godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Collision/Shape/ConvexShape.cpp

560 lines
23 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Collision/Shape/ConvexShape.h>
#include <Jolt/Physics/Collision/RayCast.h>
#include <Jolt/Physics/Collision/ShapeCast.h>
#include <Jolt/Physics/Collision/CollideShape.h>
#include <Jolt/Physics/Collision/CastResult.h>
#include <Jolt/Physics/Collision/CollidePointResult.h>
#include <Jolt/Physics/Collision/Shape/ScaleHelpers.h>
#include <Jolt/Physics/Collision/Shape/GetTrianglesContext.h>
#include <Jolt/Physics/Collision/Shape/PolyhedronSubmergedVolumeCalculator.h>
#include <Jolt/Physics/Collision/TransformedShape.h>
#include <Jolt/Physics/Collision/CollisionDispatch.h>
#include <Jolt/Physics/Collision/NarrowPhaseStats.h>
#include <Jolt/Physics/PhysicsSettings.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#include <Jolt/Geometry/EPAPenetrationDepth.h>
#include <Jolt/Geometry/OrientedBox.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_ABSTRACT(ConvexShapeSettings)
{
JPH_ADD_BASE_CLASS(ConvexShapeSettings, ShapeSettings)
JPH_ADD_ATTRIBUTE(ConvexShapeSettings, mDensity)
JPH_ADD_ATTRIBUTE(ConvexShapeSettings, mMaterial)
}
const StaticArray<Vec3, 384> ConvexShape::sUnitSphereTriangles = []() {
const int level = 2;
StaticArray<Vec3, 384> verts;
GetTrianglesContextVertexList::sCreateHalfUnitSphereTop(verts, level);
GetTrianglesContextVertexList::sCreateHalfUnitSphereBottom(verts, level);
return verts;
}();
void ConvexShape::sCollideConvexVsConvex(const Shape *inShape1, const Shape *inShape2, Vec3Arg inScale1, Vec3Arg inScale2, Mat44Arg inCenterOfMassTransform1, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, const CollideShapeSettings &inCollideShapeSettings, CollideShapeCollector &ioCollector, [[maybe_unused]] const ShapeFilter &inShapeFilter)
{
JPH_PROFILE_FUNCTION();
// Get the shapes
JPH_ASSERT(inShape1->GetType() == EShapeType::Convex);
JPH_ASSERT(inShape2->GetType() == EShapeType::Convex);
const ConvexShape *shape1 = static_cast<const ConvexShape *>(inShape1);
const ConvexShape *shape2 = static_cast<const ConvexShape *>(inShape2);
// Get transforms
Mat44 inverse_transform1 = inCenterOfMassTransform1.InversedRotationTranslation();
Mat44 transform_2_to_1 = inverse_transform1 * inCenterOfMassTransform2;
// Get bounding boxes
AABox shape1_bbox = shape1->GetLocalBounds().Scaled(inScale1);
shape1_bbox.ExpandBy(Vec3::sReplicate(inCollideShapeSettings.mMaxSeparationDistance));
AABox shape2_bbox = shape2->GetLocalBounds().Scaled(inScale2);
// Check if they overlap
if (!OrientedBox(transform_2_to_1, shape2_bbox).Overlaps(shape1_bbox))
return;
// Note: As we don't remember the penetration axis from the last iteration, and it is likely that shape2 is pushed out of
// collision relative to shape1 by comparing their COM's, we use that as an initial penetration axis: shape2.com - shape1.com
// This has been seen to improve performance by approx. 1% over using a fixed axis like (1, 0, 0).
Vec3 penetration_axis = transform_2_to_1.GetTranslation();
// Ensure that we do not pass in a near zero penetration axis
if (penetration_axis.IsNearZero())
penetration_axis = Vec3::sAxisX();
Vec3 point1, point2;
EPAPenetrationDepth pen_depth;
EPAPenetrationDepth::EStatus status;
// Scope to limit lifetime of SupportBuffer
{
// Create support function
SupportBuffer buffer1_excl_cvx_radius, buffer2_excl_cvx_radius;
const Support *shape1_excl_cvx_radius = shape1->GetSupportFunction(ConvexShape::ESupportMode::ExcludeConvexRadius, buffer1_excl_cvx_radius, inScale1);
const Support *shape2_excl_cvx_radius = shape2->GetSupportFunction(ConvexShape::ESupportMode::ExcludeConvexRadius, buffer2_excl_cvx_radius, inScale2);
// Transform shape 2 in the space of shape 1
TransformedConvexObject<Support> transformed2_excl_cvx_radius(transform_2_to_1, *shape2_excl_cvx_radius);
// Perform GJK step
status = pen_depth.GetPenetrationDepthStepGJK(*shape1_excl_cvx_radius, shape1_excl_cvx_radius->GetConvexRadius() + inCollideShapeSettings.mMaxSeparationDistance, transformed2_excl_cvx_radius, shape2_excl_cvx_radius->GetConvexRadius(), inCollideShapeSettings.mCollisionTolerance, penetration_axis, point1, point2);
}
// Check result of collision detection
switch (status)
{
case EPAPenetrationDepth::EStatus::Colliding:
break;
case EPAPenetrationDepth::EStatus::NotColliding:
return;
case EPAPenetrationDepth::EStatus::Indeterminate:
{
// Need to run expensive EPA algorithm
// Create support function
SupportBuffer buffer1_incl_cvx_radius, buffer2_incl_cvx_radius;
const Support *shape1_incl_cvx_radius = shape1->GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer1_incl_cvx_radius, inScale1);
const Support *shape2_incl_cvx_radius = shape2->GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer2_incl_cvx_radius, inScale2);
// Add separation distance
AddConvexRadius<Support> shape1_add_max_separation_distance(*shape1_incl_cvx_radius, inCollideShapeSettings.mMaxSeparationDistance);
// Transform shape 2 in the space of shape 1
TransformedConvexObject<Support> transformed2_incl_cvx_radius(transform_2_to_1, *shape2_incl_cvx_radius);
// Perform EPA step
if (!pen_depth.GetPenetrationDepthStepEPA(shape1_add_max_separation_distance, transformed2_incl_cvx_radius, inCollideShapeSettings.mPenetrationTolerance, penetration_axis, point1, point2))
return;
break;
}
}
// Check if the penetration is bigger than the early out fraction
float penetration_depth = (point2 - point1).Length() - inCollideShapeSettings.mMaxSeparationDistance;
if (-penetration_depth >= ioCollector.GetEarlyOutFraction())
return;
// Correct point1 for the added separation distance
float penetration_axis_len = penetration_axis.Length();
if (penetration_axis_len > 0.0f)
point1 -= penetration_axis * (inCollideShapeSettings.mMaxSeparationDistance / penetration_axis_len);
// Convert to world space
point1 = inCenterOfMassTransform1 * point1;
point2 = inCenterOfMassTransform1 * point2;
Vec3 penetration_axis_world = inCenterOfMassTransform1.Multiply3x3(penetration_axis);
// Create collision result
CollideShapeResult result(point1, point2, penetration_axis_world, penetration_depth, inSubShapeIDCreator1.GetID(), inSubShapeIDCreator2.GetID(), TransformedShape::sGetBodyID(ioCollector.GetContext()));
// Gather faces
if (inCollideShapeSettings.mCollectFacesMode == ECollectFacesMode::CollectFaces)
{
// Get supporting face of shape 1
shape1->GetSupportingFace(SubShapeID(), -penetration_axis, inScale1, inCenterOfMassTransform1, result.mShape1Face);
// Get supporting face of shape 2
shape2->GetSupportingFace(SubShapeID(), transform_2_to_1.Multiply3x3Transposed(penetration_axis), inScale2, inCenterOfMassTransform2, result.mShape2Face);
}
// Notify the collector
JPH_IF_TRACK_NARROWPHASE_STATS(TrackNarrowPhaseCollector track;)
ioCollector.AddHit(result);
}
bool ConvexShape::CastRay(const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const
{
// Note: This is a fallback routine, most convex shapes should implement a more performant version!
JPH_PROFILE_FUNCTION();
// Create support function
SupportBuffer buffer;
const Support *support = GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer, Vec3::sReplicate(1.0f));
// Cast ray
GJKClosestPoint gjk;
if (gjk.CastRay(inRay.mOrigin, inRay.mDirection, cDefaultCollisionTolerance, *support, ioHit.mFraction))
{
ioHit.mSubShapeID2 = inSubShapeIDCreator.GetID();
return true;
}
return false;
}
void ConvexShape::CastRay(const RayCast &inRay, const RayCastSettings &inRayCastSettings, const SubShapeIDCreator &inSubShapeIDCreator, CastRayCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
// Note: This is a fallback routine, most convex shapes should implement a more performant version!
// Test shape filter
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
return;
// First do a normal raycast, limited to the early out fraction
RayCastResult hit;
hit.mFraction = ioCollector.GetEarlyOutFraction();
if (CastRay(inRay, inSubShapeIDCreator, hit))
{
// Check front side
if (inRayCastSettings.mTreatConvexAsSolid || hit.mFraction > 0.0f)
{
hit.mBodyID = TransformedShape::sGetBodyID(ioCollector.GetContext());
ioCollector.AddHit(hit);
}
// Check if we want back facing hits and the collector still accepts additional hits
if (inRayCastSettings.mBackFaceModeConvex == EBackFaceMode::CollideWithBackFaces && !ioCollector.ShouldEarlyOut())
{
// Invert the ray, going from the early out fraction back to the fraction where we found our forward hit
float start_fraction = min(1.0f, ioCollector.GetEarlyOutFraction());
float delta_fraction = hit.mFraction - start_fraction;
if (delta_fraction < 0.0f)
{
RayCast inverted_ray { inRay.mOrigin + start_fraction * inRay.mDirection, delta_fraction * inRay.mDirection };
// Cast another ray
RayCastResult inverted_hit;
inverted_hit.mFraction = 1.0f;
if (CastRay(inverted_ray, inSubShapeIDCreator, inverted_hit)
&& inverted_hit.mFraction > 0.0f) // Ignore hits with fraction 0, this means the ray ends inside the object and we don't want to report it as a back facing hit
{
// Invert fraction and rescale it to the fraction of the original ray
inverted_hit.mFraction = hit.mFraction + (inverted_hit.mFraction - 1.0f) * delta_fraction;
inverted_hit.mBodyID = TransformedShape::sGetBodyID(ioCollector.GetContext());
ioCollector.AddHit(inverted_hit);
}
}
}
}
}
void ConvexShape::CollidePoint(Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) const
{
// Test shape filter
if (!inShapeFilter.ShouldCollide(this, inSubShapeIDCreator.GetID()))
return;
// First test bounding box
if (GetLocalBounds().Contains(inPoint))
{
// Create support function
SupportBuffer buffer;
const Support *support = GetSupportFunction(ConvexShape::ESupportMode::IncludeConvexRadius, buffer, Vec3::sReplicate(1.0f));
// Create support function for point
PointConvexSupport point { inPoint };
// Test intersection
GJKClosestPoint gjk;
Vec3 v = inPoint;
if (gjk.Intersects(*support, point, cDefaultCollisionTolerance, v))
ioCollector.AddHit({ TransformedShape::sGetBodyID(ioCollector.GetContext()), inSubShapeIDCreator.GetID() });
}
}
void ConvexShape::sCastConvexVsConvex(const ShapeCast &inShapeCast, const ShapeCastSettings &inShapeCastSettings, const Shape *inShape, Vec3Arg inScale, [[maybe_unused]] const ShapeFilter &inShapeFilter, Mat44Arg inCenterOfMassTransform2, const SubShapeIDCreator &inSubShapeIDCreator1, const SubShapeIDCreator &inSubShapeIDCreator2, CastShapeCollector &ioCollector)
{
JPH_PROFILE_FUNCTION();
// Only supported for convex shapes
JPH_ASSERT(inShapeCast.mShape->GetType() == EShapeType::Convex);
const ConvexShape *cast_shape = static_cast<const ConvexShape *>(inShapeCast.mShape);
JPH_ASSERT(inShape->GetType() == EShapeType::Convex);
const ConvexShape *shape = static_cast<const ConvexShape *>(inShape);
// Determine if we want to use the actual shape or a shrunken shape with convex radius
ConvexShape::ESupportMode support_mode = inShapeCastSettings.mUseShrunkenShapeAndConvexRadius? ConvexShape::ESupportMode::ExcludeConvexRadius : ConvexShape::ESupportMode::Default;
// Create support function for shape to cast
SupportBuffer cast_buffer;
const Support *cast_support = cast_shape->GetSupportFunction(support_mode, cast_buffer, inShapeCast.mScale);
// Create support function for target shape
SupportBuffer target_buffer;
const Support *target_support = shape->GetSupportFunction(support_mode, target_buffer, inScale);
// Do a raycast against the result
EPAPenetrationDepth epa;
float fraction = ioCollector.GetEarlyOutFraction();
Vec3 contact_point_a, contact_point_b, contact_normal;
if (epa.CastShape(inShapeCast.mCenterOfMassStart, inShapeCast.mDirection, inShapeCastSettings.mCollisionTolerance, inShapeCastSettings.mPenetrationTolerance, *cast_support, *target_support, cast_support->GetConvexRadius(), target_support->GetConvexRadius(), inShapeCastSettings.mReturnDeepestPoint, fraction, contact_point_a, contact_point_b, contact_normal)
&& (inShapeCastSettings.mBackFaceModeConvex == EBackFaceMode::CollideWithBackFaces
|| contact_normal.Dot(inShapeCast.mDirection) > 0.0f)) // Test if backfacing
{
// Convert to world space
contact_point_a = inCenterOfMassTransform2 * contact_point_a;
contact_point_b = inCenterOfMassTransform2 * contact_point_b;
Vec3 contact_normal_world = inCenterOfMassTransform2.Multiply3x3(contact_normal);
ShapeCastResult result(fraction, contact_point_a, contact_point_b, contact_normal_world, false, inSubShapeIDCreator1.GetID(), inSubShapeIDCreator2.GetID(), TransformedShape::sGetBodyID(ioCollector.GetContext()));
// Early out if this hit is deeper than the collector's early out value
if (fraction == 0.0f && -result.mPenetrationDepth >= ioCollector.GetEarlyOutFraction())
return;
// Gather faces
if (inShapeCastSettings.mCollectFacesMode == ECollectFacesMode::CollectFaces)
{
// Get supporting face of shape 1
Mat44 transform_1_to_2 = inShapeCast.mCenterOfMassStart;
transform_1_to_2.SetTranslation(transform_1_to_2.GetTranslation() + fraction * inShapeCast.mDirection);
cast_shape->GetSupportingFace(SubShapeID(), transform_1_to_2.Multiply3x3Transposed(-contact_normal), inShapeCast.mScale, inCenterOfMassTransform2 * transform_1_to_2, result.mShape1Face);
// Get supporting face of shape 2
shape->GetSupportingFace(SubShapeID(), contact_normal, inScale, inCenterOfMassTransform2, result.mShape2Face);
}
JPH_IF_TRACK_NARROWPHASE_STATS(TrackNarrowPhaseCollector track;)
ioCollector.AddHit(result);
}
}
class ConvexShape::CSGetTrianglesContext
{
public:
CSGetTrianglesContext(const ConvexShape *inShape, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) :
mLocalToWorld(Mat44::sRotationTranslation(inRotation, inPositionCOM) * Mat44::sScale(inScale)),
mIsInsideOut(ScaleHelpers::IsInsideOut(inScale))
{
mSupport = inShape->GetSupportFunction(ESupportMode::IncludeConvexRadius, mSupportBuffer, Vec3::sReplicate(1.0f));
}
SupportBuffer mSupportBuffer;
const Support * mSupport;
Mat44 mLocalToWorld;
bool mIsInsideOut;
size_t mCurrentVertex = 0;
};
void ConvexShape::GetTrianglesStart(GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const
{
static_assert(sizeof(CSGetTrianglesContext) <= sizeof(GetTrianglesContext), "GetTrianglesContext too small");
JPH_ASSERT(IsAligned(&ioContext, alignof(CSGetTrianglesContext)));
new (&ioContext) CSGetTrianglesContext(this, inPositionCOM, inRotation, inScale);
}
int ConvexShape::GetTrianglesNext(GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials) const
{
JPH_ASSERT(inMaxTrianglesRequested >= cGetTrianglesMinTrianglesRequested);
CSGetTrianglesContext &context = (CSGetTrianglesContext &)ioContext;
int total_num_vertices = min(inMaxTrianglesRequested * 3, int(sUnitSphereTriangles.size() - context.mCurrentVertex));
if (context.mIsInsideOut)
{
// Store triangles flipped
for (const Vec3 *v = sUnitSphereTriangles.data() + context.mCurrentVertex, *v_end = v + total_num_vertices; v < v_end; v += 3)
{
(context.mLocalToWorld * context.mSupport->GetSupport(v[0])).StoreFloat3(outTriangleVertices++);
(context.mLocalToWorld * context.mSupport->GetSupport(v[2])).StoreFloat3(outTriangleVertices++);
(context.mLocalToWorld * context.mSupport->GetSupport(v[1])).StoreFloat3(outTriangleVertices++);
}
}
else
{
// Store triangles
for (const Vec3 *v = sUnitSphereTriangles.data() + context.mCurrentVertex, *v_end = v + total_num_vertices; v < v_end; v += 3)
{
(context.mLocalToWorld * context.mSupport->GetSupport(v[0])).StoreFloat3(outTriangleVertices++);
(context.mLocalToWorld * context.mSupport->GetSupport(v[1])).StoreFloat3(outTriangleVertices++);
(context.mLocalToWorld * context.mSupport->GetSupport(v[2])).StoreFloat3(outTriangleVertices++);
}
}
context.mCurrentVertex += total_num_vertices;
int total_num_triangles = total_num_vertices / 3;
// Store materials
if (outMaterials != nullptr)
{
const PhysicsMaterial *material = GetMaterial();
for (const PhysicsMaterial **m = outMaterials, **m_end = outMaterials + total_num_triangles; m < m_end; ++m)
*m = material;
}
return total_num_triangles;
}
void ConvexShape::GetSubmergedVolume(Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const Plane &inSurface, float &outTotalVolume, float &outSubmergedVolume, Vec3 &outCenterOfBuoyancy JPH_IF_DEBUG_RENDERER(, RVec3Arg inBaseOffset)) const
{
// Calculate total volume
Vec3 abs_scale = inScale.Abs();
Vec3 extent = GetLocalBounds().GetExtent() * abs_scale;
outTotalVolume = 8.0f * extent.GetX() * extent.GetY() * extent.GetZ();
// Points of the bounding box
Vec3 points[] =
{
Vec3(-1, -1, -1),
Vec3( 1, -1, -1),
Vec3(-1, 1, -1),
Vec3( 1, 1, -1),
Vec3(-1, -1, 1),
Vec3( 1, -1, 1),
Vec3(-1, 1, 1),
Vec3( 1, 1, 1),
};
// Faces of the bounding box
using Face = int[5];
#define MAKE_FACE(a, b, c, d) { a, b, c, d, ((1 << a) | (1 << b) | (1 << c) | (1 << d)) } // Last int is a bit mask that indicates which indices are used
Face faces[] =
{
MAKE_FACE(0, 2, 3, 1),
MAKE_FACE(4, 6, 2, 0),
MAKE_FACE(4, 5, 7, 6),
MAKE_FACE(1, 3, 7, 5),
MAKE_FACE(2, 6, 7, 3),
MAKE_FACE(0, 1, 5, 4),
};
PolyhedronSubmergedVolumeCalculator::Point *buffer = (PolyhedronSubmergedVolumeCalculator::Point *)JPH_STACK_ALLOC(8 * sizeof(PolyhedronSubmergedVolumeCalculator::Point));
PolyhedronSubmergedVolumeCalculator submerged_vol_calc(inCenterOfMassTransform * Mat44::sScale(extent), points, sizeof(Vec3), 8, inSurface, buffer JPH_IF_DEBUG_RENDERER(, inBaseOffset));
if (submerged_vol_calc.AreAllAbove())
{
// We're above the water
outSubmergedVolume = 0.0f;
outCenterOfBuoyancy = Vec3::sZero();
}
else if (submerged_vol_calc.AreAllBelow())
{
// We're fully submerged
outSubmergedVolume = outTotalVolume;
outCenterOfBuoyancy = inCenterOfMassTransform.GetTranslation();
}
else
{
// Calculate submerged volume
int reference_point_bit = 1 << submerged_vol_calc.GetReferencePointIdx();
for (const Face &f : faces)
{
// Test if this face includes the reference point
if ((f[4] & reference_point_bit) == 0)
{
// Triangulate the face (a quad)
submerged_vol_calc.AddFace(f[0], f[1], f[2]);
submerged_vol_calc.AddFace(f[0], f[2], f[3]);
}
}
submerged_vol_calc.GetResult(outSubmergedVolume, outCenterOfBuoyancy);
}
}
#ifdef JPH_DEBUG_RENDERER
void ConvexShape::DrawGetSupportFunction(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inDrawSupportDirection) const
{
// Get the support function with convex radius
SupportBuffer buffer;
const Support *support = GetSupportFunction(ESupportMode::ExcludeConvexRadius, buffer, inScale);
AddConvexRadius<Support> add_convex(*support, support->GetConvexRadius());
// Draw the shape
DebugRenderer::GeometryRef geometry = inRenderer->CreateTriangleGeometryForConvex([&add_convex](Vec3Arg inDirection) { return add_convex.GetSupport(inDirection); });
AABox bounds = geometry->mBounds.Transformed(inCenterOfMassTransform);
float lod_scale_sq = geometry->mBounds.GetExtent().LengthSq();
inRenderer->DrawGeometry(inCenterOfMassTransform, bounds, lod_scale_sq, inColor, geometry);
if (inDrawSupportDirection)
{
// Iterate on all directions and draw the support point and an arrow in the direction that was sampled to test if the support points make sense
for (Vec3 v : Vec3::sUnitSphere)
{
Vec3 direction = 0.05f * v;
Vec3 pos = add_convex.GetSupport(direction);
RVec3 from = inCenterOfMassTransform * pos;
RVec3 to = inCenterOfMassTransform * (pos + direction);
inRenderer->DrawMarker(from, Color::sWhite, 0.001f);
inRenderer->DrawArrow(from, to, Color::sWhite, 0.001f);
}
}
}
void ConvexShape::DrawGetSupportingFace(DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
{
// Sample directions and map which faces belong to which directions
using FaceToDirection = UnorderedMap<SupportingFace, Array<Vec3>>;
FaceToDirection faces;
for (Vec3 v : Vec3::sUnitSphere)
{
Vec3 direction = 0.05f * v;
SupportingFace face;
GetSupportingFace(SubShapeID(), direction, inScale, Mat44::sIdentity(), face);
if (!face.empty())
{
JPH_ASSERT(face.size() >= 2, "The GetSupportingFace function should either return nothing or at least an edge");
faces[face].push_back(direction);
}
}
// Draw each face in a unique color and draw corresponding directions
int color_it = 0;
for (FaceToDirection::value_type &ftd : faces)
{
Color color = Color::sGetDistinctColor(color_it++);
// Create copy of face (key in map is read only)
SupportingFace face = ftd.first;
// Displace the face a little bit forward so it is easier to see
Vec3 normal = face.size() >= 3? (face[2] - face[1]).Cross(face[0] - face[1]).Normalized() : Vec3::sZero();
Vec3 displacement = 0.001f * normal;
// Transform face to world space and calculate center of mass
Vec3 com_ls = Vec3::sZero();
for (Vec3 &v : face)
{
v = inCenterOfMassTransform.Multiply3x3(v + displacement);
com_ls += v;
}
RVec3 com = inCenterOfMassTransform.GetTranslation() + com_ls / (float)face.size();
// Draw the polygon and directions
inRenderer->DrawWirePolygon(RMat44::sTranslation(inCenterOfMassTransform.GetTranslation()), face, color, face.size() >= 3? 0.001f : 0.0f);
if (face.size() >= 3)
inRenderer->DrawArrow(com, com + inCenterOfMassTransform.Multiply3x3(normal), color, 0.01f);
for (Vec3 &v : ftd.second)
inRenderer->DrawArrow(com, com + inCenterOfMassTransform.Multiply3x3(-v), color, 0.001f);
}
}
#endif // JPH_DEBUG_RENDERER
void ConvexShape::SaveBinaryState(StreamOut &inStream) const
{
Shape::SaveBinaryState(inStream);
inStream.Write(mDensity);
}
void ConvexShape::RestoreBinaryState(StreamIn &inStream)
{
Shape::RestoreBinaryState(inStream);
inStream.Read(mDensity);
}
void ConvexShape::SaveMaterialState(PhysicsMaterialList &outMaterials) const
{
outMaterials.clear();
outMaterials.push_back(mMaterial);
}
void ConvexShape::RestoreMaterialState(const PhysicsMaterialRefC *inMaterials, uint inNumMaterials)
{
JPH_ASSERT(inNumMaterials == 1);
mMaterial = inMaterials[0];
}
void ConvexShape::sRegister()
{
for (EShapeSubType s1 : sConvexSubShapeTypes)
for (EShapeSubType s2 : sConvexSubShapeTypes)
{
CollisionDispatch::sRegisterCollideShape(s1, s2, sCollideConvexVsConvex);
CollisionDispatch::sRegisterCastShape(s1, s2, sCastConvexVsConvex);
}
}
JPH_NAMESPACE_END