godot-module-template/engine/modules/navigation_3d/3d/nav_mesh_queries_3d.cpp
2025-04-12 18:40:44 +02:00

1203 lines
48 KiB
C++

/**************************************************************************/
/* nav_mesh_queries_3d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "nav_mesh_queries_3d.h"
#include "../nav_base_3d.h"
#include "../nav_map_3d.h"
#include "nav_region_iteration_3d.h"
#include "core/math/geometry_3d.h"
#include "servers/navigation/navigation_utilities.h"
using namespace Nav3D;
#define THREE_POINTS_CROSS_PRODUCT(m_a, m_b, m_c) (((m_c) - (m_a)).cross((m_b) - (m_a)))
bool NavMeshQueries3D::emit_callback(const Callable &p_callback) {
ERR_FAIL_COND_V(!p_callback.is_valid(), false);
Callable::CallError ce;
Variant result;
p_callback.callp(nullptr, 0, result, ce);
return ce.error == Callable::CallError::CALL_OK;
}
Vector3 NavMeshQueries3D::polygons_get_random_point(const LocalVector<Polygon> &p_polygons, uint32_t p_navigation_layers, bool p_uniformly) {
const LocalVector<Polygon> &region_polygons = p_polygons;
if (region_polygons.is_empty()) {
return Vector3();
}
if (p_uniformly) {
real_t accumulated_area = 0;
RBMap<real_t, uint32_t> region_area_map;
for (uint32_t rp_index = 0; rp_index < region_polygons.size(); rp_index++) {
const Polygon &region_polygon = region_polygons[rp_index];
real_t polyon_area = region_polygon.surface_area;
if (polyon_area == 0.0) {
continue;
}
region_area_map[accumulated_area] = rp_index;
accumulated_area += polyon_area;
}
if (region_area_map.is_empty() || accumulated_area == 0) {
// All polygons have no real surface / no area.
return Vector3();
}
real_t region_area_map_pos = Math::random(real_t(0), accumulated_area);
RBMap<real_t, uint32_t>::Iterator region_E = region_area_map.find_closest(region_area_map_pos);
ERR_FAIL_COND_V(!region_E, Vector3());
uint32_t rrp_polygon_index = region_E->value;
ERR_FAIL_UNSIGNED_INDEX_V(rrp_polygon_index, region_polygons.size(), Vector3());
const Polygon &rr_polygon = region_polygons[rrp_polygon_index];
real_t accumulated_polygon_area = 0;
RBMap<real_t, uint32_t> polygon_area_map;
for (uint32_t rpp_index = 2; rpp_index < rr_polygon.vertices.size(); rpp_index++) {
real_t face_area = Face3(rr_polygon.vertices[0], rr_polygon.vertices[rpp_index - 1], rr_polygon.vertices[rpp_index]).get_area();
if (face_area == 0.0) {
continue;
}
polygon_area_map[accumulated_polygon_area] = rpp_index;
accumulated_polygon_area += face_area;
}
if (polygon_area_map.is_empty() || accumulated_polygon_area == 0) {
// All faces have no real surface / no area.
return Vector3();
}
real_t polygon_area_map_pos = Math::random(real_t(0), accumulated_polygon_area);
RBMap<real_t, uint32_t>::Iterator polygon_E = polygon_area_map.find_closest(polygon_area_map_pos);
ERR_FAIL_COND_V(!polygon_E, Vector3());
uint32_t rrp_face_index = polygon_E->value;
ERR_FAIL_UNSIGNED_INDEX_V(rrp_face_index, rr_polygon.vertices.size(), Vector3());
const Face3 face(rr_polygon.vertices[0], rr_polygon.vertices[rrp_face_index - 1], rr_polygon.vertices[rrp_face_index]);
Vector3 face_random_position = face.get_random_point_inside();
return face_random_position;
} else {
uint32_t rrp_polygon_index = Math::random(int(0), region_polygons.size() - 1);
const Polygon &rr_polygon = region_polygons[rrp_polygon_index];
uint32_t rrp_face_index = Math::random(int(2), rr_polygon.vertices.size() - 1);
const Face3 face(rr_polygon.vertices[0], rr_polygon.vertices[rrp_face_index - 1], rr_polygon.vertices[rrp_face_index]);
Vector3 face_random_position = face.get_random_point_inside();
return face_random_position;
}
}
void NavMeshQueries3D::_query_task_push_back_point_with_metadata(NavMeshPathQueryTask3D &p_query_task, const Vector3 &p_point, const Polygon *p_point_polygon) {
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
p_query_task.path_meta_point_types.push_back(p_point_polygon->owner->get_type());
}
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
p_query_task.path_meta_point_rids.push_back(p_point_polygon->owner->get_self());
}
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
p_query_task.path_meta_point_owners.push_back(p_point_polygon->owner->get_owner_id());
}
p_query_task.path_points.push_back(p_point);
}
void NavMeshQueries3D::map_query_path(NavMap3D *map, const Ref<NavigationPathQueryParameters3D> &p_query_parameters, Ref<NavigationPathQueryResult3D> p_query_result, const Callable &p_callback) {
ERR_FAIL_NULL(map);
ERR_FAIL_COND(p_query_parameters.is_null());
ERR_FAIL_COND(p_query_result.is_null());
using namespace NavigationUtilities;
NavMeshQueries3D::NavMeshPathQueryTask3D query_task;
query_task.start_position = p_query_parameters->get_start_position();
query_task.target_position = p_query_parameters->get_target_position();
query_task.navigation_layers = p_query_parameters->get_navigation_layers();
query_task.callback = p_callback;
const TypedArray<RID> &_excluded_regions = p_query_parameters->get_excluded_regions();
const TypedArray<RID> &_included_regions = p_query_parameters->get_included_regions();
uint32_t _excluded_region_count = _excluded_regions.size();
uint32_t _included_region_count = _included_regions.size();
query_task.exclude_regions = _excluded_region_count > 0;
query_task.include_regions = _included_region_count > 0;
if (query_task.exclude_regions) {
query_task.excluded_regions.resize(_excluded_region_count);
for (uint32_t i = 0; i < _excluded_region_count; i++) {
query_task.excluded_regions[i] = _excluded_regions[i];
}
}
if (query_task.include_regions) {
query_task.included_regions.resize(_included_region_count);
for (uint32_t i = 0; i < _included_region_count; i++) {
query_task.included_regions[i] = _included_regions[i];
}
}
switch (p_query_parameters->get_pathfinding_algorithm()) {
case NavigationPathQueryParameters3D::PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR: {
query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR;
} break;
default: {
WARN_PRINT("No match for used PathfindingAlgorithm - fallback to default");
query_task.pathfinding_algorithm = PathfindingAlgorithm::PATHFINDING_ALGORITHM_ASTAR;
} break;
}
switch (p_query_parameters->get_path_postprocessing()) {
case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: {
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL;
} break;
case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: {
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED;
} break;
case NavigationPathQueryParameters3D::PathPostProcessing::PATH_POSTPROCESSING_NONE: {
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_NONE;
} break;
default: {
WARN_PRINT("No match for used PathPostProcessing - fallback to default");
query_task.path_postprocessing = PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL;
} break;
}
query_task.metadata_flags = (int64_t)p_query_parameters->get_metadata_flags();
query_task.simplify_path = p_query_parameters->get_simplify_path();
query_task.simplify_epsilon = p_query_parameters->get_simplify_epsilon();
query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_STARTED;
map->query_path(query_task);
p_query_result->set_data(
query_task.path_points,
query_task.path_meta_point_types,
query_task.path_meta_point_rids,
query_task.path_meta_point_owners);
if (query_task.callback.is_valid()) {
if (emit_callback(query_task.callback)) {
query_task.status = NavMeshPathQueryTask3D::TaskStatus::CALLBACK_DISPATCHED;
} else {
query_task.status = NavMeshPathQueryTask3D::TaskStatus::CALLBACK_FAILED;
}
}
}
void NavMeshQueries3D::_query_task_find_start_end_positions(NavMeshPathQueryTask3D &p_query_task, const NavMapIteration3D &p_map_iteration) {
real_t begin_d = FLT_MAX;
real_t end_d = FLT_MAX;
const LocalVector<NavRegionIteration3D> &regions = p_map_iteration.region_iterations;
for (const NavRegionIteration3D &region : regions) {
if (!region.get_enabled()) {
continue;
}
if (p_query_task.exclude_regions && p_query_task.excluded_regions.has(region.get_self())) {
continue;
}
if (p_query_task.include_regions && !p_query_task.included_regions.has(region.get_self())) {
continue;
}
// Find the initial poly and the end poly on this map.
for (const Polygon &p : region.get_navmesh_polygons()) {
// Only consider the polygon if it in a region with compatible layers.
if ((p_query_task.navigation_layers & p.owner->get_navigation_layers()) == 0) {
continue;
}
// For each face check the distance between the origin/destination.
for (uint32_t point_id = 2; point_id < p.vertices.size(); point_id++) {
const Face3 face(p.vertices[0], p.vertices[point_id - 1], p.vertices[point_id]);
Vector3 point = face.get_closest_point_to(p_query_task.start_position);
real_t distance_to_point = point.distance_to(p_query_task.start_position);
if (distance_to_point < begin_d) {
begin_d = distance_to_point;
p_query_task.begin_polygon = &p;
p_query_task.begin_position = point;
}
point = face.get_closest_point_to(p_query_task.target_position);
distance_to_point = point.distance_to(p_query_task.target_position);
if (distance_to_point < end_d) {
end_d = distance_to_point;
p_query_task.end_polygon = &p;
p_query_task.end_position = point;
}
}
}
}
}
void NavMeshQueries3D::_query_task_build_path_corridor(NavMeshPathQueryTask3D &p_query_task) {
const Vector3 p_target_position = p_query_task.target_position;
const Polygon *begin_poly = p_query_task.begin_polygon;
const Polygon *end_poly = p_query_task.end_polygon;
Vector3 begin_point = p_query_task.begin_position;
Vector3 end_point = p_query_task.end_position;
// Heap of polygons to travel next.
Heap<NavigationPoly *, NavPolyTravelCostGreaterThan, NavPolyHeapIndexer>
&traversable_polys = p_query_task.path_query_slot->traversable_polys;
traversable_polys.clear();
LocalVector<NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
for (NavigationPoly &polygon : navigation_polys) {
polygon.reset();
}
// Initialize the matching navigation polygon.
NavigationPoly &begin_navigation_poly = navigation_polys[begin_poly->id];
begin_navigation_poly.poly = begin_poly;
begin_navigation_poly.entry = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
begin_navigation_poly.traveled_distance = 0.f;
// This is an implementation of the A* algorithm.
uint32_t least_cost_id = begin_poly->id;
bool found_route = false;
const Polygon *reachable_end = nullptr;
real_t distance_to_reachable_end = FLT_MAX;
bool is_reachable = true;
real_t poly_enter_cost = 0.0;
while (true) {
const NavigationPoly &least_cost_poly = navigation_polys[least_cost_id];
real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost();
// Takes the current least_cost_poly neighbors (iterating over its edges) and compute the traveled_distance.
for (const Edge &edge : least_cost_poly.poly->edges) {
// Iterate over connections in this edge, then compute the new optimized travel distance assigned to this polygon.
for (uint32_t connection_index = 0; connection_index < edge.connections.size(); connection_index++) {
const Edge::Connection &connection = edge.connections[connection_index];
const NavBaseIteration3D *connection_owner = connection.polygon->owner;
const bool owner_is_usable = _query_task_is_connection_owner_usable(p_query_task, connection_owner);
if (!owner_is_usable) {
continue;
}
const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, connection.pathway_start, connection.pathway_end);
const real_t new_traveled_distance = least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost + poly_enter_cost + least_cost_poly.traveled_distance;
// Check if the neighbor polygon has already been processed.
NavigationPoly &neighbor_poly = navigation_polys[connection.polygon->id];
if (new_traveled_distance < neighbor_poly.traveled_distance) {
// Add the polygon to the heap of polygons to traverse next.
neighbor_poly.back_navigation_poly_id = least_cost_id;
neighbor_poly.back_navigation_edge = connection.edge;
neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
neighbor_poly.traveled_distance = new_traveled_distance;
neighbor_poly.distance_to_destination =
new_entry.distance_to(end_point) *
connection_owner->get_travel_cost();
neighbor_poly.entry = new_entry;
if (neighbor_poly.traversable_poly_index != traversable_polys.INVALID_INDEX) {
traversable_polys.shift(neighbor_poly.traversable_poly_index);
} else {
neighbor_poly.poly = connection.polygon;
traversable_polys.push(&neighbor_poly);
}
}
}
}
poly_enter_cost = 0;
// When the heap of traversable polygons is empty at this point it means the end polygon is
// unreachable.
if (traversable_polys.is_empty()) {
// Thus use the further reachable polygon
ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
is_reachable = false;
if (reachable_end == nullptr) {
// The path is not found and there is not a way out.
break;
}
// Set as end point the furthest reachable point.
end_poly = reachable_end;
real_t end_d = FLT_MAX;
for (uint32_t point_id = 2; point_id < end_poly->vertices.size(); point_id++) {
Face3 f(end_poly->vertices[0], end_poly->vertices[point_id - 1], end_poly->vertices[point_id]);
Vector3 spoint = f.get_closest_point_to(p_target_position);
real_t dpoint = spoint.distance_squared_to(p_target_position);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
}
}
// Search all faces of start polygon as well.
bool closest_point_on_start_poly = false;
for (uint32_t point_id = 2; point_id < begin_poly->vertices.size(); point_id++) {
Face3 f(begin_poly->vertices[0], begin_poly->vertices[point_id - 1], begin_poly->vertices[point_id]);
Vector3 spoint = f.get_closest_point_to(p_target_position);
real_t dpoint = spoint.distance_squared_to(p_target_position);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
closest_point_on_start_poly = true;
}
}
if (closest_point_on_start_poly) {
// No point to run PostProcessing when start and end convex polygon is the same.
p_query_task.path_clear();
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
_query_task_push_back_point_with_metadata(p_query_task, end_point, begin_poly);
p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
return;
}
for (NavigationPoly &nav_poly : navigation_polys) {
nav_poly.poly = nullptr;
nav_poly.traveled_distance = FLT_MAX;
}
navigation_polys[begin_poly->id].poly = begin_poly;
navigation_polys[begin_poly->id].traveled_distance = 0;
least_cost_id = begin_poly->id;
reachable_end = nullptr;
} else {
// Pop the polygon with the lowest travel cost from the heap of traversable polygons.
least_cost_id = traversable_polys.pop()->poly->id;
// Store the farthest reachable end polygon in case our goal is not reachable.
if (is_reachable) {
real_t distance = navigation_polys[least_cost_id].entry.distance_squared_to(p_target_position);
if (distance_to_reachable_end > distance) {
distance_to_reachable_end = distance;
reachable_end = navigation_polys[least_cost_id].poly;
}
}
// Check if we reached the end
if (navigation_polys[least_cost_id].poly == end_poly) {
found_route = true;
break;
}
if (navigation_polys[least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self()) {
poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
}
}
}
// We did not find a route but we have both a start polygon and an end polygon at this point.
// Usually this happens because there was not a single external or internal connected edge, e.g. our start polygon is an isolated, single convex polygon.
if (!found_route) {
real_t end_d = FLT_MAX;
// Search all faces of the start polygon for the closest point to our target position.
for (uint32_t point_id = 2; point_id < begin_poly->vertices.size(); point_id++) {
Face3 f(begin_poly->vertices[0], begin_poly->vertices[point_id - 1], begin_poly->vertices[point_id]);
Vector3 spoint = f.get_closest_point_to(p_target_position);
real_t dpoint = spoint.distance_squared_to(p_target_position);
if (dpoint < end_d) {
end_point = spoint;
end_d = dpoint;
}
}
p_query_task.path_clear();
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
_query_task_push_back_point_with_metadata(p_query_task, end_point, begin_poly);
p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
} else {
p_query_task.end_position = end_point;
p_query_task.end_polygon = end_poly;
p_query_task.begin_position = begin_point;
p_query_task.begin_polygon = begin_poly;
p_query_task.least_cost_id = least_cost_id;
}
}
void NavMeshQueries3D::query_task_map_iteration_get_path(NavMeshPathQueryTask3D &p_query_task, const NavMapIteration3D &p_map_iteration) {
p_query_task.path_clear();
_query_task_find_start_end_positions(p_query_task, p_map_iteration);
// Check for trivial cases.
if (!p_query_task.begin_polygon || !p_query_task.end_polygon) {
p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
return;
}
if (p_query_task.begin_polygon == p_query_task.end_polygon) {
p_query_task.path_clear();
_query_task_push_back_point_with_metadata(p_query_task, p_query_task.begin_position, p_query_task.begin_polygon);
_query_task_push_back_point_with_metadata(p_query_task, p_query_task.end_position, p_query_task.end_polygon);
p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
return;
}
_query_task_build_path_corridor(p_query_task);
if (p_query_task.status == NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED || p_query_task.status == NavMeshPathQueryTask3D::TaskStatus::QUERY_FAILED) {
return;
}
// Post-Process path.
switch (p_query_task.path_postprocessing) {
case PathPostProcessing::PATH_POSTPROCESSING_CORRIDORFUNNEL: {
_query_task_post_process_corridorfunnel(p_query_task);
} break;
case PathPostProcessing::PATH_POSTPROCESSING_EDGECENTERED: {
_query_task_post_process_edgecentered(p_query_task);
} break;
case PathPostProcessing::PATH_POSTPROCESSING_NONE: {
_query_task_post_process_nopostprocessing(p_query_task);
} break;
default: {
WARN_PRINT("No match for used PathPostProcessing - fallback to default");
_query_task_post_process_corridorfunnel(p_query_task);
} break;
}
p_query_task.path_reverse();
if (p_query_task.simplify_path) {
_query_task_simplified_path_points(p_query_task);
}
#ifdef DEBUG_ENABLED
// Ensure post conditions as path meta arrays if used MUST match in array size with the path points.
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_types.size());
}
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_rids.size());
}
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
DEV_ASSERT(p_query_task.path_points.size() == p_query_task.path_meta_point_owners.size());
}
#endif // DEBUG_ENABLED
p_query_task.status = NavMeshPathQueryTask3D::TaskStatus::QUERY_FINISHED;
}
void NavMeshQueries3D::_query_task_simplified_path_points(NavMeshPathQueryTask3D &p_query_task) {
if (!p_query_task.simplify_path || p_query_task.path_points.size() <= 2) {
return;
}
const LocalVector<uint32_t> &simplified_path_indices = NavMeshQueries3D::get_simplified_path_indices(p_query_task.path_points, p_query_task.simplify_epsilon);
uint32_t index_count = simplified_path_indices.size();
{
Vector3 *points_ptr = p_query_task.path_points.ptr();
for (uint32_t i = 0; i < index_count; i++) {
points_ptr[i] = points_ptr[simplified_path_indices[i]];
}
p_query_task.path_points.resize(index_count);
}
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_TYPES)) {
int32_t *types_ptr = p_query_task.path_meta_point_types.ptr();
for (uint32_t i = 0; i < index_count; i++) {
types_ptr[i] = types_ptr[simplified_path_indices[i]];
}
p_query_task.path_meta_point_types.resize(index_count);
}
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_RIDS)) {
RID *rids_ptr = p_query_task.path_meta_point_rids.ptr();
for (uint32_t i = 0; i < index_count; i++) {
rids_ptr[i] = rids_ptr[simplified_path_indices[i]];
}
p_query_task.path_meta_point_rids.resize(index_count);
}
if (p_query_task.metadata_flags.has_flag(PathMetadataFlags::PATH_INCLUDE_OWNERS)) {
int64_t *owners_ptr = p_query_task.path_meta_point_owners.ptr();
for (uint32_t i = 0; i < index_count; i++) {
owners_ptr[i] = owners_ptr[simplified_path_indices[i]];
}
p_query_task.path_meta_point_owners.resize(index_count);
}
}
void NavMeshQueries3D::_query_task_post_process_corridorfunnel(NavMeshPathQueryTask3D &p_query_task) {
Vector3 end_point = p_query_task.end_position;
const Polygon *end_poly = p_query_task.end_polygon;
Vector3 begin_point = p_query_task.begin_position;
const Polygon *begin_poly = p_query_task.begin_polygon;
uint32_t least_cost_id = p_query_task.least_cost_id;
LocalVector<NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
Vector3 p_map_up = p_query_task.map_up;
// Set the apex poly/point to the end point
NavigationPoly *apex_poly = &navigation_polys[least_cost_id];
const Vector3 back_edge_closest_point = Geometry3D::get_closest_point_to_segment(end_point, apex_poly->back_navigation_edge_pathway_start, apex_poly->back_navigation_edge_pathway_end);
if (end_point.is_equal_approx(back_edge_closest_point)) {
// The end point is basically on top of the last crossed edge, funneling around the corners would at best do nothing.
// At worst it would add an unwanted path point before the last point due to precision issues so skip to the next polygon.
if (apex_poly->back_navigation_poly_id != -1) {
apex_poly = &navigation_polys[apex_poly->back_navigation_poly_id];
}
}
Vector3 apex_point = end_point;
NavigationPoly *left_poly = apex_poly;
Vector3 left_portal = apex_point;
NavigationPoly *right_poly = apex_poly;
Vector3 right_portal = apex_point;
NavigationPoly *p = apex_poly;
_query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly);
while (p) {
// Set left and right points of the pathway between polygons.
Vector3 left = p->back_navigation_edge_pathway_start;
Vector3 right = p->back_navigation_edge_pathway_end;
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left, right).dot(p_map_up) < 0) {
SWAP(left, right);
}
bool skip = false;
if (THREE_POINTS_CROSS_PRODUCT(apex_point, left_portal, left).dot(p_map_up) >= 0) {
//process
if (left_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, left, right_portal).dot(p_map_up) > 0) {
left_poly = p;
left_portal = left;
} else {
_query_task_clip_path(p_query_task, apex_poly, right_portal, right_poly);
apex_point = right_portal;
p = right_poly;
left_poly = p;
apex_poly = p;
left_portal = apex_point;
right_portal = apex_point;
_query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly);
skip = true;
}
}
if (!skip && THREE_POINTS_CROSS_PRODUCT(apex_point, right_portal, right).dot(p_map_up) <= 0) {
//process
if (right_portal == apex_point || THREE_POINTS_CROSS_PRODUCT(apex_point, right, left_portal).dot(p_map_up) < 0) {
right_poly = p;
right_portal = right;
} else {
_query_task_clip_path(p_query_task, apex_poly, left_portal, left_poly);
apex_point = left_portal;
p = left_poly;
right_poly = p;
apex_poly = p;
right_portal = apex_point;
left_portal = apex_point;
_query_task_push_back_point_with_metadata(p_query_task, apex_point, apex_poly->poly);
}
}
// Go to the previous polygon.
if (p->back_navigation_poly_id != -1) {
p = &navigation_polys[p->back_navigation_poly_id];
} else {
// The end
p = nullptr;
}
}
// If the last point is not the begin point, add it to the list.
if (p_query_task.path_points[p_query_task.path_points.size() - 1] != begin_point) {
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
}
}
void NavMeshQueries3D::_query_task_post_process_edgecentered(NavMeshPathQueryTask3D &p_query_task) {
Vector3 end_point = p_query_task.end_position;
const Polygon *end_poly = p_query_task.end_polygon;
Vector3 begin_point = p_query_task.begin_position;
const Polygon *begin_poly = p_query_task.begin_polygon;
uint32_t least_cost_id = p_query_task.least_cost_id;
LocalVector<NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
_query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly);
// Add mid points
int np_id = least_cost_id;
while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
if (navigation_polys[np_id].back_navigation_edge != -1) {
int prev = navigation_polys[np_id].back_navigation_edge;
int prev_n = (navigation_polys[np_id].back_navigation_edge + 1) % navigation_polys[np_id].poly->vertices.size();
Vector3 point = (navigation_polys[np_id].poly->vertices[prev] + navigation_polys[np_id].poly->vertices[prev_n]) * 0.5;
_query_task_push_back_point_with_metadata(p_query_task, point, navigation_polys[np_id].poly);
} else {
_query_task_push_back_point_with_metadata(p_query_task, navigation_polys[np_id].entry, navigation_polys[np_id].poly);
}
np_id = navigation_polys[np_id].back_navigation_poly_id;
}
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
}
void NavMeshQueries3D::_query_task_post_process_nopostprocessing(NavMeshPathQueryTask3D &p_query_task) {
Vector3 end_point = p_query_task.end_position;
const Polygon *end_poly = p_query_task.end_polygon;
Vector3 begin_point = p_query_task.begin_position;
const Polygon *begin_poly = p_query_task.begin_polygon;
uint32_t least_cost_id = p_query_task.least_cost_id;
LocalVector<NavigationPoly> &navigation_polys = p_query_task.path_query_slot->path_corridor;
_query_task_push_back_point_with_metadata(p_query_task, end_point, end_poly);
// Add mid points
int np_id = least_cost_id;
while (np_id != -1 && navigation_polys[np_id].back_navigation_poly_id != -1) {
_query_task_push_back_point_with_metadata(p_query_task, navigation_polys[np_id].entry, navigation_polys[np_id].poly);
np_id = navigation_polys[np_id].back_navigation_poly_id;
}
_query_task_push_back_point_with_metadata(p_query_task, begin_point, begin_poly);
}
Vector3 NavMeshQueries3D::map_iteration_get_closest_point_to_segment(const NavMapIteration3D &p_map_iteration, const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) {
bool use_collision = p_use_collision;
Vector3 closest_point;
real_t closest_point_distance = FLT_MAX;
const LocalVector<NavRegionIteration3D> &regions = p_map_iteration.region_iterations;
for (const NavRegionIteration3D &region : regions) {
for (const Polygon &polygon : region.get_navmesh_polygons()) {
// For each face check the distance to the segment.
for (uint32_t point_id = 2; point_id < polygon.vertices.size(); point_id += 1) {
const Face3 face(polygon.vertices[0], polygon.vertices[point_id - 1], polygon.vertices[point_id]);
Vector3 intersection_point;
if (face.intersects_segment(p_from, p_to, &intersection_point)) {
const real_t d = p_from.distance_to(intersection_point);
if (!use_collision) {
closest_point = intersection_point;
use_collision = true;
closest_point_distance = d;
} else if (closest_point_distance > d) {
closest_point = intersection_point;
closest_point_distance = d;
}
}
// If segment does not itersect face, check the distance from segment's endpoints.
else if (!use_collision) {
const Vector3 p_from_closest = face.get_closest_point_to(p_from);
const real_t d_p_from = p_from.distance_to(p_from_closest);
if (closest_point_distance > d_p_from) {
closest_point = p_from_closest;
closest_point_distance = d_p_from;
}
const Vector3 p_to_closest = face.get_closest_point_to(p_to);
const real_t d_p_to = p_to.distance_to(p_to_closest);
if (closest_point_distance > d_p_to) {
closest_point = p_to_closest;
closest_point_distance = d_p_to;
}
}
}
// Finally, check for a case when shortest distance is between some point located on a face's edge and some point located on a line segment.
if (!use_collision) {
for (uint32_t point_id = 0; point_id < polygon.vertices.size(); point_id += 1) {
Vector3 a, b;
Geometry3D::get_closest_points_between_segments(
p_from,
p_to,
polygon.vertices[point_id],
polygon.vertices[(point_id + 1) % polygon.vertices.size()],
a,
b);
const real_t d = a.distance_to(b);
if (d < closest_point_distance) {
closest_point_distance = d;
closest_point = b;
}
}
}
}
}
return closest_point;
}
Vector3 NavMeshQueries3D::map_iteration_get_closest_point(const NavMapIteration3D &p_map_iteration, const Vector3 &p_point) {
ClosestPointQueryResult cp = map_iteration_get_closest_point_info(p_map_iteration, p_point);
return cp.point;
}
Vector3 NavMeshQueries3D::map_iteration_get_closest_point_normal(const NavMapIteration3D &p_map_iteration, const Vector3 &p_point) {
ClosestPointQueryResult cp = map_iteration_get_closest_point_info(p_map_iteration, p_point);
return cp.normal;
}
RID NavMeshQueries3D::map_iteration_get_closest_point_owner(const NavMapIteration3D &p_map_iteration, const Vector3 &p_point) {
ClosestPointQueryResult cp = map_iteration_get_closest_point_info(p_map_iteration, p_point);
return cp.owner;
}
ClosestPointQueryResult NavMeshQueries3D::map_iteration_get_closest_point_info(const NavMapIteration3D &p_map_iteration, const Vector3 &p_point) {
ClosestPointQueryResult result;
real_t closest_point_distance_squared = FLT_MAX;
const LocalVector<NavRegionIteration3D> &regions = p_map_iteration.region_iterations;
for (const NavRegionIteration3D &region : regions) {
for (const Polygon &polygon : region.get_navmesh_polygons()) {
Vector3 plane_normal = (polygon.vertices[1] - polygon.vertices[0]).cross(polygon.vertices[2] - polygon.vertices[0]);
Vector3 closest_on_polygon;
real_t closest = FLT_MAX;
bool inside = true;
Vector3 previous = polygon.vertices[polygon.vertices.size() - 1];
for (uint32_t point_id = 0; point_id < polygon.vertices.size(); ++point_id) {
Vector3 edge = polygon.vertices[point_id] - previous;
Vector3 to_point = p_point - previous;
Vector3 edge_to_point_pormal = edge.cross(to_point);
bool clockwise = edge_to_point_pormal.dot(plane_normal) > 0;
// If we are not clockwise, the point will never be inside the polygon and so the closest point will be on an edge.
if (!clockwise) {
inside = false;
real_t point_projected_on_edge = edge.dot(to_point);
real_t edge_square = edge.length_squared();
if (point_projected_on_edge > edge_square) {
real_t distance = polygon.vertices[point_id].distance_squared_to(p_point);
if (distance < closest) {
closest_on_polygon = polygon.vertices[point_id];
closest = distance;
}
} else if (point_projected_on_edge < 0.f) {
real_t distance = previous.distance_squared_to(p_point);
if (distance < closest) {
closest_on_polygon = previous;
closest = distance;
}
} else {
// If we project on this edge, this will be the closest point.
real_t percent = point_projected_on_edge / edge_square;
closest_on_polygon = previous + percent * edge;
break;
}
}
previous = polygon.vertices[point_id];
}
if (inside) {
Vector3 plane_normalized = plane_normal.normalized();
real_t distance = plane_normalized.dot(p_point - polygon.vertices[0]);
real_t distance_squared = distance * distance;
if (distance_squared < closest_point_distance_squared) {
closest_point_distance_squared = distance_squared;
result.point = p_point - plane_normalized * distance;
result.normal = plane_normal;
result.owner = polygon.owner->get_self();
if (Math::is_zero_approx(distance)) {
break;
}
}
} else {
real_t distance = closest_on_polygon.distance_squared_to(p_point);
if (distance < closest_point_distance_squared) {
closest_point_distance_squared = distance;
result.point = closest_on_polygon;
result.normal = plane_normal;
result.owner = polygon.owner->get_self();
}
}
}
}
return result;
}
Vector3 NavMeshQueries3D::map_iteration_get_random_point(const NavMapIteration3D &p_map_iteration, uint32_t p_navigation_layers, bool p_uniformly) {
if (p_map_iteration.region_iterations.is_empty()) {
return Vector3();
}
LocalVector<uint32_t> accessible_regions;
accessible_regions.reserve(p_map_iteration.region_iterations.size());
for (uint32_t i = 0; i < p_map_iteration.region_iterations.size(); i++) {
const NavRegionIteration3D &region = p_map_iteration.region_iterations[i];
if (!region.enabled || (p_navigation_layers & region.navigation_layers) == 0) {
continue;
}
accessible_regions.push_back(i);
}
if (accessible_regions.is_empty()) {
// All existing region polygons are disabled.
return Vector3();
}
if (p_uniformly) {
real_t accumulated_region_surface_area = 0;
RBMap<real_t, uint32_t> accessible_regions_area_map;
for (uint32_t accessible_region_index = 0; accessible_region_index < accessible_regions.size(); accessible_region_index++) {
const NavRegionIteration3D &region = p_map_iteration.region_iterations[accessible_regions[accessible_region_index]];
real_t region_surface_area = region.surface_area;
if (region_surface_area == 0.0f) {
continue;
}
accessible_regions_area_map[accumulated_region_surface_area] = accessible_region_index;
accumulated_region_surface_area += region_surface_area;
}
if (accessible_regions_area_map.is_empty() || accumulated_region_surface_area == 0) {
// All faces have no real surface / no area.
return Vector3();
}
real_t random_accessible_regions_area_map = Math::random(real_t(0), accumulated_region_surface_area);
RBMap<real_t, uint32_t>::Iterator E = accessible_regions_area_map.find_closest(random_accessible_regions_area_map);
ERR_FAIL_COND_V(!E, Vector3());
uint32_t random_region_index = E->value;
ERR_FAIL_UNSIGNED_INDEX_V(random_region_index, accessible_regions.size(), Vector3());
const NavRegionIteration3D &random_region = p_map_iteration.region_iterations[accessible_regions[random_region_index]];
return NavMeshQueries3D::polygons_get_random_point(random_region.navmesh_polygons, p_navigation_layers, p_uniformly);
} else {
uint32_t random_region_index = Math::random(int(0), accessible_regions.size() - 1);
const NavRegionIteration3D &random_region = p_map_iteration.region_iterations[accessible_regions[random_region_index]];
return NavMeshQueries3D::polygons_get_random_point(random_region.navmesh_polygons, p_navigation_layers, p_uniformly);
}
}
Vector3 NavMeshQueries3D::polygons_get_closest_point_to_segment(const LocalVector<Polygon> &p_polygons, const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) {
bool use_collision = p_use_collision;
Vector3 closest_point;
real_t closest_point_distance = FLT_MAX;
for (const Polygon &polygon : p_polygons) {
// For each face check the distance to the segment.
for (uint32_t point_id = 2; point_id < polygon.vertices.size(); point_id += 1) {
const Face3 face(polygon.vertices[0], polygon.vertices[point_id - 1], polygon.vertices[point_id]);
Vector3 intersection_point;
if (face.intersects_segment(p_from, p_to, &intersection_point)) {
const real_t d = p_from.distance_to(intersection_point);
if (!use_collision) {
closest_point = intersection_point;
use_collision = true;
closest_point_distance = d;
} else if (closest_point_distance > d) {
closest_point = intersection_point;
closest_point_distance = d;
}
}
// If segment does not itersect face, check the distance from segment's endpoints.
else if (!use_collision) {
const Vector3 p_from_closest = face.get_closest_point_to(p_from);
const real_t d_p_from = p_from.distance_to(p_from_closest);
if (closest_point_distance > d_p_from) {
closest_point = p_from_closest;
closest_point_distance = d_p_from;
}
const Vector3 p_to_closest = face.get_closest_point_to(p_to);
const real_t d_p_to = p_to.distance_to(p_to_closest);
if (closest_point_distance > d_p_to) {
closest_point = p_to_closest;
closest_point_distance = d_p_to;
}
}
}
// Finally, check for a case when shortest distance is between some point located on a face's edge and some point located on a line segment.
if (!use_collision) {
for (uint32_t point_id = 0; point_id < polygon.vertices.size(); point_id += 1) {
Vector3 a, b;
Geometry3D::get_closest_points_between_segments(
p_from,
p_to,
polygon.vertices[point_id],
polygon.vertices[(point_id + 1) % polygon.vertices.size()],
a,
b);
const real_t d = a.distance_to(b);
if (d < closest_point_distance) {
closest_point_distance = d;
closest_point = b;
}
}
}
}
return closest_point;
}
Vector3 NavMeshQueries3D::polygons_get_closest_point(const LocalVector<Polygon> &p_polygons, const Vector3 &p_point) {
ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
return cp.point;
}
Vector3 NavMeshQueries3D::polygons_get_closest_point_normal(const LocalVector<Polygon> &p_polygons, const Vector3 &p_point) {
ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
return cp.normal;
}
ClosestPointQueryResult NavMeshQueries3D::polygons_get_closest_point_info(const LocalVector<Polygon> &p_polygons, const Vector3 &p_point) {
ClosestPointQueryResult result;
real_t closest_point_distance_squared = FLT_MAX;
for (const Polygon &polygon : p_polygons) {
Vector3 plane_normal = (polygon.vertices[1] - polygon.vertices[0]).cross(polygon.vertices[2] - polygon.vertices[0]);
Vector3 closest_on_polygon;
real_t closest = FLT_MAX;
bool inside = true;
Vector3 previous = polygon.vertices[polygon.vertices.size() - 1];
for (uint32_t point_id = 0; point_id < polygon.vertices.size(); ++point_id) {
Vector3 edge = polygon.vertices[point_id] - previous;
Vector3 to_point = p_point - previous;
Vector3 edge_to_point_pormal = edge.cross(to_point);
bool clockwise = edge_to_point_pormal.dot(plane_normal) > 0;
// If we are not clockwise, the point will never be inside the polygon and so the closest point will be on an edge.
if (!clockwise) {
inside = false;
real_t point_projected_on_edge = edge.dot(to_point);
real_t edge_square = edge.length_squared();
if (point_projected_on_edge > edge_square) {
real_t distance = polygon.vertices[point_id].distance_squared_to(p_point);
if (distance < closest) {
closest_on_polygon = polygon.vertices[point_id];
closest = distance;
}
} else if (point_projected_on_edge < 0.f) {
real_t distance = previous.distance_squared_to(p_point);
if (distance < closest) {
closest_on_polygon = previous;
closest = distance;
}
} else {
// If we project on this edge, this will be the closest point.
real_t percent = point_projected_on_edge / edge_square;
closest_on_polygon = previous + percent * edge;
break;
}
}
previous = polygon.vertices[point_id];
}
if (inside) {
Vector3 plane_normalized = plane_normal.normalized();
real_t distance = plane_normalized.dot(p_point - polygon.vertices[0]);
real_t distance_squared = distance * distance;
if (distance_squared < closest_point_distance_squared) {
closest_point_distance_squared = distance_squared;
result.point = p_point - plane_normalized * distance;
result.normal = plane_normal;
result.owner = polygon.owner->get_self();
if (Math::is_zero_approx(distance)) {
break;
}
}
} else {
real_t distance = closest_on_polygon.distance_squared_to(p_point);
if (distance < closest_point_distance_squared) {
closest_point_distance_squared = distance;
result.point = closest_on_polygon;
result.normal = plane_normal;
result.owner = polygon.owner->get_self();
}
}
}
return result;
}
RID NavMeshQueries3D::polygons_get_closest_point_owner(const LocalVector<Polygon> &p_polygons, const Vector3 &p_point) {
ClosestPointQueryResult cp = polygons_get_closest_point_info(p_polygons, p_point);
return cp.owner;
}
void NavMeshQueries3D::_query_task_clip_path(NavMeshPathQueryTask3D &p_query_task, const NavigationPoly *from_poly, const Vector3 &p_to_point, const NavigationPoly *p_to_poly) {
Vector3 from = p_query_task.path_points[p_query_task.path_points.size() - 1];
const LocalVector<NavigationPoly> &p_navigation_polys = p_query_task.path_query_slot->path_corridor;
const Vector3 p_map_up = p_query_task.map_up;
if (from.is_equal_approx(p_to_point)) {
return;
}
Plane cut_plane;
cut_plane.normal = (from - p_to_point).cross(p_map_up);
if (cut_plane.normal == Vector3()) {
return;
}
cut_plane.normal.normalize();
cut_plane.d = cut_plane.normal.dot(from);
while (from_poly != p_to_poly) {
Vector3 pathway_start = from_poly->back_navigation_edge_pathway_start;
Vector3 pathway_end = from_poly->back_navigation_edge_pathway_end;
ERR_FAIL_COND(from_poly->back_navigation_poly_id == -1);
from_poly = &p_navigation_polys[from_poly->back_navigation_poly_id];
if (!pathway_start.is_equal_approx(pathway_end)) {
Vector3 inters;
if (cut_plane.intersects_segment(pathway_start, pathway_end, &inters)) {
if (!inters.is_equal_approx(p_to_point) && !inters.is_equal_approx(p_query_task.path_points[p_query_task.path_points.size() - 1])) {
_query_task_push_back_point_with_metadata(p_query_task, inters, from_poly->poly);
}
}
}
}
}
bool NavMeshQueries3D::_query_task_is_connection_owner_usable(const NavMeshPathQueryTask3D &p_query_task, const NavBaseIteration3D *p_owner) {
bool owner_usable = true;
if ((p_query_task.navigation_layers & p_owner->get_navigation_layers()) == 0) {
// Not usable. No matching bit between task filter bitmask and owner bitmask.
owner_usable = false;
return owner_usable;
}
if (p_query_task.exclude_regions || p_query_task.include_regions) {
switch (p_owner->get_type()) {
case NavigationUtilities::PathSegmentType::PATH_SEGMENT_TYPE_REGION: {
if (p_query_task.exclude_regions && p_query_task.excluded_regions.has(p_owner->get_self())) {
// Not usable. Exclude region filter is active and this region is excluded.
owner_usable = false;
} else if (p_query_task.include_regions && !p_query_task.included_regions.has(p_owner->get_self())) {
// Not usable. Include region filter is active and this region is not included.
owner_usable = false;
}
} break;
case NavigationUtilities::PathSegmentType::PATH_SEGMENT_TYPE_LINK: {
const LocalVector<Polygon> &link_polygons = p_owner->get_navmesh_polygons();
if (link_polygons.size() != 2) {
// Not usable. Whatever this is, it is not a valid connected link.
owner_usable = false;
} else {
const RID link_start_region = link_polygons[0].owner->get_self();
const RID link_end_region = link_polygons[1].owner->get_self();
if (p_query_task.exclude_regions && (p_query_task.excluded_regions.has(link_start_region) || p_query_task.excluded_regions.has(link_end_region))) {
// Not usable. Exclude region filter is active and at least one region of the link is excluded.
owner_usable = false;
}
if (p_query_task.include_regions && (!p_query_task.included_regions.has(link_start_region) || !p_query_task.excluded_regions.has(link_end_region))) {
// Not usable. Include region filter is active and not both regions of the links are included.
owner_usable = false;
}
}
} break;
}
}
return owner_usable;
}
LocalVector<uint32_t> NavMeshQueries3D::get_simplified_path_indices(const LocalVector<Vector3> &p_path, real_t p_epsilon) {
p_epsilon = MAX(0.0, p_epsilon);
real_t squared_epsilon = p_epsilon * p_epsilon;
LocalVector<uint32_t> simplified_path_indices;
simplified_path_indices.reserve(p_path.size());
simplified_path_indices.push_back(0);
simplify_path_segment(0, p_path.size() - 1, p_path, squared_epsilon, simplified_path_indices);
simplified_path_indices.push_back(p_path.size() - 1);
return simplified_path_indices;
}
void NavMeshQueries3D::simplify_path_segment(int p_start_inx, int p_end_inx, const LocalVector<Vector3> &p_points, real_t p_epsilon, LocalVector<uint32_t> &r_simplified_path_indices) {
const Vector3 path_segment_a = p_points[p_start_inx];
const Vector3 path_segment_b = p_points[p_end_inx];
real_t point_max_distance = 0.0;
int point_max_index = 0;
for (int i = p_start_inx; i < p_end_inx; i++) {
const Vector3 &checked_point = p_points[i];
const Vector3 closest_point = Geometry3D::get_closest_point_to_segment(checked_point, path_segment_a, path_segment_b);
real_t distance_squared = closest_point.distance_squared_to(checked_point);
if (distance_squared > point_max_distance) {
point_max_index = i;
point_max_distance = distance_squared;
}
}
if (point_max_distance > p_epsilon) {
simplify_path_segment(p_start_inx, point_max_index, p_points, p_epsilon, r_simplified_path_indices);
r_simplified_path_indices.push_back(point_max_index);
simplify_path_segment(point_max_index, p_end_inx, p_points, p_epsilon, r_simplified_path_indices);
}
}