godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/Shape/TriangleShape.cpp

424 lines
16 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Collision/Shape/TriangleShape.h>
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
#include <Jolt/Physics/Collision/Shape/GetTrianglesContext.h>
#include <Jolt/Physics/Collision/RayCast.h>
#include <Jolt/Physics/Collision/ShapeCast.h>
#include <Jolt/Physics/Collision/CastResult.h>
#include <Jolt/Physics/Collision/CollidePointResult.h>
#include <Jolt/Physics/Collision/TransformedShape.h>
#include <Jolt/Physics/Collision/CastConvexVsTriangles.h>
#include <Jolt/Physics/Collision/CastSphereVsTriangles.h>
#include <Jolt/Physics/Collision/CollideConvexVsTriangles.h>
#include <Jolt/Physics/Collision/CollideSphereVsTriangles.h>
#include <Jolt/Physics/Collision/CollisionDispatch.h>
#include <Jolt/Physics/Collision/CollideSoftBodyVerticesVsTriangles.h>
#include <Jolt/Geometry/ConvexSupport.h>
#include <Jolt/Geometry/RayTriangle.h>
#include <Jolt/Geometry/ClosestPoint.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(TriangleShapeSettings)
{
JPH_ADD_BASE_CLASS(TriangleShapeSettings, ConvexShapeSettings)
JPH_ADD_ATTRIBUTE(TriangleShapeSettings, mV1)
JPH_ADD_ATTRIBUTE(TriangleShapeSettings, mV2)
JPH_ADD_ATTRIBUTE(TriangleShapeSettings, mV3)
JPH_ADD_ATTRIBUTE(TriangleShapeSettings, mConvexRadius)
}
ShapeSettings::ShapeResult TriangleShapeSettings::Create() const
{
if (mCachedResult.IsEmpty())
Ref<Shape> shape = new TriangleShape(*this, mCachedResult);
return mCachedResult;
}
TriangleShape::TriangleShape(const TriangleShapeSettings &inSettings, ShapeResult &outResult) :
ConvexShape(EShapeSubType::Triangle, inSettings, outResult),
mV1(inSettings.mV1),
mV2(inSettings.mV2),
mV3(inSettings.mV3),
mConvexRadius(inSettings.mConvexRadius)
{
if (inSettings.mConvexRadius < 0.0f)
{
outResult.SetError("Invalid convex radius");
return;
}
outResult.Set(this);
}
AABox TriangleShape::GetLocalBounds() const
{
AABox bounds(mV1, mV1);
bounds.Encapsulate(mV2);
bounds.Encapsulate(mV3);
bounds.ExpandBy(Vec3::sReplicate(mConvexRadius));
return bounds;
}
AABox TriangleShape::GetWorldSpaceBounds(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
{
JPH_ASSERT(IsValidScale(inScale));
Vec3 v1 = inCenterOfMassTransform * (inScale * mV1);
Vec3 v2 = inCenterOfMassTransform * (inScale * mV2);
Vec3 v3 = inCenterOfMassTransform * (inScale * mV3);
AABox bounds(v1, v1);
bounds.Encapsulate(v2);
bounds.Encapsulate(v3);
bounds.ExpandBy(inScale * mConvexRadius);
return bounds;
}
class TriangleShape::TriangleNoConvex final : public Support
{
public:
TriangleNoConvex(Vec3Arg inV1, Vec3Arg inV2, Vec3Arg inV3) :
mTriangleSupport(inV1, inV2, inV3)
{
static_assert(sizeof(TriangleNoConvex) <= sizeof(SupportBuffer), "Buffer size too small");
JPH_ASSERT(IsAligned(this, alignof(TriangleNoConvex)));
}
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
{
return mTriangleSupport.GetSupport(inDirection);
}
virtual float GetConvexRadius() const override
{
return 0.0f;
}
private:
TriangleConvexSupport mTriangleSupport;
};
class TriangleShape::TriangleWithConvex final : public Support
{
public:
TriangleWithConvex(Vec3Arg inV1, Vec3Arg inV2, Vec3Arg inV3, float inConvexRadius) :
mConvexRadius(inConvexRadius),
mTriangleSupport(inV1, inV2, inV3)
{
static_assert(sizeof(TriangleWithConvex) <= sizeof(SupportBuffer), "Buffer size too small");
JPH_ASSERT(IsAligned(this, alignof(TriangleWithConvex)));
}
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
{
Vec3 support = mTriangleSupport.GetSupport(inDirection);
float len = inDirection.Length();
if (len > 0.0f)
support += (mConvexRadius / len) * inDirection;
return support;
}
virtual float GetConvexRadius() const override
{
return mConvexRadius;
}
private:
float mConvexRadius;
TriangleConvexSupport mTriangleSupport;
};
const ConvexShape::Support *TriangleShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const
{
switch (inMode)
{
case ESupportMode::IncludeConvexRadius:
case ESupportMode::Default:
if (mConvexRadius > 0.0f)
return new (&inBuffer) TriangleWithConvex(inScale * mV1, inScale * mV2, inScale * mV3, mConvexRadius);
[[fallthrough]];
case ESupportMode::ExcludeConvexRadius:
return new (&inBuffer) TriangleNoConvex(inScale * mV1, inScale * mV2, inScale * mV3);
}
JPH_ASSERT(false);
return nullptr;
}
void TriangleShape::GetSupportingFace(const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const
{
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
// Calculate transform with scale
Mat44 transform = inCenterOfMassTransform.PreScaled(inScale);
// Flip triangle if scaled inside out
if (ScaleHelpers::IsInsideOut(inScale))
{
outVertices.push_back(transform * mV1);
outVertices.push_back(transform * mV3);
outVertices.push_back(transform * mV2);
}
else
{
outVertices.push_back(transform * mV1);
outVertices.push_back(transform * mV2);
outVertices.push_back(transform * mV3);
}
}
MassProperties TriangleShape::GetMassProperties() const
{
// We cannot calculate the volume for a triangle, so we return invalid mass properties.
// If you want your triangle to be dynamic, then you should provide the mass properties yourself when
// creating a Body:
//
// BodyCreationSettings::mOverrideMassProperties = EOverrideMassProperties::MassAndInertiaProvided;
// BodyCreationSettings::mMassPropertiesOverride.SetMassAndInertiaOfSolidBox(Vec3::sReplicate(1.0f), 1000.0f);
//
// Note that this makes the triangle shape behave the same as a mesh shape with a single triangle.
// In practice there is very little use for a dynamic triangle shape as back side collisions will be ignored
// so if the triangle falls the wrong way it will sink through the floor.
return MassProperties();
}
Vec3 TriangleShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const
{
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
Vec3 cross = (mV2 - mV1).Cross(mV3 - mV1);
float len = cross.Length();
return len != 0.0f? cross / len : Vec3::sAxisY();
}
void TriangleShape::GetSubmergedVolume(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const Plane &inSurface, float &outTotalVolume, float &outSubmergedVolume, Vec3 &outCenterOfBuoyancy JPH_IF_DEBUG_RENDERER(, RVec3Arg inBaseOffset)) const
{
// A triangle has no volume
outTotalVolume = outSubmergedVolume = 0.0f;
outCenterOfBuoyancy = Vec3::sZero();
}
#ifdef JPH_DEBUG_RENDERER
void TriangleShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const
{
RVec3 v1 = inCenterOfMassTransform * (inScale * mV1);
RVec3 v2 = inCenterOfMassTransform * (inScale * mV2);
RVec3 v3 = inCenterOfMassTransform * (inScale * mV3);
if (ScaleHelpers::IsInsideOut(inScale))
std::swap(v1, v2);
if (inDrawWireframe)
inRenderer->DrawWireTriangle(v1, v2, v3, inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor);
else
inRenderer->DrawTriangle(v1, v2, v3, inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor);
}
#endif // JPH_DEBUG_RENDERER
bool TriangleShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const
{
float fraction = RayTriangle(inRay.mOrigin, inRay.mDirection, mV1, mV2, mV3);
if (fraction < ioHit.mFraction)
{
ioHit.mFraction = fraction;
ioHit.mSubShapeID2 = inSubShapeIDCreator.GetID();
return true;
}
return false;
}
void TriangleShape::CastRay(const RayCast &inRay, const RayCastSettings &inRayCastSettings, const SubShapeIDCreator &inSubShapeIDCreator, CastRayCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
// Test shape filter
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
return;
// Back facing check
if (inRayCastSettings.mBackFaceModeTriangles == EBackFaceMode::IgnoreBackFaces && (mV2 - mV1).Cross(mV3 - mV1).Dot(inRay.mDirection) > 0.0f)
return;
// Test ray against triangle
float fraction = RayTriangle(inRay.mOrigin, inRay.mDirection, mV1, mV2, mV3);
if (fraction < ioCollector.GetEarlyOutFraction())
{
// Better hit than the current hit
RayCastResult hit;
hit.mBodyID = TransformedShape::sGetBodyID(ioCollector.GetContext());
hit.mFraction = fraction;
hit.mSubShapeID2 = inSubShapeIDCreator.GetID();
ioCollector.AddHit(hit);
}
}
void TriangleShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
// Can't be inside a triangle
}
void TriangleShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const
{
CollideSoftBodyVerticesVsTriangles collider(inCenterOfMassTransform, inScale);
for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v)
if (v.GetInvMass() > 0.0f)
{
collider.StartVertex(v);
collider.ProcessTriangle(mV1, mV2, mV3);
collider.FinishVertex(v, inCollidingShapeIndex);
}
}
void TriangleShape::sCollideConvexVsTriangle(const Shape *inShape1, const Shape *inShape2, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector, [[maybe_unused]] const ShapeFilter &inShapeFilter)
{
JPH_ASSERT(inShape1->GetType() == EShapeType::Convex);
const ConvexShape *shape1 = static_cast<const ConvexShape *>(inShape1);
JPH_ASSERT(inShape2->GetSubType() == EShapeSubType::Triangle);
const TriangleShape *shape2 = static_cast<const TriangleShape *>(inShape2);
CollideConvexVsTriangles collider(shape1, inScale1, inScale2, inCenterOfMassTransform1, inCenterOfMassTransform2, inSubShapeIDCreator1.GetID(), inCollideShapeSettings, ioCollector);
collider.Collide(shape2->mV1, shape2->mV2, shape2->mV3, 0b111, inSubShapeIDCreator2.GetID());
}
void TriangleShape::sCollideSphereVsTriangle(const Shape *inShape1, const Shape *inShape2, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector, [[maybe_unused]] const ShapeFilter &inShapeFilter)
{
JPH_ASSERT(inShape1->GetSubType() == EShapeSubType::Sphere);
const SphereShape *shape1 = static_cast<const SphereShape *>(inShape1);
JPH_ASSERT(inShape2->GetSubType() == EShapeSubType::Triangle);
const TriangleShape *shape2 = static_cast<const TriangleShape *>(inShape2);
CollideSphereVsTriangles collider(shape1, inScale1, inScale2, inCenterOfMassTransform1, inCenterOfMassTransform2, inSubShapeIDCreator1.GetID(), inCollideShapeSettings, ioCollector);
collider.Collide(shape2->mV1, shape2->mV2, shape2->mV3, 0b111, inSubShapeIDCreator2.GetID());
}
void TriangleShape::sCastConvexVsTriangle(const ShapeCast &inShapeCast, const ShapeCastSettings &inShapeCastSettings, const Shape *inShape, Vec3Arg inScale, [[maybe_unused]] const ShapeFilter &inShapeFilter, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, CastShapeCollector &ioCollector)
{
JPH_ASSERT(inShape->GetSubType() == EShapeSubType::Triangle);
const TriangleShape *shape = static_cast<const TriangleShape *>(inShape);
CastConvexVsTriangles caster(inShapeCast, inShapeCastSettings, inScale, inCenterOfMassTransform2, inSubShapeIDCreator1, ioCollector);
caster.Cast(shape->mV1, shape->mV2, shape->mV3, 0b111, inSubShapeIDCreator2.GetID());
}
void TriangleShape::sCastSphereVsTriangle(const ShapeCast &inShapeCast, const ShapeCastSettings &inShapeCastSettings, const Shape *inShape, Vec3Arg inScale, [[maybe_unused]] const ShapeFilter &inShapeFilter, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, CastShapeCollector &ioCollector)
{
JPH_ASSERT(inShape->GetSubType() == EShapeSubType::Triangle);
const TriangleShape *shape = static_cast<const TriangleShape *>(inShape);
CastSphereVsTriangles caster(inShapeCast, inShapeCastSettings, inScale, inCenterOfMassTransform2, inSubShapeIDCreator1, ioCollector);
caster.Cast(shape->mV1, shape->mV2, shape->mV3, 0b111, inSubShapeIDCreator2.GetID());
}
class TriangleShape::TSGetTrianglesContext
{
public:
TSGetTrianglesContext(Vec3Arg inV1, Vec3Arg inV2, Vec3Arg inV3) : mV1(inV1), mV2(inV2), mV3(inV3) { }
Vec3 mV1;
Vec3 mV2;
Vec3 mV3;
bool mIsDone = false;
};
void TriangleShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const
{
static_assert(sizeof(TSGetTrianglesContext) <= sizeof(GetTrianglesContext), "GetTrianglesContext too small");
JPH_ASSERT(IsAligned(&ioContext, alignof(TSGetTrianglesContext)));
Mat44 m = Mat44::sRotationTranslation(inRotation, inPositionCOM) * Mat44::sScale(inScale);
new (&ioContext) TSGetTrianglesContext(m * mV1, m * mV2, m * mV3);
}
int TriangleShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const
{
static_assert(cGetTrianglesMinTrianglesRequested >= 3, "cGetTrianglesMinTrianglesRequested is too small");
JPH_ASSERT(inMaxTrianglesRequested >= cGetTrianglesMinTrianglesRequested);
TSGetTrianglesContext &context = (TSGetTrianglesContext &)ioContext;
// Only return the triangle the 1st time
if (context.mIsDone)
return 0;
context.mIsDone = true;
// Store triangle
context.mV1.StoreFloat3(outTriangleVertices);
context.mV2.StoreFloat3(outTriangleVertices + 1);
context.mV3.StoreFloat3(outTriangleVertices + 2);
// Store material
if (outMaterials != nullptr)
*outMaterials = GetMaterial();
return 1;
}
void TriangleShape::SaveBinaryState(StreamOut &inStream) const
{
ConvexShape::SaveBinaryState(inStream);
inStream.Write(mV1);
inStream.Write(mV2);
inStream.Write(mV3);
inStream.Write(mConvexRadius);
}
void TriangleShape::RestoreBinaryState(StreamIn &inStream)
{
ConvexShape::RestoreBinaryState(inStream);
inStream.Read(mV1);
inStream.Read(mV2);
inStream.Read(mV3);
inStream.Read(mConvexRadius);
}
bool TriangleShape::IsValidScale(Vec3Arg inScale) const
{
return ConvexShape::IsValidScale(inScale) && (mConvexRadius == 0.0f || ScaleHelpers::IsUniformScale(inScale.Abs()));
}
Vec3 TriangleShape::MakeScaleValid(Vec3Arg inScale) const
{
Vec3 scale = ScaleHelpers::MakeNonZeroScale(inScale);
if (mConvexRadius == 0.0f)
return scale;
return scale.GetSign() * ScaleHelpers::MakeUniformScale(scale.Abs());
}
void TriangleShape::sRegister()
{
ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::Triangle);
f.mConstruct = []() -> Shape * { return new TriangleShape; };
f.mColor = Color::sGreen;
for (EShapeSubType s : sConvexSubShapeTypes)
{
CollisionDispatch::sRegisterCollideShape(s, EShapeSubType::Triangle, sCollideConvexVsTriangle);
CollisionDispatch::sRegisterCastShape(s, EShapeSubType::Triangle, sCastConvexVsTriangle);
}
// Specialized collision functions
CollisionDispatch::sRegisterCollideShape(EShapeSubType::Sphere, EShapeSubType::Triangle, sCollideSphereVsTriangle);
CollisionDispatch::sRegisterCastShape(EShapeSubType::Sphere, EShapeSubType::Triangle, sCastSphereVsTriangle);
}
JPH_NAMESPACE_END