godot-module-template/engine/modules/navigation/nav_map.cpp

883 lines
29 KiB
C++

/**************************************************************************/
/* nav_map.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "nav_map.h"
#include "3d/nav_map_builder_3d.h"
#include "3d/nav_mesh_queries_3d.h"
#include "3d/nav_region_iteration_3d.h"
#include "nav_agent.h"
#include "nav_link.h"
#include "nav_obstacle.h"
#include "nav_region.h"
#include "core/config/project_settings.h"
#include "core/object/worker_thread_pool.h"
#include <Obstacle2d.h>
#ifdef DEBUG_ENABLED
#define NAVMAP_ITERATION_ZERO_ERROR_MSG() \
ERR_PRINT_ONCE("NavigationServer navigation map query failed because it was made before first map synchronization.\n\
NavigationServer 'map_changed' signal can be used to receive update notifications.\n\
NavigationServer 'map_get_iteration_id()' can be used to check if a map has finished its newest iteration.");
#else
#define NAVMAP_ITERATION_ZERO_ERROR_MSG()
#endif // DEBUG_ENABLED
#define GET_MAP_ITERATION() \
iteration_slot_rwlock.read_lock(); \
NavMapIteration &map_iteration = iteration_slots[iteration_slot_index]; \
NavMapIterationRead iteration_read_lock(map_iteration); \
iteration_slot_rwlock.read_unlock();
#define GET_MAP_ITERATION_CONST() \
iteration_slot_rwlock.read_lock(); \
const NavMapIteration &map_iteration = iteration_slots[iteration_slot_index]; \
NavMapIterationRead iteration_read_lock(map_iteration); \
iteration_slot_rwlock.read_unlock();
void NavMap::set_up(Vector3 p_up) {
if (up == p_up) {
return;
}
up = p_up;
map_settings_dirty = true;
}
void NavMap::set_cell_size(real_t p_cell_size) {
if (cell_size == p_cell_size) {
return;
}
cell_size = MAX(p_cell_size, NavigationDefaults3D::navmesh_cell_size_min);
_update_merge_rasterizer_cell_dimensions();
map_settings_dirty = true;
}
void NavMap::set_cell_height(real_t p_cell_height) {
if (cell_height == p_cell_height) {
return;
}
cell_height = MAX(p_cell_height, NavigationDefaults3D::navmesh_cell_size_min);
_update_merge_rasterizer_cell_dimensions();
map_settings_dirty = true;
}
void NavMap::set_merge_rasterizer_cell_scale(float p_value) {
if (merge_rasterizer_cell_scale == p_value) {
return;
}
merge_rasterizer_cell_scale = MAX(p_value, NavigationDefaults3D::navmesh_cell_size_min);
_update_merge_rasterizer_cell_dimensions();
map_settings_dirty = true;
}
void NavMap::set_use_edge_connections(bool p_enabled) {
if (use_edge_connections == p_enabled) {
return;
}
use_edge_connections = p_enabled;
iteration_dirty = true;
}
void NavMap::set_edge_connection_margin(real_t p_edge_connection_margin) {
if (edge_connection_margin == p_edge_connection_margin) {
return;
}
edge_connection_margin = p_edge_connection_margin;
iteration_dirty = true;
}
void NavMap::set_link_connection_radius(real_t p_link_connection_radius) {
if (link_connection_radius == p_link_connection_radius) {
return;
}
link_connection_radius = p_link_connection_radius;
iteration_dirty = true;
}
const Vector3 &NavMap::get_merge_rasterizer_cell_size() const {
return merge_rasterizer_cell_size;
}
gd::PointKey NavMap::get_point_key(const Vector3 &p_pos) const {
const int x = static_cast<int>(Math::floor(p_pos.x / merge_rasterizer_cell_size.x));
const int y = static_cast<int>(Math::floor(p_pos.y / merge_rasterizer_cell_size.y));
const int z = static_cast<int>(Math::floor(p_pos.z / merge_rasterizer_cell_size.z));
gd::PointKey p;
p.key = 0;
p.x = x;
p.y = y;
p.z = z;
return p;
}
void NavMap::query_path(NavMeshQueries3D::NavMeshPathQueryTask3D &p_query_task) {
if (iteration_id == 0) {
return;
}
GET_MAP_ITERATION();
map_iteration.path_query_slots_semaphore.wait();
map_iteration.path_query_slots_mutex.lock();
for (NavMeshQueries3D::PathQuerySlot &p_path_query_slot : map_iteration.path_query_slots) {
if (!p_path_query_slot.in_use) {
p_path_query_slot.in_use = true;
p_query_task.path_query_slot = &p_path_query_slot;
break;
}
}
map_iteration.path_query_slots_mutex.unlock();
if (p_query_task.path_query_slot == nullptr) {
map_iteration.path_query_slots_semaphore.post();
ERR_FAIL_NULL_MSG(p_query_task.path_query_slot, "No unused NavMap path query slot found! This should never happen :(.");
}
p_query_task.map_up = map_iteration.map_up;
NavMeshQueries3D::query_task_map_iteration_get_path(p_query_task, map_iteration);
map_iteration.path_query_slots_mutex.lock();
uint32_t used_slot_index = p_query_task.path_query_slot->slot_index;
map_iteration.path_query_slots[used_slot_index].in_use = false;
p_query_task.path_query_slot = nullptr;
map_iteration.path_query_slots_mutex.unlock();
map_iteration.path_query_slots_semaphore.post();
}
Vector3 NavMap::get_closest_point_to_segment(const Vector3 &p_from, const Vector3 &p_to, const bool p_use_collision) const {
if (iteration_id == 0) {
NAVMAP_ITERATION_ZERO_ERROR_MSG();
return Vector3();
}
GET_MAP_ITERATION_CONST();
return NavMeshQueries3D::map_iteration_get_closest_point_to_segment(map_iteration, p_from, p_to, p_use_collision);
}
Vector3 NavMap::get_closest_point(const Vector3 &p_point) const {
if (iteration_id == 0) {
NAVMAP_ITERATION_ZERO_ERROR_MSG();
return Vector3();
}
GET_MAP_ITERATION_CONST();
return NavMeshQueries3D::map_iteration_get_closest_point(map_iteration, p_point);
}
Vector3 NavMap::get_closest_point_normal(const Vector3 &p_point) const {
if (iteration_id == 0) {
NAVMAP_ITERATION_ZERO_ERROR_MSG();
return Vector3();
}
GET_MAP_ITERATION_CONST();
return NavMeshQueries3D::map_iteration_get_closest_point_normal(map_iteration, p_point);
}
RID NavMap::get_closest_point_owner(const Vector3 &p_point) const {
if (iteration_id == 0) {
NAVMAP_ITERATION_ZERO_ERROR_MSG();
return RID();
}
GET_MAP_ITERATION_CONST();
return NavMeshQueries3D::map_iteration_get_closest_point_owner(map_iteration, p_point);
}
gd::ClosestPointQueryResult NavMap::get_closest_point_info(const Vector3 &p_point) const {
GET_MAP_ITERATION_CONST();
return NavMeshQueries3D::map_iteration_get_closest_point_info(map_iteration, p_point);
}
void NavMap::add_region(NavRegion *p_region) {
regions.push_back(p_region);
iteration_dirty = true;
}
void NavMap::remove_region(NavRegion *p_region) {
int64_t region_index = regions.find(p_region);
if (region_index >= 0) {
regions.remove_at_unordered(region_index);
iteration_dirty = true;
}
}
void NavMap::add_link(NavLink *p_link) {
links.push_back(p_link);
iteration_dirty = true;
}
void NavMap::remove_link(NavLink *p_link) {
int64_t link_index = links.find(p_link);
if (link_index >= 0) {
links.remove_at_unordered(link_index);
iteration_dirty = true;
}
}
bool NavMap::has_agent(NavAgent *agent) const {
return agents.has(agent);
}
void NavMap::add_agent(NavAgent *agent) {
if (!has_agent(agent)) {
agents.push_back(agent);
agents_dirty = true;
}
}
void NavMap::remove_agent(NavAgent *agent) {
remove_agent_as_controlled(agent);
int64_t agent_index = agents.find(agent);
if (agent_index >= 0) {
agents.remove_at_unordered(agent_index);
agents_dirty = true;
}
}
bool NavMap::has_obstacle(NavObstacle *obstacle) const {
return obstacles.has(obstacle);
}
void NavMap::add_obstacle(NavObstacle *obstacle) {
if (obstacle->get_paused()) {
// No point in adding a paused obstacle, it will add itself when unpaused again.
return;
}
if (!has_obstacle(obstacle)) {
obstacles.push_back(obstacle);
obstacles_dirty = true;
}
}
void NavMap::remove_obstacle(NavObstacle *obstacle) {
int64_t obstacle_index = obstacles.find(obstacle);
if (obstacle_index >= 0) {
obstacles.remove_at_unordered(obstacle_index);
obstacles_dirty = true;
}
}
void NavMap::set_agent_as_controlled(NavAgent *agent) {
remove_agent_as_controlled(agent);
if (agent->get_paused()) {
// No point in adding a paused agent, it will add itself when unpaused again.
return;
}
if (agent->get_use_3d_avoidance()) {
int64_t agent_3d_index = active_3d_avoidance_agents.find(agent);
if (agent_3d_index < 0) {
active_3d_avoidance_agents.push_back(agent);
agents_dirty = true;
}
} else {
int64_t agent_2d_index = active_2d_avoidance_agents.find(agent);
if (agent_2d_index < 0) {
active_2d_avoidance_agents.push_back(agent);
agents_dirty = true;
}
}
}
void NavMap::remove_agent_as_controlled(NavAgent *agent) {
int64_t agent_3d_index = active_3d_avoidance_agents.find(agent);
if (agent_3d_index >= 0) {
active_3d_avoidance_agents.remove_at_unordered(agent_3d_index);
agents_dirty = true;
}
int64_t agent_2d_index = active_2d_avoidance_agents.find(agent);
if (agent_2d_index >= 0) {
active_2d_avoidance_agents.remove_at_unordered(agent_2d_index);
agents_dirty = true;
}
}
Vector3 NavMap::get_random_point(uint32_t p_navigation_layers, bool p_uniformly) const {
GET_MAP_ITERATION_CONST();
return NavMeshQueries3D::map_iteration_get_random_point(map_iteration, p_navigation_layers, p_uniformly);
}
void NavMap::_build_iteration() {
if (!iteration_dirty || iteration_building || iteration_ready) {
return;
}
// Get the next free iteration slot that should be potentially unused.
iteration_slot_rwlock.read_lock();
NavMapIteration &next_map_iteration = iteration_slots[(iteration_slot_index + 1) % 2];
// Check if the iteration slot is truly free or still used by an external thread.
bool iteration_is_free = next_map_iteration.users.get() == 0;
iteration_slot_rwlock.read_unlock();
if (!iteration_is_free) {
// A long running pathfinding thread or something is still reading
// from this older iteration and needs to finish first.
// Return and wait for the next sync cycle to check again.
return;
}
// Iteration slot is free and no longer used by anything, let's build.
iteration_dirty = false;
iteration_building = true;
iteration_ready = false;
// We don't need to hold any lock because at this point nothing else can touch it.
// All new queries are already forwarded to the other iteration slot.
iteration_build.reset();
iteration_build.merge_rasterizer_cell_size = get_merge_rasterizer_cell_size();
iteration_build.use_edge_connections = get_use_edge_connections();
iteration_build.edge_connection_margin = get_edge_connection_margin();
iteration_build.link_connection_radius = get_link_connection_radius();
uint32_t enabled_region_count = 0;
uint32_t enabled_link_count = 0;
for (NavRegion *region : regions) {
if (!region->get_enabled()) {
continue;
}
enabled_region_count++;
}
for (NavLink *link : links) {
if (!link->get_enabled()) {
continue;
}
enabled_link_count++;
}
next_map_iteration.region_ptr_to_region_id.clear();
next_map_iteration.region_iterations.clear();
next_map_iteration.link_iterations.clear();
next_map_iteration.region_iterations.resize(enabled_region_count);
next_map_iteration.link_iterations.resize(enabled_link_count);
uint32_t region_id_count = 0;
uint32_t link_id_count = 0;
for (NavRegion *region : regions) {
if (!region->get_enabled()) {
continue;
}
NavRegionIteration &region_iteration = next_map_iteration.region_iterations[region_id_count];
region_iteration.id = region_id_count++;
region->get_iteration_update(region_iteration);
next_map_iteration.region_ptr_to_region_id[region] = (uint32_t)region_iteration.id;
}
for (NavLink *link : links) {
if (!link->get_enabled()) {
continue;
}
NavLinkIteration &link_iteration = next_map_iteration.link_iterations[link_id_count];
link_iteration.id = link_id_count++;
link->get_iteration_update(link_iteration);
}
next_map_iteration.map_up = get_up();
iteration_build.map_iteration = &next_map_iteration;
if (use_async_iterations) {
iteration_build_thread_task_id = WorkerThreadPool::get_singleton()->add_native_task(&NavMap::_build_iteration_threaded, &iteration_build, true, SNAME("NavMapBuilder3D"));
} else {
NavMapBuilder3D::build_navmap_iteration(iteration_build);
iteration_building = false;
iteration_ready = true;
}
}
void NavMap::_build_iteration_threaded(void *p_arg) {
NavMapIterationBuild *_iteration_build = static_cast<NavMapIterationBuild *>(p_arg);
NavMapBuilder3D::build_navmap_iteration(*_iteration_build);
}
void NavMap::_sync_iteration() {
if (iteration_building || !iteration_ready) {
return;
}
performance_data.pm_polygon_count = iteration_build.performance_data.pm_polygon_count;
performance_data.pm_edge_count = iteration_build.performance_data.pm_edge_count;
performance_data.pm_edge_merge_count = iteration_build.performance_data.pm_edge_merge_count;
performance_data.pm_edge_connection_count = iteration_build.performance_data.pm_edge_connection_count;
performance_data.pm_edge_free_count = iteration_build.performance_data.pm_edge_free_count;
iteration_id = iteration_id % UINT32_MAX + 1;
// Finally ping-pong switch the iteration slot.
iteration_slot_rwlock.write_lock();
uint32_t next_iteration_slot_index = (iteration_slot_index + 1) % 2;
iteration_slot_index = next_iteration_slot_index;
iteration_slot_rwlock.write_unlock();
iteration_ready = false;
}
void NavMap::sync() {
// Performance Monitor.
performance_data.pm_region_count = regions.size();
performance_data.pm_agent_count = agents.size();
performance_data.pm_link_count = links.size();
performance_data.pm_obstacle_count = obstacles.size();
_sync_dirty_map_update_requests();
if (iteration_dirty && !iteration_building && !iteration_ready) {
_build_iteration();
}
if (use_async_iterations && iteration_build_thread_task_id != WorkerThreadPool::INVALID_TASK_ID) {
if (WorkerThreadPool::get_singleton()->is_task_completed(iteration_build_thread_task_id)) {
WorkerThreadPool::get_singleton()->wait_for_task_completion(iteration_build_thread_task_id);
iteration_build_thread_task_id = WorkerThreadPool::INVALID_TASK_ID;
iteration_building = false;
iteration_ready = true;
}
}
if (iteration_ready) {
_sync_iteration();
}
map_settings_dirty = false;
_sync_avoidance();
}
void NavMap::_sync_avoidance() {
_sync_dirty_avoidance_update_requests();
if (obstacles_dirty || agents_dirty) {
_update_rvo_simulation();
}
obstacles_dirty = false;
agents_dirty = false;
}
void NavMap::_update_rvo_obstacles_tree_2d() {
int obstacle_vertex_count = 0;
for (NavObstacle *obstacle : obstacles) {
obstacle_vertex_count += obstacle->get_vertices().size();
}
// Cleaning old obstacles.
for (size_t i = 0; i < rvo_simulation_2d.obstacles_.size(); ++i) {
delete rvo_simulation_2d.obstacles_[i];
}
rvo_simulation_2d.obstacles_.clear();
// Cannot use LocalVector here as RVO library expects std::vector to build KdTree
std::vector<RVO2D::Obstacle2D *> &raw_obstacles = rvo_simulation_2d.obstacles_;
raw_obstacles.reserve(obstacle_vertex_count);
// The following block is modified copy from RVO2D::AddObstacle()
// Obstacles are linked and depend on all other obstacles.
for (NavObstacle *obstacle : obstacles) {
const Vector3 &_obstacle_position = obstacle->get_position();
const Vector<Vector3> &_obstacle_vertices = obstacle->get_vertices();
if (_obstacle_vertices.size() < 2) {
continue;
}
std::vector<RVO2D::Vector2> rvo_2d_vertices;
rvo_2d_vertices.reserve(_obstacle_vertices.size());
uint32_t _obstacle_avoidance_layers = obstacle->get_avoidance_layers();
real_t _obstacle_height = obstacle->get_height();
for (const Vector3 &_obstacle_vertex : _obstacle_vertices) {
#ifdef TOOLS_ENABLED
if (_obstacle_vertex.y != 0) {
WARN_PRINT_ONCE("Y coordinates of static obstacle vertices are ignored. Please use obstacle position Y to change elevation of obstacle.");
}
#endif
rvo_2d_vertices.push_back(RVO2D::Vector2(_obstacle_vertex.x + _obstacle_position.x, _obstacle_vertex.z + _obstacle_position.z));
}
const size_t obstacleNo = raw_obstacles.size();
for (size_t i = 0; i < rvo_2d_vertices.size(); i++) {
RVO2D::Obstacle2D *rvo_2d_obstacle = new RVO2D::Obstacle2D();
rvo_2d_obstacle->point_ = rvo_2d_vertices[i];
rvo_2d_obstacle->height_ = _obstacle_height;
rvo_2d_obstacle->elevation_ = _obstacle_position.y;
rvo_2d_obstacle->avoidance_layers_ = _obstacle_avoidance_layers;
if (i != 0) {
rvo_2d_obstacle->prevObstacle_ = raw_obstacles.back();
rvo_2d_obstacle->prevObstacle_->nextObstacle_ = rvo_2d_obstacle;
}
if (i == rvo_2d_vertices.size() - 1) {
rvo_2d_obstacle->nextObstacle_ = raw_obstacles[obstacleNo];
rvo_2d_obstacle->nextObstacle_->prevObstacle_ = rvo_2d_obstacle;
}
rvo_2d_obstacle->unitDir_ = normalize(rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)] - rvo_2d_vertices[i]);
if (rvo_2d_vertices.size() == 2) {
rvo_2d_obstacle->isConvex_ = true;
} else {
rvo_2d_obstacle->isConvex_ = (leftOf(rvo_2d_vertices[(i == 0 ? rvo_2d_vertices.size() - 1 : i - 1)], rvo_2d_vertices[i], rvo_2d_vertices[(i == rvo_2d_vertices.size() - 1 ? 0 : i + 1)]) >= 0.0f);
}
rvo_2d_obstacle->id_ = raw_obstacles.size();
raw_obstacles.push_back(rvo_2d_obstacle);
}
}
rvo_simulation_2d.kdTree_->buildObstacleTree(raw_obstacles);
}
void NavMap::_update_rvo_agents_tree_2d() {
// Cannot use LocalVector here as RVO library expects std::vector to build KdTree.
std::vector<RVO2D::Agent2D *> raw_agents;
raw_agents.reserve(active_2d_avoidance_agents.size());
for (NavAgent *agent : active_2d_avoidance_agents) {
raw_agents.push_back(agent->get_rvo_agent_2d());
}
rvo_simulation_2d.kdTree_->buildAgentTree(raw_agents);
}
void NavMap::_update_rvo_agents_tree_3d() {
// Cannot use LocalVector here as RVO library expects std::vector to build KdTree.
std::vector<RVO3D::Agent3D *> raw_agents;
raw_agents.reserve(active_3d_avoidance_agents.size());
for (NavAgent *agent : active_3d_avoidance_agents) {
raw_agents.push_back(agent->get_rvo_agent_3d());
}
rvo_simulation_3d.kdTree_->buildAgentTree(raw_agents);
}
void NavMap::_update_rvo_simulation() {
if (obstacles_dirty) {
_update_rvo_obstacles_tree_2d();
}
if (agents_dirty) {
_update_rvo_agents_tree_2d();
_update_rvo_agents_tree_3d();
}
}
void NavMap::compute_single_avoidance_step_2d(uint32_t index, NavAgent **agent) {
(*(agent + index))->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d);
(*(agent + index))->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d);
(*(agent + index))->get_rvo_agent_2d()->update(&rvo_simulation_2d);
(*(agent + index))->update();
}
void NavMap::compute_single_avoidance_step_3d(uint32_t index, NavAgent **agent) {
(*(agent + index))->get_rvo_agent_3d()->computeNeighbors(&rvo_simulation_3d);
(*(agent + index))->get_rvo_agent_3d()->computeNewVelocity(&rvo_simulation_3d);
(*(agent + index))->get_rvo_agent_3d()->update(&rvo_simulation_3d);
(*(agent + index))->update();
}
void NavMap::step(real_t p_deltatime) {
deltatime = p_deltatime;
rvo_simulation_2d.setTimeStep(float(deltatime));
rvo_simulation_3d.setTimeStep(float(deltatime));
if (active_2d_avoidance_agents.size() > 0) {
if (use_threads && avoidance_use_multiple_threads) {
WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_avoidance_step_2d, active_2d_avoidance_agents.ptr(), active_2d_avoidance_agents.size(), -1, true, SNAME("RVOAvoidanceAgents2D"));
WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task);
} else {
for (NavAgent *agent : active_2d_avoidance_agents) {
agent->get_rvo_agent_2d()->computeNeighbors(&rvo_simulation_2d);
agent->get_rvo_agent_2d()->computeNewVelocity(&rvo_simulation_2d);
agent->get_rvo_agent_2d()->update(&rvo_simulation_2d);
agent->update();
}
}
}
if (active_3d_avoidance_agents.size() > 0) {
if (use_threads && avoidance_use_multiple_threads) {
WorkerThreadPool::GroupID group_task = WorkerThreadPool::get_singleton()->add_template_group_task(this, &NavMap::compute_single_avoidance_step_3d, active_3d_avoidance_agents.ptr(), active_3d_avoidance_agents.size(), -1, true, SNAME("RVOAvoidanceAgents3D"));
WorkerThreadPool::get_singleton()->wait_for_group_task_completion(group_task);
} else {
for (NavAgent *agent : active_3d_avoidance_agents) {
agent->get_rvo_agent_3d()->computeNeighbors(&rvo_simulation_3d);
agent->get_rvo_agent_3d()->computeNewVelocity(&rvo_simulation_3d);
agent->get_rvo_agent_3d()->update(&rvo_simulation_3d);
agent->update();
}
}
}
}
void NavMap::dispatch_callbacks() {
for (NavAgent *agent : active_2d_avoidance_agents) {
agent->dispatch_avoidance_callback();
}
for (NavAgent *agent : active_3d_avoidance_agents) {
agent->dispatch_avoidance_callback();
}
}
void NavMap::_update_merge_rasterizer_cell_dimensions() {
merge_rasterizer_cell_size.x = cell_size * merge_rasterizer_cell_scale;
merge_rasterizer_cell_size.y = cell_height * merge_rasterizer_cell_scale;
merge_rasterizer_cell_size.z = cell_size * merge_rasterizer_cell_scale;
}
int NavMap::get_region_connections_count(NavRegion *p_region) const {
ERR_FAIL_NULL_V(p_region, 0);
GET_MAP_ITERATION_CONST();
HashMap<NavRegion *, uint32_t>::ConstIterator found_id = map_iteration.region_ptr_to_region_id.find(p_region);
if (found_id) {
HashMap<uint32_t, LocalVector<gd::Edge::Connection>>::ConstIterator found_connections = map_iteration.external_region_connections.find(found_id->value);
if (found_connections) {
return found_connections->value.size();
}
}
return 0;
}
Vector3 NavMap::get_region_connection_pathway_start(NavRegion *p_region, int p_connection_id) const {
ERR_FAIL_NULL_V(p_region, Vector3());
GET_MAP_ITERATION_CONST();
HashMap<NavRegion *, uint32_t>::ConstIterator found_id = map_iteration.region_ptr_to_region_id.find(p_region);
if (found_id) {
HashMap<uint32_t, LocalVector<gd::Edge::Connection>>::ConstIterator found_connections = map_iteration.external_region_connections.find(found_id->value);
if (found_connections) {
ERR_FAIL_INDEX_V(p_connection_id, int(found_connections->value.size()), Vector3());
return found_connections->value[p_connection_id].pathway_start;
}
}
return Vector3();
}
Vector3 NavMap::get_region_connection_pathway_end(NavRegion *p_region, int p_connection_id) const {
ERR_FAIL_NULL_V(p_region, Vector3());
GET_MAP_ITERATION_CONST();
HashMap<NavRegion *, uint32_t>::ConstIterator found_id = map_iteration.region_ptr_to_region_id.find(p_region);
if (found_id) {
HashMap<uint32_t, LocalVector<gd::Edge::Connection>>::ConstIterator found_connections = map_iteration.external_region_connections.find(found_id->value);
if (found_connections) {
ERR_FAIL_INDEX_V(p_connection_id, int(found_connections->value.size()), Vector3());
return found_connections->value[p_connection_id].pathway_end;
}
}
return Vector3();
}
void NavMap::add_region_sync_dirty_request(SelfList<NavRegion> *p_sync_request) {
if (p_sync_request->in_list()) {
return;
}
sync_dirty_requests.regions.add(p_sync_request);
}
void NavMap::add_link_sync_dirty_request(SelfList<NavLink> *p_sync_request) {
if (p_sync_request->in_list()) {
return;
}
sync_dirty_requests.links.add(p_sync_request);
}
void NavMap::add_agent_sync_dirty_request(SelfList<NavAgent> *p_sync_request) {
if (p_sync_request->in_list()) {
return;
}
sync_dirty_requests.agents.add(p_sync_request);
}
void NavMap::add_obstacle_sync_dirty_request(SelfList<NavObstacle> *p_sync_request) {
if (p_sync_request->in_list()) {
return;
}
sync_dirty_requests.obstacles.add(p_sync_request);
}
void NavMap::remove_region_sync_dirty_request(SelfList<NavRegion> *p_sync_request) {
if (!p_sync_request->in_list()) {
return;
}
sync_dirty_requests.regions.remove(p_sync_request);
}
void NavMap::remove_link_sync_dirty_request(SelfList<NavLink> *p_sync_request) {
if (!p_sync_request->in_list()) {
return;
}
sync_dirty_requests.links.remove(p_sync_request);
}
void NavMap::remove_agent_sync_dirty_request(SelfList<NavAgent> *p_sync_request) {
if (!p_sync_request->in_list()) {
return;
}
sync_dirty_requests.agents.remove(p_sync_request);
}
void NavMap::remove_obstacle_sync_dirty_request(SelfList<NavObstacle> *p_sync_request) {
if (!p_sync_request->in_list()) {
return;
}
sync_dirty_requests.obstacles.remove(p_sync_request);
}
void NavMap::_sync_dirty_map_update_requests() {
// If entire map settings changed make all regions dirty.
if (map_settings_dirty) {
for (NavRegion *region : regions) {
region->scratch_polygons();
}
iteration_dirty = true;
}
if (!iteration_dirty) {
iteration_dirty = sync_dirty_requests.regions.first() || sync_dirty_requests.links.first();
}
// Sync NavRegions.
for (SelfList<NavRegion> *element = sync_dirty_requests.regions.first(); element; element = element->next()) {
element->self()->sync();
}
sync_dirty_requests.regions.clear();
// Sync NavLinks.
for (SelfList<NavLink> *element = sync_dirty_requests.links.first(); element; element = element->next()) {
element->self()->sync();
}
sync_dirty_requests.links.clear();
}
void NavMap::_sync_dirty_avoidance_update_requests() {
// Sync NavAgents.
if (!agents_dirty) {
agents_dirty = sync_dirty_requests.agents.first();
}
for (SelfList<NavAgent> *element = sync_dirty_requests.agents.first(); element; element = element->next()) {
element->self()->sync();
}
sync_dirty_requests.agents.clear();
// Sync NavObstacles.
if (!obstacles_dirty) {
obstacles_dirty = sync_dirty_requests.obstacles.first();
}
for (SelfList<NavObstacle> *element = sync_dirty_requests.obstacles.first(); element; element = element->next()) {
element->self()->sync();
}
sync_dirty_requests.obstacles.clear();
}
void NavMap::set_use_async_iterations(bool p_enabled) {
if (use_async_iterations == p_enabled) {
return;
}
#ifdef THREADS_ENABLED
use_async_iterations = p_enabled;
#endif
}
bool NavMap::get_use_async_iterations() const {
return use_async_iterations;
}
NavMap::NavMap() {
avoidance_use_multiple_threads = GLOBAL_GET("navigation/avoidance/thread_model/avoidance_use_multiple_threads");
avoidance_use_high_priority_threads = GLOBAL_GET("navigation/avoidance/thread_model/avoidance_use_high_priority_threads");
path_query_slots_max = GLOBAL_GET("navigation/pathfinding/max_threads");
int processor_count = OS::get_singleton()->get_processor_count();
if (path_query_slots_max < 0) {
path_query_slots_max = processor_count;
}
if (processor_count < path_query_slots_max) {
path_query_slots_max = processor_count;
}
if (path_query_slots_max < 1) {
path_query_slots_max = 1;
}
iteration_slots.resize(2);
for (NavMapIteration &iteration_slot : iteration_slots) {
iteration_slot.path_query_slots.resize(path_query_slots_max);
for (uint32_t i = 0; i < iteration_slot.path_query_slots.size(); i++) {
iteration_slot.path_query_slots[i].slot_index = i;
}
iteration_slot.path_query_slots_semaphore.post(path_query_slots_max);
}
#ifdef THREADS_ENABLED
use_async_iterations = GLOBAL_GET("navigation/world/map_use_async_iterations");
#else
use_async_iterations = false;
#endif
}
NavMap::~NavMap() {
if (iteration_build_thread_task_id != WorkerThreadPool::INVALID_TASK_ID) {
WorkerThreadPool::get_singleton()->wait_for_task_completion(iteration_build_thread_task_id);
iteration_build_thread_task_id = WorkerThreadPool::INVALID_TASK_ID;
}
}