godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Ragdoll/Ragdoll.cpp

706 lines
23 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Ragdoll/Ragdoll.h>
#include <Jolt/Physics/Constraints/SwingTwistConstraint.h>
#include <Jolt/Physics/PhysicsSystem.h>
#include <Jolt/Physics/Body/BodyLockMulti.h>
#include <Jolt/Physics/Collision/GroupFilterTable.h>
#include <Jolt/Physics/Collision/CollisionCollectorImpl.h>
#include <Jolt/Physics/Collision/CollideShape.h>
#include <Jolt/Physics/Collision/CollisionDispatch.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(RagdollSettings::Part)
{
JPH_ADD_BASE_CLASS(RagdollSettings::Part, BodyCreationSettings)
JPH_ADD_ATTRIBUTE(RagdollSettings::Part, mToParent)
}
JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(RagdollSettings::AdditionalConstraint)
{
JPH_ADD_ATTRIBUTE(RagdollSettings::AdditionalConstraint, mBodyIdx)
JPH_ADD_ATTRIBUTE(RagdollSettings::AdditionalConstraint, mConstraint)
}
JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(RagdollSettings)
{
JPH_ADD_ATTRIBUTE(RagdollSettings, mSkeleton)
JPH_ADD_ATTRIBUTE(RagdollSettings, mParts)
JPH_ADD_ATTRIBUTE(RagdollSettings, mAdditionalConstraints)
}
static inline BodyInterface &sGetBodyInterface(PhysicsSystem *inSystem, bool inLockBodies)
{
return inLockBodies? inSystem->GetBodyInterface() : inSystem->GetBodyInterfaceNoLock();
}
static inline const BodyLockInterface &sGetBodyLockInterface(const PhysicsSystem *inSystem, bool inLockBodies)
{
return inLockBodies? static_cast<const BodyLockInterface &>(inSystem->GetBodyLockInterface()) : static_cast<const BodyLockInterface &>(inSystem->GetBodyLockInterfaceNoLock());
}
bool RagdollSettings::Stabilize()
{
// Based on: Stop my Constraints from Blowing Up! - Oliver Strunk (Havok)
// Do 2 things:
// 1. Limit the mass ratios between parents and children (slide 16)
// 2. Increase the inertia of parents so that they're bigger or equal to the sum of their children (slide 34)
// If we don't have any joints there's nothing to stabilize
if (mSkeleton->GetJointCount() == 0)
return true;
// The skeleton can contain one or more static bodies. We can't modify the mass for those so we start a new stabilization chain for each joint under a static body until we reach the next static body.
// This array keeps track of which joints have been processed.
Array<bool> visited;
visited.resize(mSkeleton->GetJointCount());
for (size_t v = 0; v < visited.size(); ++v)
{
// Mark static bodies as visited so we won't process these
Part &p = mParts[v];
bool has_mass_properties = p.HasMassProperties();
visited[v] = !has_mass_properties;
if (has_mass_properties && p.mOverrideMassProperties != EOverrideMassProperties::MassAndInertiaProvided)
{
// Mass properties not yet calculated, do it now
p.mMassPropertiesOverride = p.GetMassProperties();
p.mOverrideMassProperties = EOverrideMassProperties::MassAndInertiaProvided;
}
}
// Find first unvisited part that either has no parent or that has a parent that was visited
for (int first_idx = 0; first_idx < mSkeleton->GetJointCount(); ++first_idx)
{
int first_idx_parent = mSkeleton->GetJoint(first_idx).mParentJointIndex;
if (!visited[first_idx] && (first_idx_parent == -1 || visited[first_idx_parent]))
{
// Find all children of first_idx and their children up to the next static part
int next_to_process = 0;
Array<int> indices;
indices.reserve(mSkeleton->GetJointCount());
visited[first_idx] = true;
indices.push_back(first_idx);
do
{
int parent_idx = indices[next_to_process++];
for (int child_idx = 0; child_idx < mSkeleton->GetJointCount(); ++child_idx)
if (!visited[child_idx] && mSkeleton->GetJoint(child_idx).mParentJointIndex == parent_idx)
{
visited[child_idx] = true;
indices.push_back(child_idx);
}
} while (next_to_process < (int)indices.size());
// If there's only 1 body, we can't redistribute mass
if (indices.size() == 1)
continue;
const float cMinMassRatio = 0.8f;
const float cMaxMassRatio = 1.2f;
// Ensure that the mass ratio from parent to child is within a range
float total_mass_ratio = 1.0f;
Array<float> mass_ratios;
mass_ratios.resize(mSkeleton->GetJointCount());
mass_ratios[indices[0]] = 1.0f;
for (int i = 1; i < (int)indices.size(); ++i)
{
int child_idx = indices[i];
int parent_idx = mSkeleton->GetJoint(child_idx).mParentJointIndex;
float ratio = mParts[child_idx].mMassPropertiesOverride.mMass / mParts[parent_idx].mMassPropertiesOverride.mMass;
mass_ratios[child_idx] = mass_ratios[parent_idx] * Clamp(ratio, cMinMassRatio, cMaxMassRatio);
total_mass_ratio += mass_ratios[child_idx];
}
// Calculate total mass of this chain
float total_mass = 0.0f;
for (int idx : indices)
total_mass += mParts[idx].mMassPropertiesOverride.mMass;
// Calculate how much mass belongs to a ratio of 1
float ratio_to_mass = total_mass / total_mass_ratio;
// Adjust all masses and inertia tensors for the new mass
for (int i : indices)
{
Part &p = mParts[i];
float old_mass = p.mMassPropertiesOverride.mMass;
float new_mass = mass_ratios[i] * ratio_to_mass;
p.mMassPropertiesOverride.mMass = new_mass;
p.mMassPropertiesOverride.mInertia *= new_mass / old_mass;
p.mMassPropertiesOverride.mInertia.SetColumn4(3, Vec4(0, 0, 0, 1));
}
const float cMaxInertiaIncrease = 2.0f;
// Get the principal moments of inertia for all parts
struct Principal
{
Mat44 mRotation;
Vec3 mDiagonal;
float mChildSum = 0.0f;
};
Array<Principal> principals;
principals.resize(mParts.size());
for (int i : indices)
if (!mParts[i].mMassPropertiesOverride.DecomposePrincipalMomentsOfInertia(principals[i].mRotation, principals[i].mDiagonal))
{
JPH_ASSERT(false, "Failed to decompose the inertia tensor!");
return false;
}
// Calculate sum of child inertias
// Walk backwards so we sum the leaves first
for (int i = (int)indices.size() - 1; i > 0; --i)
{
int child_idx = indices[i];
int parent_idx = mSkeleton->GetJoint(child_idx).mParentJointIndex;
principals[parent_idx].mChildSum += principals[child_idx].mDiagonal[0] + principals[child_idx].mChildSum;
}
// Adjust inertia tensors for all parts
for (int i : indices)
{
Part &p = mParts[i];
Principal &principal = principals[i];
if (principal.mChildSum != 0.0f)
{
// Calculate minimum inertia this object should have based on it children
float minimum = min(cMaxInertiaIncrease * principal.mDiagonal[0], principal.mChildSum);
principal.mDiagonal = Vec3::sMax(principal.mDiagonal, Vec3::sReplicate(minimum));
// Recalculate moment of inertia in body space
p.mMassPropertiesOverride.mInertia = principal.mRotation * Mat44::sScale(principal.mDiagonal) * principal.mRotation.Inversed3x3();
}
}
}
}
return true;
}
void RagdollSettings::DisableParentChildCollisions(const Mat44 *inJointMatrices, float inMinSeparationDistance)
{
int joint_count = mSkeleton->GetJointCount();
JPH_ASSERT(joint_count == (int)mParts.size());
// Create a group filter table that disables collisions between parent and child
Ref<GroupFilterTable> group_filter = new GroupFilterTable(joint_count);
for (int joint_idx = 0; joint_idx < joint_count; ++joint_idx)
{
int parent_joint = mSkeleton->GetJoint(joint_idx).mParentJointIndex;
if (parent_joint >= 0)
group_filter->DisableCollision(joint_idx, parent_joint);
}
// If joint matrices are provided
if (inJointMatrices != nullptr)
{
// Loop over all joints
for (int j1 = 0; j1 < joint_count; ++j1)
{
// Shape and transform for joint 1
const Part &part1 = mParts[j1];
const Shape *shape1 = part1.GetShape();
Vec3 scale1;
Mat44 com1 = (inJointMatrices[j1].PreTranslated(shape1->GetCenterOfMass())).Decompose(scale1);
// Loop over all other joints
for (int j2 = j1 + 1; j2 < joint_count; ++j2)
if (group_filter->IsCollisionEnabled(j1, j2)) // Only if collision is still enabled we need to test
{
// Shape and transform for joint 2
const Part &part2 = mParts[j2];
const Shape *shape2 = part2.GetShape();
Vec3 scale2;
Mat44 com2 = (inJointMatrices[j2].PreTranslated(shape2->GetCenterOfMass())).Decompose(scale2);
// Collision settings
CollideShapeSettings settings;
settings.mActiveEdgeMode = EActiveEdgeMode::CollideWithAll;
settings.mBackFaceMode = EBackFaceMode::CollideWithBackFaces;
settings.mMaxSeparationDistance = inMinSeparationDistance;
// Only check if one of the two bodies can become dynamic
if (part1.HasMassProperties() || part2.HasMassProperties())
{
// If there is a collision, disable the collision between the joints
AnyHitCollisionCollector<CollideShapeCollector> collector;
if (part1.HasMassProperties()) // Ensure that the first shape is always a dynamic one (we can't check mesh vs convex but we can check convex vs mesh)
CollisionDispatch::sCollideShapeVsShape(shape1, shape2, scale1, scale2, com1, com2, SubShapeIDCreator(), SubShapeIDCreator(), settings, collector);
else
CollisionDispatch::sCollideShapeVsShape(shape2, shape1, scale2, scale1, com2, com1, SubShapeIDCreator(), SubShapeIDCreator(), settings, collector);
if (collector.HadHit())
group_filter->DisableCollision(j1, j2);
}
}
}
}
// Loop over the body parts and assign them a sub group ID and the group filter
for (int joint_idx = 0; joint_idx < joint_count; ++joint_idx)
{
Part &part = mParts[joint_idx];
part.mCollisionGroup.SetSubGroupID(joint_idx);
part.mCollisionGroup.SetGroupFilter(group_filter);
}
}
void RagdollSettings::SaveBinaryState(StreamOut &inStream, bool inSaveShapes, bool inSaveGroupFilter) const
{
BodyCreationSettings::ShapeToIDMap shape_to_id;
BodyCreationSettings::MaterialToIDMap material_to_id;
BodyCreationSettings::GroupFilterToIDMap group_filter_to_id;
// Save skeleton
mSkeleton->SaveBinaryState(inStream);
// Save parts
inStream.Write((uint32)mParts.size());
for (const Part &p : mParts)
{
// Write body creation settings
p.SaveWithChildren(inStream, inSaveShapes? &shape_to_id : nullptr, inSaveShapes? &material_to_id : nullptr, inSaveGroupFilter? &group_filter_to_id : nullptr);
// Save constraint
inStream.Write(p.mToParent != nullptr);
if (p.mToParent != nullptr)
p.mToParent->SaveBinaryState(inStream);
}
// Save additional constraints
inStream.Write((uint32)mAdditionalConstraints.size());
for (const AdditionalConstraint &c : mAdditionalConstraints)
{
// Save bodies indices
inStream.Write(c.mBodyIdx);
// Save constraint
c.mConstraint->SaveBinaryState(inStream);
}
}
RagdollSettings::RagdollResult RagdollSettings::sRestoreFromBinaryState(StreamIn &inStream)
{
RagdollResult result;
// Restore skeleton
Skeleton::SkeletonResult skeleton_result = Skeleton::sRestoreFromBinaryState(inStream);
if (skeleton_result.HasError())
{
result.SetError(skeleton_result.GetError());
return result;
}
// Create ragdoll
Ref<RagdollSettings> ragdoll = new RagdollSettings();
ragdoll->mSkeleton = skeleton_result.Get();
BodyCreationSettings::IDToShapeMap id_to_shape;
BodyCreationSettings::IDToMaterialMap id_to_material;
BodyCreationSettings::IDToGroupFilterMap id_to_group_filter;
// Reserve some memory to avoid frequent reallocations
id_to_shape.reserve(1024);
id_to_material.reserve(128);
id_to_group_filter.reserve(128);
// Read parts
uint32 len = 0;
inStream.Read(len);
ragdoll->mParts.resize(len);
for (Part &p : ragdoll->mParts)
{
// Read creation settings
BodyCreationSettings::BCSResult bcs_result = BodyCreationSettings::sRestoreWithChildren(inStream, id_to_shape, id_to_material, id_to_group_filter);
if (bcs_result.HasError())
{
result.SetError(bcs_result.GetError());
return result;
}
static_cast<BodyCreationSettings &>(p) = bcs_result.Get();
// Read constraint
bool has_constraint = false;
inStream.Read(has_constraint);
if (has_constraint)
{
ConstraintSettings::ConstraintResult constraint_result = ConstraintSettings::sRestoreFromBinaryState(inStream);
if (constraint_result.HasError())
{
result.SetError(constraint_result.GetError());
return result;
}
p.mToParent = DynamicCast<TwoBodyConstraintSettings>(constraint_result.Get());
}
}
// Read additional constraints
len = 0;
inStream.Read(len);
ragdoll->mAdditionalConstraints.resize(len);
for (AdditionalConstraint &c : ragdoll->mAdditionalConstraints)
{
// Read body indices
inStream.Read(c.mBodyIdx);
// Read constraint
ConstraintSettings::ConstraintResult constraint_result = ConstraintSettings::sRestoreFromBinaryState(inStream);
if (constraint_result.HasError())
{
result.SetError(constraint_result.GetError());
return result;
}
c.mConstraint = DynamicCast<TwoBodyConstraintSettings>(constraint_result.Get());
}
// Create mapping tables
ragdoll->CalculateBodyIndexToConstraintIndex();
ragdoll->CalculateConstraintIndexToBodyIdxPair();
result.Set(ragdoll);
return result;
}
Ragdoll *RagdollSettings::CreateRagdoll(CollisionGroup::GroupID inCollisionGroup, uint64 inUserData, PhysicsSystem *inSystem) const
{
Ragdoll *r = new Ragdoll(inSystem);
r->mRagdollSettings = this;
r->mBodyIDs.reserve(mParts.size());
r->mConstraints.reserve(mParts.size() + mAdditionalConstraints.size());
// Create bodies and constraints
BodyInterface &bi = inSystem->GetBodyInterface();
Body **bodies = (Body **)JPH_STACK_ALLOC(mParts.size() * sizeof(Body *));
int joint_idx = 0;
for (const Part &p : mParts)
{
Body *body2 = bi.CreateBody(p);
if (body2 == nullptr)
{
// Out of bodies, failed to create ragdoll
delete r;
return nullptr;
}
body2->GetCollisionGroup().SetGroupID(inCollisionGroup);
body2->SetUserData(inUserData);
// Temporarily store body pointer for hooking up constraints
bodies[joint_idx] = body2;
// Create constraint
if (p.mToParent != nullptr)
{
Body *body1 = bodies[mSkeleton->GetJoint(joint_idx).mParentJointIndex];
r->mConstraints.push_back(p.mToParent->Create(*body1, *body2));
}
// Store body ID and constraint in parallel arrays
r->mBodyIDs.push_back(body2->GetID());
++joint_idx;
}
// Add additional constraints
for (const AdditionalConstraint &c : mAdditionalConstraints)
{
Body *body1 = bodies[c.mBodyIdx[0]];
Body *body2 = bodies[c.mBodyIdx[1]];
r->mConstraints.push_back(c.mConstraint->Create(*body1, *body2));
}
return r;
}
void RagdollSettings::CalculateBodyIndexToConstraintIndex()
{
mBodyIndexToConstraintIndex.clear();
mBodyIndexToConstraintIndex.reserve(mParts.size());
int constraint_index = 0;
for (const Part &p : mParts)
{
if (p.mToParent != nullptr)
mBodyIndexToConstraintIndex.push_back(constraint_index++);
else
mBodyIndexToConstraintIndex.push_back(-1);
}
}
void RagdollSettings::CalculateConstraintIndexToBodyIdxPair()
{
mConstraintIndexToBodyIdxPair.clear();
mConstraintIndexToBodyIdxPair.reserve(mParts.size() + mAdditionalConstraints.size());
// Add constraints between parts
int joint_idx = 0;
for (const Part &p : mParts)
{
if (p.mToParent != nullptr)
{
int parent_joint_idx = mSkeleton->GetJoint(joint_idx).mParentJointIndex;
mConstraintIndexToBodyIdxPair.emplace_back(parent_joint_idx, joint_idx);
}
++joint_idx;
}
// Add additional constraints
for (const AdditionalConstraint &c : mAdditionalConstraints)
mConstraintIndexToBodyIdxPair.emplace_back(c.mBodyIdx[0], c.mBodyIdx[1]);
}
Ragdoll::~Ragdoll()
{
// Destroy all bodies
mSystem->GetBodyInterface().DestroyBodies(mBodyIDs.data(), (int)mBodyIDs.size());
}
void Ragdoll::AddToPhysicsSystem(EActivation inActivationMode, bool inLockBodies)
{
// Scope for JPH_STACK_ALLOC
{
// Create copy of body ids since they will be shuffled
int num_bodies = (int)mBodyIDs.size();
BodyID *bodies = (BodyID *)JPH_STACK_ALLOC(num_bodies * sizeof(BodyID));
memcpy(bodies, mBodyIDs.data(), num_bodies * sizeof(BodyID));
// Insert bodies as a batch
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
BodyInterface::AddState add_state = bi.AddBodiesPrepare(bodies, num_bodies);
bi.AddBodiesFinalize(bodies, num_bodies, add_state, inActivationMode);
}
// Add all constraints
mSystem->AddConstraints((Constraint **)mConstraints.data(), (int)mConstraints.size());
}
void Ragdoll::RemoveFromPhysicsSystem(bool inLockBodies)
{
// Remove all constraints before removing the bodies
mSystem->RemoveConstraints((Constraint **)mConstraints.data(), (int)mConstraints.size());
// Scope for JPH_STACK_ALLOC
{
// Create copy of body ids since they will be shuffled
int num_bodies = (int)mBodyIDs.size();
BodyID *bodies = (BodyID *)JPH_STACK_ALLOC(num_bodies * sizeof(BodyID));
memcpy(bodies, mBodyIDs.data(), num_bodies * sizeof(BodyID));
// Remove all bodies as a batch
sGetBodyInterface(mSystem, inLockBodies).RemoveBodies(bodies, num_bodies);
}
}
void Ragdoll::Activate(bool inLockBodies)
{
sGetBodyInterface(mSystem, inLockBodies).ActivateBodies(mBodyIDs.data(), (int)mBodyIDs.size());
}
bool Ragdoll::IsActive(bool inLockBodies) const
{
// Lock the bodies
int body_count = (int)mBodyIDs.size();
BodyLockMultiRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
// Test if any body is active
for (int b = 0; b < body_count; ++b)
{
const Body *body = lock.GetBody(b);
if (body->IsActive())
return true;
}
return false;
}
void Ragdoll::SetGroupID(CollisionGroup::GroupID inGroupID, bool inLockBodies)
{
// Lock the bodies
int body_count = (int)mBodyIDs.size();
BodyLockMultiWrite lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
// Update group ID
for (int b = 0; b < body_count; ++b)
{
Body *body = lock.GetBody(b);
body->GetCollisionGroup().SetGroupID(inGroupID);
}
}
void Ragdoll::SetPose(const SkeletonPose &inPose, bool inLockBodies)
{
JPH_ASSERT(inPose.GetSkeleton() == mRagdollSettings->mSkeleton);
SetPose(inPose.GetRootOffset(), inPose.GetJointMatrices().data(), inLockBodies);
}
void Ragdoll::SetPose(RVec3Arg inRootOffset, const Mat44 *inJointMatrices, bool inLockBodies)
{
// Move bodies instantly into the correct position
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
for (int i = 0; i < (int)mBodyIDs.size(); ++i)
{
const Mat44 &joint = inJointMatrices[i];
bi.SetPositionAndRotation(mBodyIDs[i], inRootOffset + joint.GetTranslation(), joint.GetQuaternion(), EActivation::DontActivate);
}
}
void Ragdoll::GetPose(SkeletonPose &outPose, bool inLockBodies)
{
JPH_ASSERT(outPose.GetSkeleton() == mRagdollSettings->mSkeleton);
RVec3 root_offset;
GetPose(root_offset, outPose.GetJointMatrices().data(), inLockBodies);
outPose.SetRootOffset(root_offset);
}
void Ragdoll::GetPose(RVec3 &outRootOffset, Mat44 *outJointMatrices, bool inLockBodies)
{
// Lock the bodies
int body_count = (int)mBodyIDs.size();
if (body_count == 0)
return;
BodyLockMultiRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
// Get root matrix
const Body *root = lock.GetBody(0);
RMat44 root_transform = root->GetWorldTransform();
outRootOffset = root_transform.GetTranslation();
outJointMatrices[0] = Mat44(root_transform.GetColumn4(0), root_transform.GetColumn4(1), root_transform.GetColumn4(2), Vec4(0, 0, 0, 1));
// Get other matrices
for (int b = 1; b < body_count; ++b)
{
const Body *body = lock.GetBody(b);
RMat44 transform = body->GetWorldTransform();
outJointMatrices[b] = Mat44(transform.GetColumn4(0), transform.GetColumn4(1), transform.GetColumn4(2), Vec4(Vec3(transform.GetTranslation() - outRootOffset), 1));
}
}
void Ragdoll::ResetWarmStart()
{
for (TwoBodyConstraint *c : mConstraints)
c->ResetWarmStart();
}
void Ragdoll::DriveToPoseUsingKinematics(const SkeletonPose &inPose, float inDeltaTime, bool inLockBodies)
{
JPH_ASSERT(inPose.GetSkeleton() == mRagdollSettings->mSkeleton);
DriveToPoseUsingKinematics(inPose.GetRootOffset(), inPose.GetJointMatrices().data(), inDeltaTime, inLockBodies);
}
void Ragdoll::DriveToPoseUsingKinematics(RVec3Arg inRootOffset, const Mat44 *inJointMatrices, float inDeltaTime, bool inLockBodies)
{
// Move bodies into the correct position using kinematics
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
for (int i = 0; i < (int)mBodyIDs.size(); ++i)
{
const Mat44 &joint = inJointMatrices[i];
bi.MoveKinematic(mBodyIDs[i], inRootOffset + joint.GetTranslation(), joint.GetQuaternion(), inDeltaTime);
}
}
void Ragdoll::DriveToPoseUsingMotors(const SkeletonPose &inPose)
{
JPH_ASSERT(inPose.GetSkeleton() == mRagdollSettings->mSkeleton);
// Move bodies into the correct position using constraints
for (int i = 0; i < (int)inPose.GetJointMatrices().size(); ++i)
{
int constraint_idx = mRagdollSettings->GetConstraintIndexForBodyIndex(i);
if (constraint_idx >= 0)
{
// Get desired rotation of this body relative to its parent
const SkeletalAnimation::JointState &joint_state = inPose.GetJoint(i);
// Drive constraint to target
TwoBodyConstraint *constraint = mConstraints[constraint_idx];
EConstraintSubType sub_type = constraint->GetSubType();
if (sub_type == EConstraintSubType::SwingTwist)
{
SwingTwistConstraint *st_constraint = static_cast<SwingTwistConstraint *>(constraint);
st_constraint->SetSwingMotorState(EMotorState::Position);
st_constraint->SetTwistMotorState(EMotorState::Position);
st_constraint->SetTargetOrientationBS(joint_state.mRotation);
}
else
JPH_ASSERT(false, "Constraint type not implemented!");
}
}
}
void Ragdoll::SetLinearAndAngularVelocity(Vec3Arg inLinearVelocity, Vec3Arg inAngularVelocity, bool inLockBodies)
{
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
for (BodyID body_id : mBodyIDs)
bi.SetLinearAndAngularVelocity(body_id, inLinearVelocity, inAngularVelocity);
}
void Ragdoll::SetLinearVelocity(Vec3Arg inLinearVelocity, bool inLockBodies)
{
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
for (BodyID body_id : mBodyIDs)
bi.SetLinearVelocity(body_id, inLinearVelocity);
}
void Ragdoll::AddLinearVelocity(Vec3Arg inLinearVelocity, bool inLockBodies)
{
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
for (BodyID body_id : mBodyIDs)
bi.AddLinearVelocity(body_id, inLinearVelocity);
}
void Ragdoll::AddImpulse(Vec3Arg inImpulse, bool inLockBodies)
{
BodyInterface &bi = sGetBodyInterface(mSystem, inLockBodies);
for (BodyID body_id : mBodyIDs)
bi.AddImpulse(body_id, inImpulse);
}
void Ragdoll::GetRootTransform(RVec3 &outPosition, Quat &outRotation, bool inLockBodies) const
{
BodyLockRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs[0]);
if (lock.Succeeded())
{
const Body &body = lock.GetBody();
outPosition = body.GetPosition();
outRotation = body.GetRotation();
}
else
{
outPosition = RVec3::sZero();
outRotation = Quat::sIdentity();
}
}
AABox Ragdoll::GetWorldSpaceBounds(bool inLockBodies) const
{
// Lock the bodies
int body_count = (int)mBodyIDs.size();
BodyLockMultiRead lock(sGetBodyLockInterface(mSystem, inLockBodies), mBodyIDs.data(), body_count);
// Encapsulate all bodies
AABox bounds;
for (int b = 0; b < body_count; ++b)
{
const Body *body = lock.GetBody(b);
if (body != nullptr)
bounds.Encapsulate(body->GetWorldSpaceBounds());
}
return bounds;
}
JPH_NAMESPACE_END