godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/Shape/TaperedCapsuleShape.cpp

454 lines
16 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Collision/Shape/TaperedCapsuleShape.h>
#include <Jolt/Physics/Collision/Shape/SphereShape.h>
#include <Jolt/Physics/Collision/Shape/RotatedTranslatedShape.h>
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
#include <Jolt/Physics/Collision/TransformedShape.h>
#include <Jolt/Physics/Collision/CollideSoftBodyVertexIterator.h>
#include <Jolt/Geometry/RayCapsule.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(TaperedCapsuleShapeSettings)
{
JPH_ADD_BASE_CLASS(TaperedCapsuleShapeSettings, ConvexShapeSettings)
JPH_ADD_ATTRIBUTE(TaperedCapsuleShapeSettings, mHalfHeightOfTaperedCylinder)
JPH_ADD_ATTRIBUTE(TaperedCapsuleShapeSettings, mTopRadius)
JPH_ADD_ATTRIBUTE(TaperedCapsuleShapeSettings, mBottomRadius)
}
bool TaperedCapsuleShapeSettings::IsSphere() const
{
return max(mTopRadius, mBottomRadius) >= 2.0f * mHalfHeightOfTaperedCylinder + min(mTopRadius, mBottomRadius);
}
ShapeSettings::ShapeResult TaperedCapsuleShapeSettings::Create() const
{
if (mCachedResult.IsEmpty())
{
Ref<Shape> shape;
if (IsValid() && IsSphere())
{
// Determine sphere center and radius
float radius, center;
if (mTopRadius > mBottomRadius)
{
radius = mTopRadius;
center = mHalfHeightOfTaperedCylinder;
}
else
{
radius = mBottomRadius;
center = -mHalfHeightOfTaperedCylinder;
}
// Create sphere
shape = new SphereShape(radius, mMaterial);
// Offset sphere if needed
if (abs(center) > 1.0e-6f)
{
RotatedTranslatedShapeSettings rot_trans(Vec3(0, center, 0), Quat::sIdentity(), shape);
mCachedResult = rot_trans.Create();
}
else
mCachedResult.Set(shape);
}
else
{
// Normal tapered capsule shape
shape = new TaperedCapsuleShape(*this, mCachedResult);
}
}
return mCachedResult;
}
TaperedCapsuleShapeSettings::TaperedCapsuleShapeSettings(float inHalfHeightOfTaperedCylinder, float inTopRadius, float inBottomRadius, const PhysicsMaterial *inMaterial) :
ConvexShapeSettings(inMaterial),
mHalfHeightOfTaperedCylinder(inHalfHeightOfTaperedCylinder),
mTopRadius(inTopRadius),
mBottomRadius(inBottomRadius)
{
}
TaperedCapsuleShape::TaperedCapsuleShape(const TaperedCapsuleShapeSettings &inSettings, ShapeResult &outResult) :
ConvexShape(EShapeSubType::TaperedCapsule, inSettings, outResult),
mTopRadius(inSettings.mTopRadius),
mBottomRadius(inSettings.mBottomRadius)
{
if (mTopRadius <= 0.0f)
{
outResult.SetError("Invalid top radius");
return;
}
if (mBottomRadius <= 0.0f)
{
outResult.SetError("Invalid bottom radius");
return;
}
if (inSettings.mHalfHeightOfTaperedCylinder <= 0.0f)
{
outResult.SetError("Invalid height");
return;
}
// If this goes off one of the sphere ends falls totally inside the other and you should use a sphere instead
if (inSettings.IsSphere())
{
outResult.SetError("One sphere embedded in other sphere, please use sphere shape instead");
return;
}
// Approximation: The center of mass is exactly half way between the top and bottom cap of the tapered capsule
mTopCenter = inSettings.mHalfHeightOfTaperedCylinder + 0.5f * (mBottomRadius - mTopRadius);
mBottomCenter = -inSettings.mHalfHeightOfTaperedCylinder + 0.5f * (mBottomRadius - mTopRadius);
// Calculate center of mass
mCenterOfMass = Vec3(0, inSettings.mHalfHeightOfTaperedCylinder - mTopCenter, 0);
// Calculate convex radius
mConvexRadius = min(mTopRadius, mBottomRadius);
JPH_ASSERT(mConvexRadius > 0.0f);
// Calculate the sin and tan of the angle that the cone surface makes with the Y axis
// See: TaperedCapsuleShape.gliffy
mSinAlpha = (mBottomRadius - mTopRadius) / (mTopCenter - mBottomCenter);
JPH_ASSERT(mSinAlpha >= -1.0f && mSinAlpha <= 1.0f);
mTanAlpha = Tan(ASin(mSinAlpha));
outResult.Set(this);
}
class TaperedCapsuleShape::TaperedCapsule final : public Support
{
public:
TaperedCapsule(Vec3Arg inTopCenter, Vec3Arg inBottomCenter, float inTopRadius, float inBottomRadius, float inConvexRadius) :
mTopCenter(inTopCenter),
mBottomCenter(inBottomCenter),
mTopRadius(inTopRadius),
mBottomRadius(inBottomRadius),
mConvexRadius(inConvexRadius)
{
static_assert(sizeof(TaperedCapsule) <= sizeof(SupportBuffer), "Buffer size too small");
JPH_ASSERT(IsAligned(this, alignof(TaperedCapsule)));
}
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
{
// Check zero vector
float len = inDirection.Length();
if (len == 0.0f)
return mTopCenter + Vec3(0, mTopRadius, 0); // Return top
// Check if the support of the top sphere or bottom sphere is bigger
Vec3 support_top = mTopCenter + (mTopRadius / len) * inDirection;
Vec3 support_bottom = mBottomCenter + (mBottomRadius / len) * inDirection;
if (support_top.Dot(inDirection) > support_bottom.Dot(inDirection))
return support_top;
else
return support_bottom;
}
virtual float GetConvexRadius() const override
{
return mConvexRadius;
}
private:
Vec3 mTopCenter;
Vec3 mBottomCenter;
float mTopRadius;
float mBottomRadius;
float mConvexRadius;
};
const ConvexShape::Support *TaperedCapsuleShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const
{
JPH_ASSERT(IsValidScale(inScale));
// Get scaled tapered capsule
Vec3 abs_scale = inScale.Abs();
float scale_xz = abs_scale.GetX();
float scale_y = inScale.GetY(); // The sign of y is important as it flips the tapered capsule
Vec3 scaled_top_center = Vec3(0, scale_y * mTopCenter, 0);
Vec3 scaled_bottom_center = Vec3(0, scale_y * mBottomCenter, 0);
float scaled_top_radius = scale_xz * mTopRadius;
float scaled_bottom_radius = scale_xz * mBottomRadius;
float scaled_convex_radius = scale_xz * mConvexRadius;
switch (inMode)
{
case ESupportMode::IncludeConvexRadius:
return new (&inBuffer) TaperedCapsule(scaled_top_center, scaled_bottom_center, scaled_top_radius, scaled_bottom_radius, 0.0f);
case ESupportMode::ExcludeConvexRadius:
case ESupportMode::Default:
{
// Get radii reduced by convex radius
float tr = scaled_top_radius - scaled_convex_radius;
float br = scaled_bottom_radius - scaled_convex_radius;
JPH_ASSERT(tr >= 0.0f && br >= 0.0f);
JPH_ASSERT(tr == 0.0f || br == 0.0f, "Convex radius should be that of the smallest sphere");
return new (&inBuffer) TaperedCapsule(scaled_top_center, scaled_bottom_center, tr, br, scaled_convex_radius);
}
}
JPH_ASSERT(false);
return nullptr;
}
void TaperedCapsuleShape::GetSupportingFace(const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const
{
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
JPH_ASSERT(IsValidScale(inScale));
// Check zero vector
float len = inDirection.Length();
if (len == 0.0f)
return;
// Get scaled tapered capsule
Vec3 abs_scale = inScale.Abs();
float scale_xz = abs_scale.GetX();
float scale_y = inScale.GetY(); // The sign of y is important as it flips the tapered capsule
Vec3 scaled_top_center = Vec3(0, scale_y * mTopCenter, 0);
Vec3 scaled_bottom_center = Vec3(0, scale_y * mBottomCenter, 0);
float scaled_top_radius = scale_xz * mTopRadius;
float scaled_bottom_radius = scale_xz * mBottomRadius;
// Get support point for top and bottom sphere in the opposite of inDirection (including convex radius)
Vec3 support_top = scaled_top_center - (scaled_top_radius / len) * inDirection;
Vec3 support_bottom = scaled_bottom_center - (scaled_bottom_radius / len) * inDirection;
// Get projection on inDirection
float proj_top = support_top.Dot(inDirection);
float proj_bottom = support_bottom.Dot(inDirection);
// If projection is roughly equal then return line, otherwise we return nothing as there's only 1 point
if (abs(proj_top - proj_bottom) < cCapsuleProjectionSlop * len)
{
outVertices.push_back(inCenterOfMassTransform * support_top);
outVertices.push_back(inCenterOfMassTransform * support_bottom);
}
}
MassProperties TaperedCapsuleShape::GetMassProperties() const
{
AABox box = GetInertiaApproximation();
MassProperties p;
p.SetMassAndInertiaOfSolidBox(box.GetSize(), GetDensity());
return p;
}
Vec3 TaperedCapsuleShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const
{
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
// See: TaperedCapsuleShape.gliffy
// We need to calculate ty and by in order to see if the position is on the top or bottom sphere
// sin(alpha) = by / br = ty / tr
// => by = sin(alpha) * br, ty = sin(alpha) * tr
if (inLocalSurfacePosition.GetY() > mTopCenter + mSinAlpha * mTopRadius)
return (inLocalSurfacePosition - Vec3(0, mTopCenter, 0)).Normalized();
else if (inLocalSurfacePosition.GetY() < mBottomCenter + mSinAlpha * mBottomRadius)
return (inLocalSurfacePosition - Vec3(0, mBottomCenter, 0)).Normalized();
else
{
// Get perpendicular vector to the surface in the xz plane
Vec3 perpendicular = Vec3(inLocalSurfacePosition.GetX(), 0, inLocalSurfacePosition.GetZ()).NormalizedOr(Vec3::sAxisX());
// We know that the perpendicular has length 1 and that it needs a y component where tan(alpha) = y / 1 in order to align it to the surface
perpendicular.SetY(mTanAlpha);
return perpendicular.Normalized();
}
}
AABox TaperedCapsuleShape::GetLocalBounds() const
{
float max_radius = max(mTopRadius, mBottomRadius);
return AABox(Vec3(-max_radius, mBottomCenter - mBottomRadius, -max_radius), Vec3(max_radius, mTopCenter + mTopRadius, max_radius));
}
AABox TaperedCapsuleShape::GetWorldSpaceBounds(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
{
JPH_ASSERT(IsValidScale(inScale));
Vec3 abs_scale = inScale.Abs();
float scale_xz = abs_scale.GetX();
float scale_y = inScale.GetY(); // The sign of y is important as it flips the tapered capsule
Vec3 bottom_extent = Vec3::sReplicate(scale_xz * mBottomRadius);
Vec3 bottom_center = inCenterOfMassTransform * Vec3(0, scale_y * mBottomCenter, 0);
Vec3 top_extent = Vec3::sReplicate(scale_xz * mTopRadius);
Vec3 top_center = inCenterOfMassTransform * Vec3(0, scale_y * mTopCenter, 0);
Vec3 p1 = Vec3::sMin(top_center - top_extent, bottom_center - bottom_extent);
Vec3 p2 = Vec3::sMax(top_center + top_extent, bottom_center + bottom_extent);
return AABox(p1, p2);
}
void TaperedCapsuleShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const
{
JPH_ASSERT(IsValidScale(inScale));
Mat44 inverse_transform = inCenterOfMassTransform.InversedRotationTranslation();
// Get scaled tapered capsule
Vec3 abs_scale = inScale.Abs();
float scale_y = abs_scale.GetY();
float scale_xz = abs_scale.GetX();
Vec3 scale_y_flip(1, Sign(inScale.GetY()), 1);
Vec3 scaled_top_center(0, scale_y * mTopCenter, 0);
Vec3 scaled_bottom_center(0, scale_y * mBottomCenter, 0);
float scaled_top_radius = scale_xz * mTopRadius;
float scaled_bottom_radius = scale_xz * mBottomRadius;
for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v)
if (v.GetInvMass() > 0.0f)
{
Vec3 local_pos = scale_y_flip * (inverse_transform * v.GetPosition());
Vec3 position, normal;
// If the vertex is inside the cone starting at the top center pointing along the y-axis with angle PI/2 - alpha then the closest point is on the top sphere
// This corresponds to: Dot(y-axis, (local_pos - top_center) / |local_pos - top_center|) >= cos(PI/2 - alpha)
// <=> (local_pos - top_center).y >= sin(alpha) * |local_pos - top_center|
Vec3 top_center_to_local_pos = local_pos - scaled_top_center;
float top_center_to_local_pos_len = top_center_to_local_pos.Length();
if (top_center_to_local_pos.GetY() >= mSinAlpha * top_center_to_local_pos_len)
{
// Top sphere
normal = top_center_to_local_pos_len != 0.0f? top_center_to_local_pos / top_center_to_local_pos_len : Vec3::sAxisY();
position = scaled_top_center + scaled_top_radius * normal;
}
else
{
// If the vertex is outside the cone starting at the bottom center pointing along the y-axis with angle PI/2 - alpha then the closest point is on the bottom sphere
// This corresponds to: Dot(y-axis, (local_pos - bottom_center) / |local_pos - bottom_center|) <= cos(PI/2 - alpha)
// <=> (local_pos - bottom_center).y <= sin(alpha) * |local_pos - bottom_center|
Vec3 bottom_center_to_local_pos = local_pos - scaled_bottom_center;
float bottom_center_to_local_pos_len = bottom_center_to_local_pos.Length();
if (bottom_center_to_local_pos.GetY() <= mSinAlpha * bottom_center_to_local_pos_len)
{
// Bottom sphere
normal = bottom_center_to_local_pos_len != 0.0f? bottom_center_to_local_pos / bottom_center_to_local_pos_len : -Vec3::sAxisY();
}
else
{
// Tapered cylinder
normal = Vec3(local_pos.GetX(), 0, local_pos.GetZ()).NormalizedOr(Vec3::sAxisX());
normal.SetY(mTanAlpha);
normal = normal.NormalizedOr(Vec3::sAxisX());
}
position = scaled_bottom_center + scaled_bottom_radius * normal;
}
Plane plane = Plane::sFromPointAndNormal(position, normal);
float penetration = -plane.SignedDistance(local_pos);
if (v.UpdatePenetration(penetration))
{
// Need to flip the normal's y if capsule is flipped (this corresponds to flipping both the point and the normal around y)
plane.SetNormal(scale_y_flip * plane.GetNormal());
// Store collision
v.SetCollision(plane.GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex);
}
}
}
#ifdef JPH_DEBUG_RENDERER
void TaperedCapsuleShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const
{
if (mGeometry == nullptr)
{
SupportBuffer buffer;
const Support *support = GetSupportFunction(ESupportMode::IncludeConvexRadius, buffer, Vec3::sReplicate(1.0f));
mGeometry = inRenderer->CreateTriangleGeometryForConvex([support](Vec3Arg inDirection) { return support->GetSupport(inDirection); });
}
// Preserve flip along y axis but make sure we're not inside out
Vec3 scale = ScaleHelpers::IsInsideOut(inScale)? Vec3(-1, 1, 1) * inScale : inScale;
RMat44 world_transform = inCenterOfMassTransform * Mat44::sScale(scale);
AABox bounds = Shape::GetWorldSpaceBounds(inCenterOfMassTransform, inScale);
float lod_scale_sq = Square(max(mTopRadius, mBottomRadius));
Color color = inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor;
DebugRenderer::EDrawMode draw_mode = inDrawWireframe? DebugRenderer::EDrawMode::Wireframe : DebugRenderer::EDrawMode::Solid;
inRenderer->DrawGeometry(world_transform, bounds, lod_scale_sq, color, mGeometry, DebugRenderer::ECullMode::CullBackFace, DebugRenderer::ECastShadow::On, draw_mode);
}
#endif // JPH_DEBUG_RENDERER
AABox TaperedCapsuleShape::GetInertiaApproximation() const
{
// TODO: For now the mass and inertia is that of a box
float avg_radius = 0.5f * (mTopRadius + mBottomRadius);
return AABox(Vec3(-avg_radius, mBottomCenter - mBottomRadius, -avg_radius), Vec3(avg_radius, mTopCenter + mTopRadius, avg_radius));
}
void TaperedCapsuleShape::SaveBinaryState(StreamOut &inStream) const
{
ConvexShape::SaveBinaryState(inStream);
inStream.Write(mCenterOfMass);
inStream.Write(mTopRadius);
inStream.Write(mBottomRadius);
inStream.Write(mTopCenter);
inStream.Write(mBottomCenter);
inStream.Write(mConvexRadius);
inStream.Write(mSinAlpha);
inStream.Write(mTanAlpha);
}
void TaperedCapsuleShape::RestoreBinaryState(StreamIn &inStream)
{
ConvexShape::RestoreBinaryState(inStream);
inStream.Read(mCenterOfMass);
inStream.Read(mTopRadius);
inStream.Read(mBottomRadius);
inStream.Read(mTopCenter);
inStream.Read(mBottomCenter);
inStream.Read(mConvexRadius);
inStream.Read(mSinAlpha);
inStream.Read(mTanAlpha);
}
bool TaperedCapsuleShape::IsValidScale(Vec3Arg inScale) const
{
return ConvexShape::IsValidScale(inScale) && ScaleHelpers::IsUniformScale(inScale.Abs());
}
Vec3 TaperedCapsuleShape::MakeScaleValid(Vec3Arg inScale) const
{
Vec3 scale = ScaleHelpers::MakeNonZeroScale(inScale);
return scale.GetSign() * ScaleHelpers::MakeUniformScale(scale.Abs());
}
void TaperedCapsuleShape::sRegister()
{
ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::TaperedCapsule);
f.mConstruct = []() -> Shape * { return new TaperedCapsuleShape; };
f.mColor = Color::sGreen;
}
JPH_NAMESPACE_END