godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/BroadPhase/QuadTree.h
2025-04-12 18:40:44 +02:00

390 lines
18 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Core/FixedSizeFreeList.h>
#include <Jolt/Core/Atomics.h>
#include <Jolt/Core/NonCopyable.h>
#include <Jolt/Physics/Body/BodyManager.h>
#include <Jolt/Physics/Collision/BroadPhase/BroadPhase.h>
//#define JPH_DUMP_BROADPHASE_TREE
JPH_NAMESPACE_BEGIN
/// Internal tree structure in broadphase, is essentially a quad AABB tree.
/// Tree is lockless (except for UpdatePrepare/Finalize() function), modifying objects in the tree will widen the aabbs of parent nodes to make the node fit.
/// During the UpdatePrepare/Finalize() call the tree is rebuilt to achieve a tight fit again.
class JPH_EXPORT QuadTree : public NonCopyable
{
public:
JPH_OVERRIDE_NEW_DELETE
private:
// Forward declare
class AtomicNodeID;
/// Class that points to either a body or a node in the tree
class NodeID
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Default constructor does not initialize
inline NodeID() = default;
/// Construct a node ID
static inline NodeID sInvalid() { return NodeID(cInvalidNodeIndex); }
static inline NodeID sFromBodyID(BodyID inID) { NodeID node_id(inID.GetIndexAndSequenceNumber()); JPH_ASSERT(node_id.IsBody()); return node_id; }
static inline NodeID sFromNodeIndex(uint32 inIdx) { JPH_ASSERT((inIdx & cIsNode) == 0); return NodeID(inIdx | cIsNode); }
/// Check what type of ID it is
inline bool IsValid() const { return mID != cInvalidNodeIndex; }
inline bool IsBody() const { return (mID & cIsNode) == 0; }
inline bool IsNode() const { return (mID & cIsNode) != 0; }
/// Get body or node index
inline BodyID GetBodyID() const { JPH_ASSERT(IsBody()); return BodyID(mID); }
inline uint32 GetNodeIndex() const { JPH_ASSERT(IsNode()); return mID & ~cIsNode; }
/// Comparison
inline bool operator == (const BodyID &inRHS) const { return mID == inRHS.GetIndexAndSequenceNumber(); }
inline bool operator == (const NodeID &inRHS) const { return mID == inRHS.mID; }
private:
friend class AtomicNodeID;
inline explicit NodeID(uint32 inID) : mID(inID) { }
static const uint32 cIsNode = BodyID::cBroadPhaseBit; ///< If this bit is set it means that the ID refers to a node, otherwise it refers to a body
uint32 mID;
};
static_assert(sizeof(NodeID) == sizeof(BodyID), "Body id's should have the same size as NodeIDs");
/// A NodeID that uses atomics to store the value
class AtomicNodeID
{
public:
/// Constructor
AtomicNodeID() = default;
explicit AtomicNodeID(const NodeID &inRHS) : mID(inRHS.mID) { }
/// Assignment
inline void operator = (const NodeID &inRHS) { mID = inRHS.mID; }
/// Getting the value
inline operator NodeID () const { return NodeID(mID); }
/// Check if the ID is valid
inline bool IsValid() const { return mID != cInvalidNodeIndex; }
/// Comparison
inline bool operator == (const BodyID &inRHS) const { return mID == inRHS.GetIndexAndSequenceNumber(); }
inline bool operator == (const NodeID &inRHS) const { return mID == inRHS.mID; }
/// Atomically compare and swap value. Expects inOld value, replaces with inNew value or returns false
inline bool CompareExchange(NodeID inOld, NodeID inNew) { return mID.compare_exchange_strong(inOld.mID, inNew.mID); }
private:
atomic<uint32> mID;
};
/// Class that represents a node in the tree
class Node
{
public:
/// Construct node
explicit Node(bool inIsChanged);
/// Get bounding box encapsulating all children
void GetNodeBounds(AABox &outBounds) const;
/// Get bounding box in a consistent way with the functions below (check outBounds.IsValid() before using the box)
void GetChildBounds(int inChildIndex, AABox &outBounds) const;
/// Set the bounds in such a way that other threads will either see a fully correct bounding box or a bounding box with no volume
void SetChildBounds(int inChildIndex, const AABox &inBounds);
/// Invalidate bounding box in such a way that other threads will not temporarily see a very large bounding box
void InvalidateChildBounds(int inChildIndex);
/// Encapsulate inBounds in node bounds, returns true if there were changes
bool EncapsulateChildBounds(int inChildIndex, const AABox &inBounds);
/// Bounding box for child nodes or bodies (all initially set to invalid so no collision test will ever traverse to the leaf)
atomic<float> mBoundsMinX[4];
atomic<float> mBoundsMinY[4];
atomic<float> mBoundsMinZ[4];
atomic<float> mBoundsMaxX[4];
atomic<float> mBoundsMaxY[4];
atomic<float> mBoundsMaxZ[4];
/// Index of child node or body ID.
AtomicNodeID mChildNodeID[4];
/// Index of the parent node.
/// Note: This value is unreliable during the UpdatePrepare/Finalize() function as a node may be relinked to the newly built tree.
atomic<uint32> mParentNodeIndex = cInvalidNodeIndex;
/// If this part of the tree has changed, if not, we will treat this sub tree as a single body during the UpdatePrepare/Finalize().
/// If any changes are made to an object inside this sub tree then the direct path from the body to the top of the tree will become changed.
atomic<uint32> mIsChanged;
// Padding to align to 124 bytes
uint32 mPadding = 0;
};
// Maximum size of the stack during tree walk
static constexpr int cStackSize = 128;
static_assert(sizeof(atomic<float>) == 4, "Assuming that an atomic doesn't add any additional storage");
static_assert(sizeof(atomic<uint32>) == 4, "Assuming that an atomic doesn't add any additional storage");
static_assert(std::is_trivially_destructible<Node>(), "Assuming that we don't have a destructor");
public:
/// Class that allocates tree nodes, can be shared between multiple trees
using Allocator = FixedSizeFreeList<Node>;
static_assert(Allocator::ObjectStorageSize == 128, "Node should be 128 bytes");
/// Data to track location of a Body in the tree
struct Tracking
{
/// Constructor to satisfy the vector class
Tracking() = default;
Tracking(const Tracking &inRHS) : mBroadPhaseLayer(inRHS.mBroadPhaseLayer.load()), mObjectLayer(inRHS.mObjectLayer.load()), mBodyLocation(inRHS.mBodyLocation.load()) { }
/// Invalid body location identifier
static const uint32 cInvalidBodyLocation = 0xffffffff;
atomic<BroadPhaseLayer::Type> mBroadPhaseLayer = (BroadPhaseLayer::Type)cBroadPhaseLayerInvalid;
atomic<ObjectLayer> mObjectLayer = cObjectLayerInvalid;
atomic<uint32> mBodyLocation { cInvalidBodyLocation };
};
using TrackingVector = Array<Tracking>;
/// Destructor
~QuadTree();
#if defined(JPH_EXTERNAL_PROFILE) || defined(JPH_PROFILE_ENABLED)
/// Name of the tree for debugging purposes
void SetName(const char *inName) { mName = inName; }
inline const char * GetName() const { return mName; }
#endif // JPH_EXTERNAL_PROFILE || JPH_PROFILE_ENABLED
/// Check if there is anything in the tree
inline bool HasBodies() const { return mNumBodies != 0; }
/// Check if the tree needs an UpdatePrepare/Finalize()
inline bool IsDirty() const { return mIsDirty; }
/// Check if this tree can get an UpdatePrepare/Finalize() or if it needs a DiscardOldTree() first
inline bool CanBeUpdated() const { return mFreeNodeBatch.mNumObjects == 0; }
/// Initialization
void Init(Allocator &inAllocator);
struct UpdateState
{
NodeID mRootNodeID; ///< This will be the new root node id
};
/// Will throw away the previous frame's nodes so that we can start building a new tree in the background
void DiscardOldTree();
/// Get the bounding box for this tree
AABox GetBounds() const;
/// Update the broadphase, needs to be called regularly to achieve a tight fit of the tree when bodies have been modified.
/// UpdatePrepare() will build the tree, UpdateFinalize() will lock the root of the tree shortly and swap the trees and afterwards clean up temporary data structures.
void UpdatePrepare(const BodyVector &inBodies, TrackingVector &ioTracking, UpdateState &outUpdateState, bool inFullRebuild);
void UpdateFinalize(const BodyVector &inBodies, const TrackingVector &inTracking, const UpdateState &inUpdateState);
/// Temporary data structure to pass information between AddBodiesPrepare and AddBodiesFinalize/Abort
struct AddState
{
NodeID mLeafID = NodeID::sInvalid();
AABox mLeafBounds;
};
/// Prepare adding inNumber bodies at ioBodyIDs to the quad tree, returns the state in outState that should be used in AddBodiesFinalize.
/// This can be done on a background thread without influencing the broadphase.
/// ioBodyIDs may be shuffled around by this function.
void AddBodiesPrepare(const BodyVector &inBodies, TrackingVector &ioTracking, BodyID *ioBodyIDs, int inNumber, AddState &outState);
/// Finalize adding bodies to the quadtree, supply the same number of bodies as in AddBodiesPrepare.
void AddBodiesFinalize(TrackingVector &ioTracking, int inNumberBodies, const AddState &inState);
/// Abort adding bodies to the quadtree, supply the same bodies and state as in AddBodiesPrepare.
/// This can be done on a background thread without influencing the broadphase.
void AddBodiesAbort(TrackingVector &ioTracking, const AddState &inState);
/// Remove inNumber bodies in ioBodyIDs from the quadtree.
void RemoveBodies(const BodyVector &inBodies, TrackingVector &ioTracking, const BodyID *ioBodyIDs, int inNumber);
/// Call whenever the aabb of a body changes.
void NotifyBodiesAABBChanged(const BodyVector &inBodies, const TrackingVector &inTracking, const BodyID *ioBodyIDs, int inNumber);
/// Cast a ray and get the intersecting bodies in ioCollector.
void CastRay(const RayCast &inRay, RayCastBodyCollector &ioCollector, const ObjectLayerFilter &inObjectLayerFilter, const TrackingVector &inTracking) const;
/// Get bodies intersecting with inBox in ioCollector
void CollideAABox(const AABox &inBox, CollideShapeBodyCollector &ioCollector, const ObjectLayerFilter &inObjectLayerFilter, const TrackingVector &inTracking) const;
/// Get bodies intersecting with a sphere in ioCollector
void CollideSphere(Vec3Arg inCenter, float inRadius, CollideShapeBodyCollector &ioCollector, const ObjectLayerFilter &inObjectLayerFilter, const TrackingVector &inTracking) const;
/// Get bodies intersecting with a point and any hits to ioCollector
void CollidePoint(Vec3Arg inPoint, CollideShapeBodyCollector &ioCollector, const ObjectLayerFilter &inObjectLayerFilter, const TrackingVector &inTracking) const;
/// Get bodies intersecting with an oriented box and any hits to ioCollector
void CollideOrientedBox(const OrientedBox &inBox, CollideShapeBodyCollector &ioCollector, const ObjectLayerFilter &inObjectLayerFilter, const TrackingVector &inTracking) const;
/// Cast a box and get intersecting bodies in ioCollector
void CastAABox(const AABoxCast &inBox, CastShapeBodyCollector &ioCollector, const ObjectLayerFilter &inObjectLayerFilter, const TrackingVector &inTracking) const;
/// Find all colliding pairs between dynamic bodies, calls ioPairCollector for every pair found
void FindCollidingPairs(const BodyVector &inBodies, const BodyID *inActiveBodies, int inNumActiveBodies, float inSpeculativeContactDistance, BodyPairCollector &ioPairCollector, const ObjectLayerPairFilter &inObjectLayerPairFilter) const;
#ifdef JPH_TRACK_BROADPHASE_STATS
/// Sum up all the ticks spent in the various layers
uint64 GetTicks100Pct() const;
/// Trace the stats of this tree to the TTY
void ReportStats(uint64 inTicks100Pct) const;
#endif // JPH_TRACK_BROADPHASE_STATS
private:
/// Constants
static constexpr uint32 cInvalidNodeIndex = 0xffffffff; ///< Value used to indicate node index is invalid
static const AABox cInvalidBounds; ///< Invalid bounding box using cLargeFloat
/// We alternate between two trees in order to let collision queries complete in parallel to adding/removing objects to the tree
struct RootNode
{
/// Get the ID of the root node
inline NodeID GetNodeID() const { return NodeID::sFromNodeIndex(mIndex); }
/// Index of the root node of the tree (this is always a node, never a body id)
atomic<uint32> mIndex { cInvalidNodeIndex };
};
/// Caches location of body inBodyID in the tracker, body can be found in mNodes[inNodeIdx].mChildNodeID[inChildIdx]
void GetBodyLocation(const TrackingVector &inTracking, BodyID inBodyID, uint32 &outNodeIdx, uint32 &outChildIdx) const;
void SetBodyLocation(TrackingVector &ioTracking, BodyID inBodyID, uint32 inNodeIdx, uint32 inChildIdx) const;
static void sInvalidateBodyLocation(TrackingVector &ioTracking, BodyID inBodyID);
/// Get the current root of the tree
JPH_INLINE const RootNode & GetCurrentRoot() const { return mRootNode[mRootNodeIndex]; }
JPH_INLINE RootNode & GetCurrentRoot() { return mRootNode[mRootNodeIndex]; }
/// Depending on if inNodeID is a body or tree node return the bounding box
inline AABox GetNodeOrBodyBounds(const BodyVector &inBodies, NodeID inNodeID) const;
/// Mark node and all of its parents as changed
inline void MarkNodeAndParentsChanged(uint32 inNodeIndex);
/// Widen parent bounds of node inNodeIndex to encapsulate inNewBounds, also mark node and all of its parents as changed
inline void WidenAndMarkNodeAndParentsChanged(uint32 inNodeIndex, const AABox &inNewBounds);
/// Allocate a new node
inline uint32 AllocateNode(bool inIsChanged);
/// Try to insert a new leaf to the tree at inNodeIndex
inline bool TryInsertLeaf(TrackingVector &ioTracking, int inNodeIndex, NodeID inLeafID, const AABox &inLeafBounds, int inLeafNumBodies);
/// Try to replace the existing root with a new root that contains both the existing root and the new leaf
inline bool TryCreateNewRoot(TrackingVector &ioTracking, atomic<uint32> &ioRootNodeIndex, NodeID inLeafID, const AABox &inLeafBounds, int inLeafNumBodies);
/// Build a tree for ioBodyIDs, returns the NodeID of the root (which will be the ID of a single body if inNumber = 1). All tree levels up to inMaxDepthMarkChanged will be marked as 'changed'.
NodeID BuildTree(const BodyVector &inBodies, TrackingVector &ioTracking, NodeID *ioNodeIDs, int inNumber, uint inMaxDepthMarkChanged, AABox &outBounds);
/// Sorts ioNodeIDs spatially into 2 groups. Second groups starts at ioNodeIDs + outMidPoint.
/// After the function returns ioNodeIDs and ioNodeCenters will be shuffled
static void sPartition(NodeID *ioNodeIDs, Vec3 *ioNodeCenters, int inNumber, int &outMidPoint);
/// Sorts ioNodeIDs from inBegin to (but excluding) inEnd spatially into 4 groups.
/// outSplit needs to be 5 ints long, when the function returns each group runs from outSplit[i] to (but excluding) outSplit[i + 1]
/// After the function returns ioNodeIDs and ioNodeCenters will be shuffled
static void sPartition4(NodeID *ioNodeIDs, Vec3 *ioNodeCenters, int inBegin, int inEnd, int *outSplit);
#ifdef JPH_DEBUG
/// Validate that the tree is consistent.
/// Note: This function only works if the tree is not modified while we're traversing it.
void ValidateTree(const BodyVector &inBodies, const TrackingVector &inTracking, uint32 inNodeIndex, uint32 inNumExpectedBodies) const;
#endif
#ifdef JPH_DUMP_BROADPHASE_TREE
/// Dump the tree in DOT format (see: https://graphviz.org/)
void DumpTree(const NodeID &inRoot, const char *inFileNamePrefix) const;
#endif
/// Allocator that controls adding / freeing nodes
Allocator * mAllocator = nullptr;
/// This is a list of nodes that must be deleted after the trees are swapped and the old tree is no longer in use
Allocator::Batch mFreeNodeBatch;
/// Number of bodies currently in the tree
/// This is aligned to be in a different cache line from the `Allocator` pointer to prevent cross-thread syncs
/// when reading nodes.
alignas(JPH_CACHE_LINE_SIZE) atomic<uint32> mNumBodies { 0 };
/// We alternate between two tree root nodes. When updating, we activate the new tree and we keep the old tree alive.
/// for queries that are in progress until the next time DiscardOldTree() is called.
RootNode mRootNode[2];
atomic<uint32> mRootNodeIndex { 0 };
/// Flag to keep track of changes to the broadphase, if false, we don't need to UpdatePrepare/Finalize()
atomic<bool> mIsDirty = false;
#ifdef JPH_TRACK_BROADPHASE_STATS
/// Mutex protecting the various LayerToStats members
mutable Mutex mStatsMutex;
struct Stat
{
uint64 mNumQueries = 0;
uint64 mNodesVisited = 0;
uint64 mBodiesVisited = 0;
uint64 mHitsReported = 0;
uint64 mTotalTicks = 0;
uint64 mCollectorTicks = 0;
};
using LayerToStats = UnorderedMap<String, Stat>;
/// Sum up all the ticks in a layer
uint64 GetTicks100Pct(const LayerToStats &inLayer) const;
/// Trace the stats of a single query type to the TTY
void ReportStats(const char *inName, const LayerToStats &inLayer, uint64 inTicks100Pct) const;
mutable LayerToStats mCastRayStats;
mutable LayerToStats mCollideAABoxStats;
mutable LayerToStats mCollideSphereStats;
mutable LayerToStats mCollidePointStats;
mutable LayerToStats mCollideOrientedBoxStats;
mutable LayerToStats mCastAABoxStats;
#endif // JPH_TRACK_BROADPHASE_STATS
/// Debug function to get the depth of the tree from node inNodeID
uint GetMaxTreeDepth(const NodeID &inNodeID) const;
/// Walk the node tree calling the Visitor::VisitNodes for each node encountered and Visitor::VisitBody for each body encountered
template <class Visitor>
JPH_INLINE void WalkTree(const ObjectLayerFilter &inObjectLayerFilter, const TrackingVector &inTracking, Visitor &ioVisitor JPH_IF_TRACK_BROADPHASE_STATS(, LayerToStats &ioStats)) const;
#if defined(JPH_EXTERNAL_PROFILE) || defined(JPH_PROFILE_ENABLED)
/// Name of this tree for debugging purposes
const char * mName = "Layer";
#endif // JPH_EXTERNAL_PROFILE || JPH_PROFILE_ENABLED
};
JPH_NAMESPACE_END