454 lines
16 KiB
C++
454 lines
16 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#include <Jolt/Jolt.h>
|
|
|
|
#include <Jolt/Physics/Collision/Shape/TaperedCapsuleShape.h>
|
|
#include <Jolt/Physics/Collision/Shape/SphereShape.h>
|
|
#include <Jolt/Physics/Collision/Shape/RotatedTranslatedShape.h>
|
|
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
|
|
#include <Jolt/Physics/Collision/TransformedShape.h>
|
|
#include <Jolt/Physics/Collision/CollideSoftBodyVertexIterator.h>
|
|
#include <Jolt/Geometry/RayCapsule.h>
|
|
#include <Jolt/ObjectStream/TypeDeclarations.h>
|
|
#include <Jolt/Core/StreamIn.h>
|
|
#include <Jolt/Core/StreamOut.h>
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
#include <Jolt/Renderer/DebugRenderer.h>
|
|
#endif // JPH_DEBUG_RENDERER
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(TaperedCapsuleShapeSettings)
|
|
{
|
|
JPH_ADD_BASE_CLASS(TaperedCapsuleShapeSettings, ConvexShapeSettings)
|
|
|
|
JPH_ADD_ATTRIBUTE(TaperedCapsuleShapeSettings, mHalfHeightOfTaperedCylinder)
|
|
JPH_ADD_ATTRIBUTE(TaperedCapsuleShapeSettings, mTopRadius)
|
|
JPH_ADD_ATTRIBUTE(TaperedCapsuleShapeSettings, mBottomRadius)
|
|
}
|
|
|
|
bool TaperedCapsuleShapeSettings::IsSphere() const
|
|
{
|
|
return max(mTopRadius, mBottomRadius) >= 2.0f * mHalfHeightOfTaperedCylinder + min(mTopRadius, mBottomRadius);
|
|
}
|
|
|
|
ShapeSettings::ShapeResult TaperedCapsuleShapeSettings::Create() const
|
|
{
|
|
if (mCachedResult.IsEmpty())
|
|
{
|
|
Ref<Shape> shape;
|
|
if (IsValid() && IsSphere())
|
|
{
|
|
// Determine sphere center and radius
|
|
float radius, center;
|
|
if (mTopRadius > mBottomRadius)
|
|
{
|
|
radius = mTopRadius;
|
|
center = mHalfHeightOfTaperedCylinder;
|
|
}
|
|
else
|
|
{
|
|
radius = mBottomRadius;
|
|
center = -mHalfHeightOfTaperedCylinder;
|
|
}
|
|
|
|
// Create sphere
|
|
shape = new SphereShape(radius, mMaterial);
|
|
|
|
// Offset sphere if needed
|
|
if (abs(center) > 1.0e-6f)
|
|
{
|
|
RotatedTranslatedShapeSettings rot_trans(Vec3(0, center, 0), Quat::sIdentity(), shape);
|
|
mCachedResult = rot_trans.Create();
|
|
}
|
|
else
|
|
mCachedResult.Set(shape);
|
|
}
|
|
else
|
|
{
|
|
// Normal tapered capsule shape
|
|
shape = new TaperedCapsuleShape(*this, mCachedResult);
|
|
}
|
|
}
|
|
return mCachedResult;
|
|
}
|
|
|
|
TaperedCapsuleShapeSettings::TaperedCapsuleShapeSettings(float inHalfHeightOfTaperedCylinder, float inTopRadius, float inBottomRadius, const PhysicsMaterial *inMaterial) :
|
|
ConvexShapeSettings(inMaterial),
|
|
mHalfHeightOfTaperedCylinder(inHalfHeightOfTaperedCylinder),
|
|
mTopRadius(inTopRadius),
|
|
mBottomRadius(inBottomRadius)
|
|
{
|
|
}
|
|
|
|
TaperedCapsuleShape::TaperedCapsuleShape(const TaperedCapsuleShapeSettings &inSettings, ShapeResult &outResult) :
|
|
ConvexShape(EShapeSubType::TaperedCapsule, inSettings, outResult),
|
|
mTopRadius(inSettings.mTopRadius),
|
|
mBottomRadius(inSettings.mBottomRadius)
|
|
{
|
|
if (mTopRadius <= 0.0f)
|
|
{
|
|
outResult.SetError("Invalid top radius");
|
|
return;
|
|
}
|
|
|
|
if (mBottomRadius <= 0.0f)
|
|
{
|
|
outResult.SetError("Invalid bottom radius");
|
|
return;
|
|
}
|
|
|
|
if (inSettings.mHalfHeightOfTaperedCylinder <= 0.0f)
|
|
{
|
|
outResult.SetError("Invalid height");
|
|
return;
|
|
}
|
|
|
|
// If this goes off one of the sphere ends falls totally inside the other and you should use a sphere instead
|
|
if (inSettings.IsSphere())
|
|
{
|
|
outResult.SetError("One sphere embedded in other sphere, please use sphere shape instead");
|
|
return;
|
|
}
|
|
|
|
// Approximation: The center of mass is exactly half way between the top and bottom cap of the tapered capsule
|
|
mTopCenter = inSettings.mHalfHeightOfTaperedCylinder + 0.5f * (mBottomRadius - mTopRadius);
|
|
mBottomCenter = -inSettings.mHalfHeightOfTaperedCylinder + 0.5f * (mBottomRadius - mTopRadius);
|
|
|
|
// Calculate center of mass
|
|
mCenterOfMass = Vec3(0, inSettings.mHalfHeightOfTaperedCylinder - mTopCenter, 0);
|
|
|
|
// Calculate convex radius
|
|
mConvexRadius = min(mTopRadius, mBottomRadius);
|
|
JPH_ASSERT(mConvexRadius > 0.0f);
|
|
|
|
// Calculate the sin and tan of the angle that the cone surface makes with the Y axis
|
|
// See: TaperedCapsuleShape.gliffy
|
|
mSinAlpha = (mBottomRadius - mTopRadius) / (mTopCenter - mBottomCenter);
|
|
JPH_ASSERT(mSinAlpha >= -1.0f && mSinAlpha <= 1.0f);
|
|
mTanAlpha = Tan(ASin(mSinAlpha));
|
|
|
|
outResult.Set(this);
|
|
}
|
|
|
|
class TaperedCapsuleShape::TaperedCapsule final : public Support
|
|
{
|
|
public:
|
|
TaperedCapsule(Vec3Arg inTopCenter, Vec3Arg inBottomCenter, float inTopRadius, float inBottomRadius, float inConvexRadius) :
|
|
mTopCenter(inTopCenter),
|
|
mBottomCenter(inBottomCenter),
|
|
mTopRadius(inTopRadius),
|
|
mBottomRadius(inBottomRadius),
|
|
mConvexRadius(inConvexRadius)
|
|
{
|
|
static_assert(sizeof(TaperedCapsule) <= sizeof(SupportBuffer), "Buffer size too small");
|
|
JPH_ASSERT(IsAligned(this, alignof(TaperedCapsule)));
|
|
}
|
|
|
|
virtual Vec3 GetSupport(Vec3Arg inDirection) const override
|
|
{
|
|
// Check zero vector
|
|
float len = inDirection.Length();
|
|
if (len == 0.0f)
|
|
return mTopCenter + Vec3(0, mTopRadius, 0); // Return top
|
|
|
|
// Check if the support of the top sphere or bottom sphere is bigger
|
|
Vec3 support_top = mTopCenter + (mTopRadius / len) * inDirection;
|
|
Vec3 support_bottom = mBottomCenter + (mBottomRadius / len) * inDirection;
|
|
if (support_top.Dot(inDirection) > support_bottom.Dot(inDirection))
|
|
return support_top;
|
|
else
|
|
return support_bottom;
|
|
}
|
|
|
|
virtual float GetConvexRadius() const override
|
|
{
|
|
return mConvexRadius;
|
|
}
|
|
|
|
private:
|
|
Vec3 mTopCenter;
|
|
Vec3 mBottomCenter;
|
|
float mTopRadius;
|
|
float mBottomRadius;
|
|
float mConvexRadius;
|
|
};
|
|
|
|
const ConvexShape::Support *TaperedCapsuleShape::GetSupportFunction(ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const
|
|
{
|
|
JPH_ASSERT(IsValidScale(inScale));
|
|
|
|
// Get scaled tapered capsule
|
|
Vec3 abs_scale = inScale.Abs();
|
|
float scale_xz = abs_scale.GetX();
|
|
float scale_y = inScale.GetY(); // The sign of y is important as it flips the tapered capsule
|
|
Vec3 scaled_top_center = Vec3(0, scale_y * mTopCenter, 0);
|
|
Vec3 scaled_bottom_center = Vec3(0, scale_y * mBottomCenter, 0);
|
|
float scaled_top_radius = scale_xz * mTopRadius;
|
|
float scaled_bottom_radius = scale_xz * mBottomRadius;
|
|
float scaled_convex_radius = scale_xz * mConvexRadius;
|
|
|
|
switch (inMode)
|
|
{
|
|
case ESupportMode::IncludeConvexRadius:
|
|
return new (&inBuffer) TaperedCapsule(scaled_top_center, scaled_bottom_center, scaled_top_radius, scaled_bottom_radius, 0.0f);
|
|
|
|
case ESupportMode::ExcludeConvexRadius:
|
|
case ESupportMode::Default:
|
|
{
|
|
// Get radii reduced by convex radius
|
|
float tr = scaled_top_radius - scaled_convex_radius;
|
|
float br = scaled_bottom_radius - scaled_convex_radius;
|
|
JPH_ASSERT(tr >= 0.0f && br >= 0.0f);
|
|
JPH_ASSERT(tr == 0.0f || br == 0.0f, "Convex radius should be that of the smallest sphere");
|
|
return new (&inBuffer) TaperedCapsule(scaled_top_center, scaled_bottom_center, tr, br, scaled_convex_radius);
|
|
}
|
|
}
|
|
|
|
JPH_ASSERT(false);
|
|
return nullptr;
|
|
}
|
|
|
|
void TaperedCapsuleShape::GetSupportingFace(const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const
|
|
{
|
|
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
|
|
JPH_ASSERT(IsValidScale(inScale));
|
|
|
|
// Check zero vector
|
|
float len = inDirection.Length();
|
|
if (len == 0.0f)
|
|
return;
|
|
|
|
// Get scaled tapered capsule
|
|
Vec3 abs_scale = inScale.Abs();
|
|
float scale_xz = abs_scale.GetX();
|
|
float scale_y = inScale.GetY(); // The sign of y is important as it flips the tapered capsule
|
|
Vec3 scaled_top_center = Vec3(0, scale_y * mTopCenter, 0);
|
|
Vec3 scaled_bottom_center = Vec3(0, scale_y * mBottomCenter, 0);
|
|
float scaled_top_radius = scale_xz * mTopRadius;
|
|
float scaled_bottom_radius = scale_xz * mBottomRadius;
|
|
|
|
// Get support point for top and bottom sphere in the opposite of inDirection (including convex radius)
|
|
Vec3 support_top = scaled_top_center - (scaled_top_radius / len) * inDirection;
|
|
Vec3 support_bottom = scaled_bottom_center - (scaled_bottom_radius / len) * inDirection;
|
|
|
|
// Get projection on inDirection
|
|
float proj_top = support_top.Dot(inDirection);
|
|
float proj_bottom = support_bottom.Dot(inDirection);
|
|
|
|
// If projection is roughly equal then return line, otherwise we return nothing as there's only 1 point
|
|
if (abs(proj_top - proj_bottom) < cCapsuleProjectionSlop * len)
|
|
{
|
|
outVertices.push_back(inCenterOfMassTransform * support_top);
|
|
outVertices.push_back(inCenterOfMassTransform * support_bottom);
|
|
}
|
|
}
|
|
|
|
MassProperties TaperedCapsuleShape::GetMassProperties() const
|
|
{
|
|
AABox box = GetInertiaApproximation();
|
|
|
|
MassProperties p;
|
|
p.SetMassAndInertiaOfSolidBox(box.GetSize(), GetDensity());
|
|
return p;
|
|
}
|
|
|
|
Vec3 TaperedCapsuleShape::GetSurfaceNormal(const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const
|
|
{
|
|
JPH_ASSERT(inSubShapeID.IsEmpty(), "Invalid subshape ID");
|
|
|
|
// See: TaperedCapsuleShape.gliffy
|
|
// We need to calculate ty and by in order to see if the position is on the top or bottom sphere
|
|
// sin(alpha) = by / br = ty / tr
|
|
// => by = sin(alpha) * br, ty = sin(alpha) * tr
|
|
|
|
if (inLocalSurfacePosition.GetY() > mTopCenter + mSinAlpha * mTopRadius)
|
|
return (inLocalSurfacePosition - Vec3(0, mTopCenter, 0)).Normalized();
|
|
else if (inLocalSurfacePosition.GetY() < mBottomCenter + mSinAlpha * mBottomRadius)
|
|
return (inLocalSurfacePosition - Vec3(0, mBottomCenter, 0)).Normalized();
|
|
else
|
|
{
|
|
// Get perpendicular vector to the surface in the xz plane
|
|
Vec3 perpendicular = Vec3(inLocalSurfacePosition.GetX(), 0, inLocalSurfacePosition.GetZ()).NormalizedOr(Vec3::sAxisX());
|
|
|
|
// We know that the perpendicular has length 1 and that it needs a y component where tan(alpha) = y / 1 in order to align it to the surface
|
|
perpendicular.SetY(mTanAlpha);
|
|
return perpendicular.Normalized();
|
|
}
|
|
}
|
|
|
|
AABox TaperedCapsuleShape::GetLocalBounds() const
|
|
{
|
|
float max_radius = max(mTopRadius, mBottomRadius);
|
|
return AABox(Vec3(-max_radius, mBottomCenter - mBottomRadius, -max_radius), Vec3(max_radius, mTopCenter + mTopRadius, max_radius));
|
|
}
|
|
|
|
AABox TaperedCapsuleShape::GetWorldSpaceBounds(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
|
|
{
|
|
JPH_ASSERT(IsValidScale(inScale));
|
|
|
|
Vec3 abs_scale = inScale.Abs();
|
|
float scale_xz = abs_scale.GetX();
|
|
float scale_y = inScale.GetY(); // The sign of y is important as it flips the tapered capsule
|
|
Vec3 bottom_extent = Vec3::sReplicate(scale_xz * mBottomRadius);
|
|
Vec3 bottom_center = inCenterOfMassTransform * Vec3(0, scale_y * mBottomCenter, 0);
|
|
Vec3 top_extent = Vec3::sReplicate(scale_xz * mTopRadius);
|
|
Vec3 top_center = inCenterOfMassTransform * Vec3(0, scale_y * mTopCenter, 0);
|
|
Vec3 p1 = Vec3::sMin(top_center - top_extent, bottom_center - bottom_extent);
|
|
Vec3 p2 = Vec3::sMax(top_center + top_extent, bottom_center + bottom_extent);
|
|
return AABox(p1, p2);
|
|
}
|
|
|
|
void TaperedCapsuleShape::CollideSoftBodyVertices(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const
|
|
{
|
|
JPH_ASSERT(IsValidScale(inScale));
|
|
|
|
Mat44 inverse_transform = inCenterOfMassTransform.InversedRotationTranslation();
|
|
|
|
// Get scaled tapered capsule
|
|
Vec3 abs_scale = inScale.Abs();
|
|
float scale_y = abs_scale.GetY();
|
|
float scale_xz = abs_scale.GetX();
|
|
Vec3 scale_y_flip(1, Sign(inScale.GetY()), 1);
|
|
Vec3 scaled_top_center(0, scale_y * mTopCenter, 0);
|
|
Vec3 scaled_bottom_center(0, scale_y * mBottomCenter, 0);
|
|
float scaled_top_radius = scale_xz * mTopRadius;
|
|
float scaled_bottom_radius = scale_xz * mBottomRadius;
|
|
|
|
for (CollideSoftBodyVertexIterator v = inVertices, sbv_end = inVertices + inNumVertices; v != sbv_end; ++v)
|
|
if (v.GetInvMass() > 0.0f)
|
|
{
|
|
Vec3 local_pos = scale_y_flip * (inverse_transform * v.GetPosition());
|
|
|
|
Vec3 position, normal;
|
|
|
|
// If the vertex is inside the cone starting at the top center pointing along the y-axis with angle PI/2 - alpha then the closest point is on the top sphere
|
|
// This corresponds to: Dot(y-axis, (local_pos - top_center) / |local_pos - top_center|) >= cos(PI/2 - alpha)
|
|
// <=> (local_pos - top_center).y >= sin(alpha) * |local_pos - top_center|
|
|
Vec3 top_center_to_local_pos = local_pos - scaled_top_center;
|
|
float top_center_to_local_pos_len = top_center_to_local_pos.Length();
|
|
if (top_center_to_local_pos.GetY() >= mSinAlpha * top_center_to_local_pos_len)
|
|
{
|
|
// Top sphere
|
|
normal = top_center_to_local_pos_len != 0.0f? top_center_to_local_pos / top_center_to_local_pos_len : Vec3::sAxisY();
|
|
position = scaled_top_center + scaled_top_radius * normal;
|
|
}
|
|
else
|
|
{
|
|
// If the vertex is outside the cone starting at the bottom center pointing along the y-axis with angle PI/2 - alpha then the closest point is on the bottom sphere
|
|
// This corresponds to: Dot(y-axis, (local_pos - bottom_center) / |local_pos - bottom_center|) <= cos(PI/2 - alpha)
|
|
// <=> (local_pos - bottom_center).y <= sin(alpha) * |local_pos - bottom_center|
|
|
Vec3 bottom_center_to_local_pos = local_pos - scaled_bottom_center;
|
|
float bottom_center_to_local_pos_len = bottom_center_to_local_pos.Length();
|
|
if (bottom_center_to_local_pos.GetY() <= mSinAlpha * bottom_center_to_local_pos_len)
|
|
{
|
|
// Bottom sphere
|
|
normal = bottom_center_to_local_pos_len != 0.0f? bottom_center_to_local_pos / bottom_center_to_local_pos_len : -Vec3::sAxisY();
|
|
}
|
|
else
|
|
{
|
|
// Tapered cylinder
|
|
normal = Vec3(local_pos.GetX(), 0, local_pos.GetZ()).NormalizedOr(Vec3::sAxisX());
|
|
normal.SetY(mTanAlpha);
|
|
normal = normal.NormalizedOr(Vec3::sAxisX());
|
|
}
|
|
position = scaled_bottom_center + scaled_bottom_radius * normal;
|
|
}
|
|
|
|
Plane plane = Plane::sFromPointAndNormal(position, normal);
|
|
float penetration = -plane.SignedDistance(local_pos);
|
|
if (v.UpdatePenetration(penetration))
|
|
{
|
|
// Need to flip the normal's y if capsule is flipped (this corresponds to flipping both the point and the normal around y)
|
|
plane.SetNormal(scale_y_flip * plane.GetNormal());
|
|
|
|
// Store collision
|
|
v.SetCollision(plane.GetTransformed(inCenterOfMassTransform), inCollidingShapeIndex);
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
void TaperedCapsuleShape::Draw(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const
|
|
{
|
|
if (mGeometry == nullptr)
|
|
{
|
|
SupportBuffer buffer;
|
|
const Support *support = GetSupportFunction(ESupportMode::IncludeConvexRadius, buffer, Vec3::sReplicate(1.0f));
|
|
mGeometry = inRenderer->CreateTriangleGeometryForConvex([support](Vec3Arg inDirection) { return support->GetSupport(inDirection); });
|
|
}
|
|
|
|
// Preserve flip along y axis but make sure we're not inside out
|
|
Vec3 scale = ScaleHelpers::IsInsideOut(inScale)? Vec3(-1, 1, 1) * inScale : inScale;
|
|
RMat44 world_transform = inCenterOfMassTransform * Mat44::sScale(scale);
|
|
|
|
AABox bounds = Shape::GetWorldSpaceBounds(inCenterOfMassTransform, inScale);
|
|
|
|
float lod_scale_sq = Square(max(mTopRadius, mBottomRadius));
|
|
|
|
Color color = inUseMaterialColors? GetMaterial()->GetDebugColor() : inColor;
|
|
|
|
DebugRenderer::EDrawMode draw_mode = inDrawWireframe? DebugRenderer::EDrawMode::Wireframe : DebugRenderer::EDrawMode::Solid;
|
|
|
|
inRenderer->DrawGeometry(world_transform, bounds, lod_scale_sq, color, mGeometry, DebugRenderer::ECullMode::CullBackFace, DebugRenderer::ECastShadow::On, draw_mode);
|
|
}
|
|
#endif // JPH_DEBUG_RENDERER
|
|
|
|
AABox TaperedCapsuleShape::GetInertiaApproximation() const
|
|
{
|
|
// TODO: For now the mass and inertia is that of a box
|
|
float avg_radius = 0.5f * (mTopRadius + mBottomRadius);
|
|
return AABox(Vec3(-avg_radius, mBottomCenter - mBottomRadius, -avg_radius), Vec3(avg_radius, mTopCenter + mTopRadius, avg_radius));
|
|
}
|
|
|
|
void TaperedCapsuleShape::SaveBinaryState(StreamOut &inStream) const
|
|
{
|
|
ConvexShape::SaveBinaryState(inStream);
|
|
|
|
inStream.Write(mCenterOfMass);
|
|
inStream.Write(mTopRadius);
|
|
inStream.Write(mBottomRadius);
|
|
inStream.Write(mTopCenter);
|
|
inStream.Write(mBottomCenter);
|
|
inStream.Write(mConvexRadius);
|
|
inStream.Write(mSinAlpha);
|
|
inStream.Write(mTanAlpha);
|
|
}
|
|
|
|
void TaperedCapsuleShape::RestoreBinaryState(StreamIn &inStream)
|
|
{
|
|
ConvexShape::RestoreBinaryState(inStream);
|
|
|
|
inStream.Read(mCenterOfMass);
|
|
inStream.Read(mTopRadius);
|
|
inStream.Read(mBottomRadius);
|
|
inStream.Read(mTopCenter);
|
|
inStream.Read(mBottomCenter);
|
|
inStream.Read(mConvexRadius);
|
|
inStream.Read(mSinAlpha);
|
|
inStream.Read(mTanAlpha);
|
|
}
|
|
|
|
bool TaperedCapsuleShape::IsValidScale(Vec3Arg inScale) const
|
|
{
|
|
return ConvexShape::IsValidScale(inScale) && ScaleHelpers::IsUniformScale(inScale.Abs());
|
|
}
|
|
|
|
Vec3 TaperedCapsuleShape::MakeScaleValid(Vec3Arg inScale) const
|
|
{
|
|
Vec3 scale = ScaleHelpers::MakeNonZeroScale(inScale);
|
|
|
|
return scale.GetSign() * ScaleHelpers::MakeUniformScale(scale.Abs());
|
|
}
|
|
|
|
void TaperedCapsuleShape::sRegister()
|
|
{
|
|
ShapeFunctions &f = ShapeFunctions::sGet(EShapeSubType::TaperedCapsule);
|
|
f.mConstruct = []() -> Shape * { return new TaperedCapsuleShape; };
|
|
f.mColor = Color::sGreen;
|
|
}
|
|
|
|
JPH_NAMESPACE_END
|