, uint inIndexInBlock) const
{
return inResult[inIndexInBlock] != 0;
}
};
Visitor visitor(shape1, inShape2, inScale1, inScale2, inCenterOfMassTransform1, inCenterOfMassTransform2, inSubShapeIDCreator1, inSubShapeIDCreator2, inCollideShapeSettings, ioCollector, inShapeFilter);
shape1->WalkSubShapes(visitor);
}
void MutableCompoundShape::sCollideShapeVsCompound(const Shape *inShape1, const Shape *inShape2, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector, const ShapeFilter &inShapeFilter)
{
JPH_PROFILE_FUNCTION();
JPH_ASSERT(inShape2->GetSubType() == EShapeSubType::MutableCompound);
const MutableCompoundShape *shape2 = static_cast<const MutableCompoundShape *>(inShape2);
struct Visitor : public CollideShapeVsCompoundVisitor
{
using CollideShapeVsCompoundVisitor::CollideShapeVsCompoundVisitor;
using Result = UVec4;
JPH_INLINE Result TestBlock(Vec4Arg inBoundsMinX, Vec4Arg inBoundsMinY, Vec4Arg inBoundsMinZ, Vec4Arg inBoundsMaxX, Vec4Arg inBoundsMaxY, Vec4Arg inBoundsMaxZ) const
{
return TestBounds(inBoundsMinX, inBoundsMinY, inBoundsMinZ, inBoundsMaxX, inBoundsMaxY, inBoundsMaxZ);
}
JPH_INLINE bool ShouldVisitBlock(UVec4Arg inResult) const
{
return inResult.TestAnyTrue();
}
JPH_INLINE bool ShouldVisitSubShape(UVec4Arg inResult, uint inIndexInBlock) const
{
return inResult[inIndexInBlock] != 0;
}
};
Visitor visitor(inShape1, shape2, inScale1, inScale2, inCenterOfMassTransform1, inCenterOfMassTransform2, inSubShapeIDCreator1, inSubShapeIDCreator2, inCollideShapeSettings, ioCollector, inShapeFilter);
shape2->WalkSubShapes(visitor);
}
void MutableCompoundShape::SaveBinaryState(StreamOut &inStream) const
{
CompoundShape::SaveBinaryState(inStream);
// Write bounds
uint bounds_size = (((uint)mSubShapes.size() + 3) >> 2) * sizeof(Bounds);
inStream.WriteBytes(mSubShapeBounds.data(), bounds_size);
}
void MutableCompoundShape::RestoreBinaryState(StreamIn &inStream)
{
CompoundShape::RestoreBinaryState(inStream);
// Ensure that we have allocated the required space for mSubShapeBounds
EnsureSubShapeBoundsCapacity();
// Read bounds
uint bounds_size = (((uint)mSubShapes.size() + 3) >> 2) * sizeof(Bounds);
inStream.ReadBytes(mSubShapeBounds.data(), bounds_size);
}
void MutableCompoundShape::sRegister()
{
ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::MutableCompound);
f.mConstruct = []() -> Shape * { return new MutableCompoundShape; };
f.mColor = Color::sDarkOrange;
for (EShapeSubType s : sAllSubShapeTypes)
{
CollisionDispatch::sRegisterCollideShape(EShapeSubType::MutableCompound, s, sCollideCompoundVsShape);
CollisionDispatch::sRegisterCollideShape(s, EShapeSubType::MutableCompound, sCollideShapeVsCompound);
CollisionDispatch::sRegisterCastShape(s, EShapeSubType::MutableCompound, sCastShapeVsCompound);
}
}
JPH_NAMESPACE_END