240 lines
8.1 KiB
C++
240 lines
8.1 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Physics/Body/Body.h>
|
|
#include <Jolt/Physics/StateRecorder.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
/// Constrains movement along 3 axis
|
|
///
|
|
/// @see "Constraints Derivation for Rigid Body Simulation in 3D" - Daniel Chappuis, section 2.2.1
|
|
///
|
|
/// Constraint equation (eq 45):
|
|
///
|
|
/// \f[C = p_2 - p_1\f]
|
|
///
|
|
/// Jacobian (transposed) (eq 47):
|
|
///
|
|
/// \f[J^T = \begin{bmatrix}-E & r1x & E & -r2x^T\end{bmatrix}
|
|
/// = \begin{bmatrix}-E^T \\ r1x^T \\ E^T \\ -r2x^T\end{bmatrix}
|
|
/// = \begin{bmatrix}-E \\ -r1x \\ E \\ r2x\end{bmatrix}\f]
|
|
///
|
|
/// Used terms (here and below, everything in world space):\n
|
|
/// p1, p2 = constraint points.\n
|
|
/// r1 = p1 - x1.\n
|
|
/// r2 = p2 - x2.\n
|
|
/// r1x = 3x3 matrix for which r1x v = r1 x v (cross product).\n
|
|
/// x1, x2 = center of mass for the bodies.\n
|
|
/// v = [v1, w1, v2, w2].\n
|
|
/// v1, v2 = linear velocity of body 1 and 2.\n
|
|
/// w1, w2 = angular velocity of body 1 and 2.\n
|
|
/// M = mass matrix, a diagonal matrix of the mass and inertia with diagonal [m1, I1, m2, I2].\n
|
|
/// \f$K^{-1} = \left( J M^{-1} J^T \right)^{-1}\f$ = effective mass.\n
|
|
/// b = velocity bias.\n
|
|
/// \f$\beta\f$ = baumgarte constant.\n
|
|
/// E = identity matrix.
|
|
class PointConstraintPart
|
|
{
|
|
JPH_INLINE bool ApplyVelocityStep(Body &ioBody1, Body &ioBody2, Vec3Arg inLambda) const
|
|
{
|
|
// Apply impulse if delta is not zero
|
|
if (inLambda != Vec3::sZero())
|
|
{
|
|
// Calculate velocity change due to constraint
|
|
//
|
|
// Impulse:
|
|
// P = J^T lambda
|
|
//
|
|
// Euler velocity integration:
|
|
// v' = v + M^-1 P
|
|
if (ioBody1.IsDynamic())
|
|
{
|
|
MotionProperties *mp1 = ioBody1.GetMotionProperties();
|
|
mp1->SubLinearVelocityStep(mp1->GetInverseMass() * inLambda);
|
|
mp1->SubAngularVelocityStep(mInvI1_R1X * inLambda);
|
|
}
|
|
if (ioBody2.IsDynamic())
|
|
{
|
|
MotionProperties *mp2 = ioBody2.GetMotionProperties();
|
|
mp2->AddLinearVelocityStep(mp2->GetInverseMass() * inLambda);
|
|
mp2->AddAngularVelocityStep(mInvI2_R2X * inLambda);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
public:
|
|
/// Calculate properties used during the functions below
|
|
/// @param inBody1 The first body that this constraint is attached to
|
|
/// @param inBody2 The second body that this constraint is attached to
|
|
/// @param inRotation1 The 3x3 rotation matrix for body 1 (translation part is ignored)
|
|
/// @param inRotation2 The 3x3 rotation matrix for body 2 (translation part is ignored)
|
|
/// @param inR1 Local space vector from center of mass to constraint point for body 1
|
|
/// @param inR2 Local space vector from center of mass to constraint point for body 2
|
|
inline void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inR1, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inR2)
|
|
{
|
|
// Positions where the point constraint acts on (middle point between center of masses) in world space
|
|
mR1 = inRotation1.Multiply3x3(inR1);
|
|
mR2 = inRotation2.Multiply3x3(inR2);
|
|
|
|
// Calculate effective mass: K^-1 = (J M^-1 J^T)^-1
|
|
// Using: I^-1 = R * Ibody^-1 * R^T
|
|
float summed_inv_mass;
|
|
Mat44 inv_effective_mass;
|
|
if (inBody1.IsDynamic())
|
|
{
|
|
const MotionProperties *mp1 = inBody1.GetMotionProperties();
|
|
Mat44 inv_i1 = mp1->GetInverseInertiaForRotation(inRotation1);
|
|
summed_inv_mass = mp1->GetInverseMass();
|
|
|
|
Mat44 r1x = Mat44::sCrossProduct(mR1);
|
|
mInvI1_R1X = inv_i1.Multiply3x3(r1x);
|
|
inv_effective_mass = r1x.Multiply3x3(inv_i1).Multiply3x3RightTransposed(r1x);
|
|
}
|
|
else
|
|
{
|
|
JPH_IF_DEBUG(mInvI1_R1X = Mat44::sNaN();)
|
|
|
|
summed_inv_mass = 0.0f;
|
|
inv_effective_mass = Mat44::sZero();
|
|
}
|
|
|
|
if (inBody2.IsDynamic())
|
|
{
|
|
const MotionProperties *mp2 = inBody2.GetMotionProperties();
|
|
Mat44 inv_i2 = mp2->GetInverseInertiaForRotation(inRotation2);
|
|
summed_inv_mass += mp2->GetInverseMass();
|
|
|
|
Mat44 r2x = Mat44::sCrossProduct(mR2);
|
|
mInvI2_R2X = inv_i2.Multiply3x3(r2x);
|
|
inv_effective_mass += r2x.Multiply3x3(inv_i2).Multiply3x3RightTransposed(r2x);
|
|
}
|
|
else
|
|
{
|
|
JPH_IF_DEBUG(mInvI2_R2X = Mat44::sNaN();)
|
|
}
|
|
|
|
inv_effective_mass += Mat44::sScale(summed_inv_mass);
|
|
if (!mEffectiveMass.SetInversed3x3(inv_effective_mass))
|
|
Deactivate();
|
|
}
|
|
|
|
/// Deactivate this constraint
|
|
inline void Deactivate()
|
|
{
|
|
mEffectiveMass = Mat44::sZero();
|
|
mTotalLambda = Vec3::sZero();
|
|
}
|
|
|
|
/// Check if constraint is active
|
|
inline bool IsActive() const
|
|
{
|
|
return mEffectiveMass(3, 3) != 0.0f;
|
|
}
|
|
|
|
/// Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses
|
|
/// @param ioBody1 The first body that this constraint is attached to
|
|
/// @param ioBody2 The second body that this constraint is attached to
|
|
/// @param inWarmStartImpulseRatio Ratio of new step to old time step (dt_new / dt_old) for scaling the lagrange multiplier of the previous frame
|
|
inline void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
|
|
{
|
|
mTotalLambda *= inWarmStartImpulseRatio;
|
|
ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
|
|
}
|
|
|
|
/// Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equation.
|
|
/// @param ioBody1 The first body that this constraint is attached to
|
|
/// @param ioBody2 The second body that this constraint is attached to
|
|
inline bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2)
|
|
{
|
|
// Calculate lagrange multiplier:
|
|
//
|
|
// lambda = -K^-1 (J v + b)
|
|
Vec3 lambda = mEffectiveMass * (ioBody1.GetLinearVelocity() - mR1.Cross(ioBody1.GetAngularVelocity()) - ioBody2.GetLinearVelocity() + mR2.Cross(ioBody2.GetAngularVelocity()));
|
|
mTotalLambda += lambda; // Store accumulated lambda
|
|
return ApplyVelocityStep(ioBody1, ioBody2, lambda);
|
|
}
|
|
|
|
/// Iteratively update the position constraint. Makes sure C(...) = 0.
|
|
/// @param ioBody1 The first body that this constraint is attached to
|
|
/// @param ioBody2 The second body that this constraint is attached to
|
|
/// @param inBaumgarte Baumgarte constant (fraction of the error to correct)
|
|
inline bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inBaumgarte) const
|
|
{
|
|
Vec3 separation = (Vec3(ioBody2.GetCenterOfMassPosition() - ioBody1.GetCenterOfMassPosition()) + mR2 - mR1);
|
|
if (separation != Vec3::sZero())
|
|
{
|
|
// Calculate lagrange multiplier (lambda) for Baumgarte stabilization:
|
|
//
|
|
// lambda = -K^-1 * beta / dt * C
|
|
//
|
|
// We should divide by inDeltaTime, but we should multiply by inDeltaTime in the Euler step below so they're cancelled out
|
|
Vec3 lambda = mEffectiveMass * -inBaumgarte * separation;
|
|
|
|
// Directly integrate velocity change for one time step
|
|
//
|
|
// Euler velocity integration:
|
|
// dv = M^-1 P
|
|
//
|
|
// Impulse:
|
|
// P = J^T lambda
|
|
//
|
|
// Euler position integration:
|
|
// x' = x + dv * dt
|
|
//
|
|
// Note we don't accumulate velocities for the stabilization. This is using the approach described in 'Modeling and
|
|
// Solving Constraints' by Erin Catto presented at GDC 2007. On slide 78 it is suggested to split up the Baumgarte
|
|
// stabilization for positional drift so that it does not actually add to the momentum. We combine an Euler velocity
|
|
// integrate + a position integrate and then discard the velocity change.
|
|
if (ioBody1.IsDynamic())
|
|
{
|
|
ioBody1.SubPositionStep(ioBody1.GetMotionProperties()->GetInverseMass() * lambda);
|
|
ioBody1.SubRotationStep(mInvI1_R1X * lambda);
|
|
}
|
|
if (ioBody2.IsDynamic())
|
|
{
|
|
ioBody2.AddPositionStep(ioBody2.GetMotionProperties()->GetInverseMass() * lambda);
|
|
ioBody2.AddRotationStep(mInvI2_R2X * lambda);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Return lagrange multiplier
|
|
Vec3 GetTotalLambda() const
|
|
{
|
|
return mTotalLambda;
|
|
}
|
|
|
|
/// Save state of this constraint part
|
|
void SaveState(StateRecorder &inStream) const
|
|
{
|
|
inStream.Write(mTotalLambda);
|
|
}
|
|
|
|
/// Restore state of this constraint part
|
|
void RestoreState(StateRecorder &inStream)
|
|
{
|
|
inStream.Read(mTotalLambda);
|
|
}
|
|
|
|
private:
|
|
Vec3 mR1;
|
|
Vec3 mR2;
|
|
Mat44 mInvI1_R1X;
|
|
Mat44 mInvI2_R2X;
|
|
Mat44 mEffectiveMass;
|
|
Vec3 mTotalLambda { Vec3::sZero() };
|
|
};
|
|
|
|
JPH_NAMESPACE_END
|