godot-module-template/engine/thirdparty/jolt_physics/Jolt/Renderer/DebugRenderer.cpp
2025-04-12 18:40:44 +02:00

1108 lines
40 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#include <Jolt/Core/Profiler.h>
#include <Jolt/Geometry/OrientedBox.h>
JPH_NAMESPACE_BEGIN
DebugRenderer *DebugRenderer::sInstance = nullptr;
// Number of LOD levels to create
static const int sMaxLevel = 4;
// Distance for each LOD level, these are tweaked for an object of approx. size 1. Use the lod scale to scale these distances.
static const float sLODDistanceForLevel[] = { 5.0f, 10.0f, 40.0f, cLargeFloat };
DebugRenderer::Triangle::Triangle(Vec3Arg inV1, Vec3Arg inV2, Vec3Arg inV3, ColorArg inColor)
{
// Set position
inV1.StoreFloat3(&mV[0].mPosition);
inV2.StoreFloat3(&mV[1].mPosition);
inV3.StoreFloat3(&mV[2].mPosition);
// Set color
mV[0].mColor = mV[1].mColor = mV[2].mColor = inColor;
// Calculate normal
Vec3 normal = (inV2 - inV1).Cross(inV3 - inV1);
float normal_len = normal.Length();
if (normal_len > 0.0f)
normal /= normal_len;
Float3 normal3;
normal.StoreFloat3(&normal3);
mV[0].mNormal = mV[1].mNormal = mV[2].mNormal = normal3;
// Reset UV's
mV[0].mUV = mV[1].mUV = mV[2].mUV = { 0, 0 };
}
DebugRenderer::Triangle::Triangle(Vec3Arg inV1, Vec3Arg inV2, Vec3Arg inV3, ColorArg inColor, Vec3Arg inUVOrigin, Vec3Arg inUVDirection)
{
// Set position
inV1.StoreFloat3(&mV[0].mPosition);
inV2.StoreFloat3(&mV[1].mPosition);
inV3.StoreFloat3(&mV[2].mPosition);
// Set color
mV[0].mColor = mV[1].mColor = mV[2].mColor = inColor;
// Calculate normal
Vec3 normal = (inV2 - inV1).Cross(inV3 - inV1).Normalized();
Float3 normal3;
normal.StoreFloat3(&normal3);
mV[0].mNormal = mV[1].mNormal = mV[2].mNormal = normal3;
// Set UV's
Vec3 uv1 = inV1 - inUVOrigin;
Vec3 uv2 = inV2 - inUVOrigin;
Vec3 uv3 = inV3 - inUVOrigin;
Vec3 axis2 = normal.Cross(inUVDirection);
mV[0].mUV = { inUVDirection.Dot(uv1), axis2.Dot(uv1) };
mV[1].mUV = { inUVDirection.Dot(uv2), axis2.Dot(uv2) };
mV[2].mUV = { inUVDirection.Dot(uv3), axis2.Dot(uv3) };
}
DebugRenderer::DebugRenderer()
{
// Store singleton
JPH_ASSERT(sInstance == nullptr);
sInstance = this;
}
DebugRenderer::~DebugRenderer()
{
JPH_ASSERT(sInstance == this);
sInstance = nullptr;
}
void DebugRenderer::DrawWireBox(const AABox &inBox, ColorArg inColor)
{
JPH_PROFILE_FUNCTION();
// 8 vertices
RVec3 v1(Real(inBox.mMin.GetX()), Real(inBox.mMin.GetY()), Real(inBox.mMin.GetZ()));
RVec3 v2(Real(inBox.mMin.GetX()), Real(inBox.mMin.GetY()), Real(inBox.mMax.GetZ()));
RVec3 v3(Real(inBox.mMin.GetX()), Real(inBox.mMax.GetY()), Real(inBox.mMin.GetZ()));
RVec3 v4(Real(inBox.mMin.GetX()), Real(inBox.mMax.GetY()), Real(inBox.mMax.GetZ()));
RVec3 v5(Real(inBox.mMax.GetX()), Real(inBox.mMin.GetY()), Real(inBox.mMin.GetZ()));
RVec3 v6(Real(inBox.mMax.GetX()), Real(inBox.mMin.GetY()), Real(inBox.mMax.GetZ()));
RVec3 v7(Real(inBox.mMax.GetX()), Real(inBox.mMax.GetY()), Real(inBox.mMin.GetZ()));
RVec3 v8(Real(inBox.mMax.GetX()), Real(inBox.mMax.GetY()), Real(inBox.mMax.GetZ()));
// 12 edges
DrawLine(v1, v2, inColor);
DrawLine(v1, v3, inColor);
DrawLine(v1, v5, inColor);
DrawLine(v2, v4, inColor);
DrawLine(v2, v6, inColor);
DrawLine(v3, v4, inColor);
DrawLine(v3, v7, inColor);
DrawLine(v4, v8, inColor);
DrawLine(v5, v6, inColor);
DrawLine(v5, v7, inColor);
DrawLine(v6, v8, inColor);
DrawLine(v7, v8, inColor);
}
void DebugRenderer::DrawWireBox(const OrientedBox &inBox, ColorArg inColor)
{
JPH_PROFILE_FUNCTION();
// 8 vertices
RVec3 v1(inBox.mOrientation * Vec3(-inBox.mHalfExtents.GetX(), -inBox.mHalfExtents.GetY(), -inBox.mHalfExtents.GetZ()));
RVec3 v2(inBox.mOrientation * Vec3(-inBox.mHalfExtents.GetX(), -inBox.mHalfExtents.GetY(), inBox.mHalfExtents.GetZ()));
RVec3 v3(inBox.mOrientation * Vec3(-inBox.mHalfExtents.GetX(), inBox.mHalfExtents.GetY(), -inBox.mHalfExtents.GetZ()));
RVec3 v4(inBox.mOrientation * Vec3(-inBox.mHalfExtents.GetX(), inBox.mHalfExtents.GetY(), inBox.mHalfExtents.GetZ()));
RVec3 v5(inBox.mOrientation * Vec3(inBox.mHalfExtents.GetX(), -inBox.mHalfExtents.GetY(), -inBox.mHalfExtents.GetZ()));
RVec3 v6(inBox.mOrientation * Vec3(inBox.mHalfExtents.GetX(), -inBox.mHalfExtents.GetY(), inBox.mHalfExtents.GetZ()));
RVec3 v7(inBox.mOrientation * Vec3(inBox.mHalfExtents.GetX(), inBox.mHalfExtents.GetY(), -inBox.mHalfExtents.GetZ()));
RVec3 v8(inBox.mOrientation * Vec3(inBox.mHalfExtents.GetX(), inBox.mHalfExtents.GetY(), inBox.mHalfExtents.GetZ()));
// 12 edges
DrawLine(v1, v2, inColor);
DrawLine(v1, v3, inColor);
DrawLine(v1, v5, inColor);
DrawLine(v2, v4, inColor);
DrawLine(v2, v6, inColor);
DrawLine(v3, v4, inColor);
DrawLine(v3, v7, inColor);
DrawLine(v4, v8, inColor);
DrawLine(v5, v6, inColor);
DrawLine(v5, v7, inColor);
DrawLine(v6, v8, inColor);
DrawLine(v7, v8, inColor);
}
void DebugRenderer::DrawWireBox(RMat44Arg inMatrix, const AABox &inBox, ColorArg inColor)
{
JPH_PROFILE_FUNCTION();
// 8 vertices
RVec3 v1 = inMatrix * Vec3(inBox.mMin.GetX(), inBox.mMin.GetY(), inBox.mMin.GetZ());
RVec3 v2 = inMatrix * Vec3(inBox.mMin.GetX(), inBox.mMin.GetY(), inBox.mMax.GetZ());
RVec3 v3 = inMatrix * Vec3(inBox.mMin.GetX(), inBox.mMax.GetY(), inBox.mMin.GetZ());
RVec3 v4 = inMatrix * Vec3(inBox.mMin.GetX(), inBox.mMax.GetY(), inBox.mMax.GetZ());
RVec3 v5 = inMatrix * Vec3(inBox.mMax.GetX(), inBox.mMin.GetY(), inBox.mMin.GetZ());
RVec3 v6 = inMatrix * Vec3(inBox.mMax.GetX(), inBox.mMin.GetY(), inBox.mMax.GetZ());
RVec3 v7 = inMatrix * Vec3(inBox.mMax.GetX(), inBox.mMax.GetY(), inBox.mMin.GetZ());
RVec3 v8 = inMatrix * Vec3(inBox.mMax.GetX(), inBox.mMax.GetY(), inBox.mMax.GetZ());
// 12 edges
DrawLine(v1, v2, inColor);
DrawLine(v1, v3, inColor);
DrawLine(v1, v5, inColor);
DrawLine(v2, v4, inColor);
DrawLine(v2, v6, inColor);
DrawLine(v3, v4, inColor);
DrawLine(v3, v7, inColor);
DrawLine(v4, v8, inColor);
DrawLine(v5, v6, inColor);
DrawLine(v5, v7, inColor);
DrawLine(v6, v8, inColor);
DrawLine(v7, v8, inColor);
}
void DebugRenderer::DrawMarker(RVec3Arg inPosition, ColorArg inColor, float inSize)
{
JPH_PROFILE_FUNCTION();
Vec3 dx(inSize, 0, 0);
Vec3 dy(0, inSize, 0);
Vec3 dz(0, 0, inSize);
DrawLine(inPosition - dy, inPosition + dy, inColor);
DrawLine(inPosition - dx, inPosition + dx, inColor);
DrawLine(inPosition - dz, inPosition + dz, inColor);
}
void DebugRenderer::DrawArrow(RVec3Arg inFrom, RVec3Arg inTo, ColorArg inColor, float inSize)
{
JPH_PROFILE_FUNCTION();
// Draw base line
DrawLine(inFrom, inTo, inColor);
if (inSize > 0.0f)
{
// Draw arrow head
Vec3 dir = Vec3(inTo - inFrom);
float len = dir.Length();
if (len != 0.0f)
dir = dir * (inSize / len);
else
dir = Vec3(inSize, 0, 0);
Vec3 perp = inSize * dir.GetNormalizedPerpendicular();
DrawLine(inTo - dir + perp, inTo, inColor);
DrawLine(inTo - dir - perp, inTo, inColor);
}
}
void DebugRenderer::DrawCoordinateSystem(RMat44Arg inTransform, float inSize)
{
JPH_PROFILE_FUNCTION();
DrawArrow(inTransform.GetTranslation(), inTransform * Vec3(inSize, 0, 0), Color::sRed, 0.1f * inSize);
DrawArrow(inTransform.GetTranslation(), inTransform * Vec3(0, inSize, 0), Color::sGreen, 0.1f * inSize);
DrawArrow(inTransform.GetTranslation(), inTransform * Vec3(0, 0, inSize), Color::sBlue, 0.1f * inSize);
}
void DebugRenderer::DrawPlane(RVec3Arg inPoint, Vec3Arg inNormal, ColorArg inColor, float inSize)
{
// Create orthogonal basis
Vec3 perp1 = inNormal.Cross(Vec3::sAxisY()).NormalizedOr(Vec3::sAxisX());
Vec3 perp2 = perp1.Cross(inNormal).Normalized();
perp1 = inNormal.Cross(perp2);
// Calculate corners
RVec3 corner1 = inPoint + inSize * (perp1 + perp2);
RVec3 corner2 = inPoint + inSize * (perp1 - perp2);
RVec3 corner3 = inPoint + inSize * (-perp1 - perp2);
RVec3 corner4 = inPoint + inSize * (-perp1 + perp2);
// Draw cross
DrawLine(corner1, corner3, inColor);
DrawLine(corner2, corner4, inColor);
// Draw square
DrawLine(corner1, corner2, inColor);
DrawLine(corner2, corner3, inColor);
DrawLine(corner3, corner4, inColor);
DrawLine(corner4, corner1, inColor);
// Draw normal
DrawArrow(inPoint, inPoint + inSize * inNormal, inColor, 0.1f * inSize);
}
void DebugRenderer::DrawWireTriangle(RVec3Arg inV1, RVec3Arg inV2, RVec3Arg inV3, ColorArg inColor)
{
JPH_PROFILE_FUNCTION();
DrawLine(inV1, inV2, inColor);
DrawLine(inV2, inV3, inColor);
DrawLine(inV3, inV1, inColor);
}
void DebugRenderer::DrawWireSphere(RVec3Arg inCenter, float inRadius, ColorArg inColor, int inLevel)
{
RMat44 matrix = RMat44::sTranslation(inCenter) * Mat44::sScale(inRadius);
DrawWireUnitSphere(matrix, inColor, inLevel);
}
void DebugRenderer::DrawWireUnitSphere(RMat44Arg inMatrix, ColorArg inColor, int inLevel)
{
JPH_PROFILE_FUNCTION();
DrawWireUnitSphereRecursive(inMatrix, inColor, Vec3::sAxisX(), Vec3::sAxisY(), Vec3::sAxisZ(), inLevel);
DrawWireUnitSphereRecursive(inMatrix, inColor, -Vec3::sAxisX(), Vec3::sAxisY(), Vec3::sAxisZ(), inLevel);
DrawWireUnitSphereRecursive(inMatrix, inColor, Vec3::sAxisX(), -Vec3::sAxisY(), Vec3::sAxisZ(), inLevel);
DrawWireUnitSphereRecursive(inMatrix, inColor, -Vec3::sAxisX(), -Vec3::sAxisY(), Vec3::sAxisZ(), inLevel);
DrawWireUnitSphereRecursive(inMatrix, inColor, Vec3::sAxisX(), Vec3::sAxisY(), -Vec3::sAxisZ(), inLevel);
DrawWireUnitSphereRecursive(inMatrix, inColor, -Vec3::sAxisX(), Vec3::sAxisY(), -Vec3::sAxisZ(), inLevel);
DrawWireUnitSphereRecursive(inMatrix, inColor, Vec3::sAxisX(), -Vec3::sAxisY(), -Vec3::sAxisZ(), inLevel);
DrawWireUnitSphereRecursive(inMatrix, inColor, -Vec3::sAxisX(), -Vec3::sAxisY(), -Vec3::sAxisZ(), inLevel);
}
void DebugRenderer::DrawWireUnitSphereRecursive(RMat44Arg inMatrix, ColorArg inColor, Vec3Arg inDir1, Vec3Arg inDir2, Vec3Arg inDir3, int inLevel)
{
if (inLevel == 0)
{
RVec3 d1 = inMatrix * inDir1;
RVec3 d2 = inMatrix * inDir2;
RVec3 d3 = inMatrix * inDir3;
DrawLine(d1, d2, inColor);
DrawLine(d2, d3, inColor);
DrawLine(d3, d1, inColor);
}
else
{
Vec3 center1 = (inDir1 + inDir2).Normalized();
Vec3 center2 = (inDir2 + inDir3).Normalized();
Vec3 center3 = (inDir3 + inDir1).Normalized();
DrawWireUnitSphereRecursive(inMatrix, inColor, inDir1, center1, center3, inLevel - 1);
DrawWireUnitSphereRecursive(inMatrix, inColor, center1, center2, center3, inLevel - 1);
DrawWireUnitSphereRecursive(inMatrix, inColor, center1, inDir2, center2, inLevel - 1);
DrawWireUnitSphereRecursive(inMatrix, inColor, center3, center2, inDir3, inLevel - 1);
}
}
void DebugRenderer::Create8thSphereRecursive(Array<uint32> &ioIndices, Array<Vertex> &ioVertices, Vec3Arg inDir1, uint32 &ioIdx1, Vec3Arg inDir2, uint32 &ioIdx2, Vec3Arg inDir3, uint32 &ioIdx3, const Float2 &inUV, SupportFunction inGetSupport, int inLevel)
{
if (inLevel == 0)
{
if (ioIdx1 == 0xffffffff)
{
ioIdx1 = (uint32)ioVertices.size();
Float3 position, normal;
inGetSupport(inDir1).StoreFloat3(&position);
inDir1.StoreFloat3(&normal);
ioVertices.push_back({ position, normal, inUV, Color::sWhite });
}
if (ioIdx2 == 0xffffffff)
{
ioIdx2 = (uint32)ioVertices.size();
Float3 position, normal;
inGetSupport(inDir2).StoreFloat3(&position);
inDir2.StoreFloat3(&normal);
ioVertices.push_back({ position, normal, inUV, Color::sWhite });
}
if (ioIdx3 == 0xffffffff)
{
ioIdx3 = (uint32)ioVertices.size();
Float3 position, normal;
inGetSupport(inDir3).StoreFloat3(&position);
inDir3.StoreFloat3(&normal);
ioVertices.push_back({ position, normal, inUV, Color::sWhite });
}
ioIndices.push_back(ioIdx1);
ioIndices.push_back(ioIdx2);
ioIndices.push_back(ioIdx3);
}
else
{
Vec3 center1 = (inDir1 + inDir2).Normalized();
Vec3 center2 = (inDir2 + inDir3).Normalized();
Vec3 center3 = (inDir3 + inDir1).Normalized();
uint32 idx1 = 0xffffffff;
uint32 idx2 = 0xffffffff;
uint32 idx3 = 0xffffffff;
Create8thSphereRecursive(ioIndices, ioVertices, inDir1, ioIdx1, center1, idx1, center3, idx3, inUV, inGetSupport, inLevel - 1);
Create8thSphereRecursive(ioIndices, ioVertices, center1, idx1, center2, idx2, center3, idx3, inUV, inGetSupport, inLevel - 1);
Create8thSphereRecursive(ioIndices, ioVertices, center1, idx1, inDir2, ioIdx2, center2, idx2, inUV, inGetSupport, inLevel - 1);
Create8thSphereRecursive(ioIndices, ioVertices, center3, idx3, center2, idx2, inDir3, ioIdx3, inUV, inGetSupport, inLevel - 1);
}
}
void DebugRenderer::Create8thSphere(Array<uint32> &ioIndices, Array<Vertex> &ioVertices, Vec3Arg inDir1, Vec3Arg inDir2, Vec3Arg inDir3, const Float2 &inUV, SupportFunction inGetSupport, int inLevel)
{
uint32 idx1 = 0xffffffff;
uint32 idx2 = 0xffffffff;
uint32 idx3 = 0xffffffff;
Create8thSphereRecursive(ioIndices, ioVertices, inDir1, idx1, inDir2, idx2, inDir3, idx3, inUV, inGetSupport, inLevel);
}
DebugRenderer::Batch DebugRenderer::CreateCylinder(float inTop, float inBottom, float inTopRadius, float inBottomRadius, int inLevel)
{
Array<Vertex> cylinder_vertices;
Array<uint32> cylinder_indices;
for (int q = 0; q < 4; ++q)
{
Float2 uv = (q & 1) == 0? Float2(0.25f, 0.75f) : Float2(0.25f, 0.25f);
uint32 center_start_idx = (uint32)cylinder_vertices.size();
Float3 nt(0.0f, 1.0f, 0.0f);
Float3 nb(0.0f, -1.0f, 0.0f);
cylinder_vertices.push_back({ Float3(0.0f, inTop, 0.0f), nt, uv, Color::sWhite });
cylinder_vertices.push_back({ Float3(0.0f, inBottom, 0.0f), nb, uv, Color::sWhite });
uint32 vtx_start_idx = (uint32)cylinder_vertices.size();
int num_parts = 1 << inLevel;
for (int i = 0; i <= num_parts; ++i)
{
// Calculate top and bottom vertex
float angle = 0.5f * JPH_PI * (float(q) + float(i) / num_parts);
float s = Sin(angle);
float c = Cos(angle);
Float3 vt(inTopRadius * s, inTop, inTopRadius * c);
Float3 vb(inBottomRadius * s, inBottom, inBottomRadius * c);
// Calculate normal
Vec3 edge = Vec3(vt) - Vec3(vb);
Float3 n;
edge.Cross(Vec3(s, 0, c).Cross(edge)).Normalized().StoreFloat3(&n);
cylinder_vertices.push_back({ vt, nt, uv, Color::sWhite });
cylinder_vertices.push_back({ vb, nb, uv, Color::sWhite });
cylinder_vertices.push_back({ vt, n, uv, Color::sWhite });
cylinder_vertices.push_back({ vb, n, uv, Color::sWhite });
}
for (int i = 0; i < num_parts; ++i)
{
uint32 start = vtx_start_idx + 4 * i;
// Top
cylinder_indices.push_back(center_start_idx);
cylinder_indices.push_back(start);
cylinder_indices.push_back(start + 4);
// Bottom
cylinder_indices.push_back(center_start_idx + 1);
cylinder_indices.push_back(start + 5);
cylinder_indices.push_back(start + 1);
// Side
cylinder_indices.push_back(start + 2);
cylinder_indices.push_back(start + 3);
cylinder_indices.push_back(start + 7);
cylinder_indices.push_back(start + 2);
cylinder_indices.push_back(start + 7);
cylinder_indices.push_back(start + 6);
}
}
return CreateTriangleBatch(cylinder_vertices, cylinder_indices);
}
void DebugRenderer::CreateQuad(Array<uint32> &ioIndices, Array<Vertex> &ioVertices, Vec3Arg inV1, Vec3Arg inV2, Vec3Arg inV3, Vec3Arg inV4)
{
// Make room
uint32 start_idx = uint32(ioVertices.size());
ioVertices.resize(start_idx + 4);
Vertex *vertices = &ioVertices[start_idx];
// Set position
inV1.StoreFloat3(&vertices[0].mPosition);
inV2.StoreFloat3(&vertices[1].mPosition);
inV3.StoreFloat3(&vertices[2].mPosition);
inV4.StoreFloat3(&vertices[3].mPosition);
// Set color
vertices[0].mColor = vertices[1].mColor = vertices[2].mColor = vertices[3].mColor = Color::sWhite;
// Calculate normal
Vec3 normal = (inV2 - inV1).Cross(inV3 - inV1).Normalized();
Float3 normal3;
normal.StoreFloat3(&normal3);
vertices[0].mNormal = vertices[1].mNormal = vertices[2].mNormal = vertices[3].mNormal = normal3;
// Set UV's
vertices[0].mUV = { 0, 0 };
vertices[1].mUV = { 2, 0 };
vertices[2].mUV = { 2, 2 };
vertices[3].mUV = { 0, 2 };
// Set indices
ioIndices.push_back(start_idx);
ioIndices.push_back(start_idx + 1);
ioIndices.push_back(start_idx + 2);
ioIndices.push_back(start_idx);
ioIndices.push_back(start_idx + 2);
ioIndices.push_back(start_idx + 3);
}
void DebugRenderer::Initialize()
{
// Box
{
Array<Vertex> box_vertices;
Array<uint32> box_indices;
// Get corner points
Vec3 v0 = Vec3(-1, 1, -1);
Vec3 v1 = Vec3( 1, 1, -1);
Vec3 v2 = Vec3( 1, 1, 1);
Vec3 v3 = Vec3(-1, 1, 1);
Vec3 v4 = Vec3(-1, -1, -1);
Vec3 v5 = Vec3( 1, -1, -1);
Vec3 v6 = Vec3( 1, -1, 1);
Vec3 v7 = Vec3(-1, -1, 1);
// Top
CreateQuad(box_indices, box_vertices, v0, v3, v2, v1);
// Bottom
CreateQuad(box_indices, box_vertices, v4, v5, v6, v7);
// Left
CreateQuad(box_indices, box_vertices, v0, v4, v7, v3);
// Right
CreateQuad(box_indices, box_vertices, v2, v6, v5, v1);
// Front
CreateQuad(box_indices, box_vertices, v3, v7, v6, v2);
// Back
CreateQuad(box_indices, box_vertices, v0, v1, v5, v4);
mBox = new Geometry(CreateTriangleBatch(box_vertices, box_indices), AABox(Vec3(-1, -1, -1), Vec3(1, 1, 1)));
}
// Support function that returns a unit sphere
auto sphere_support = [](Vec3Arg inDirection) { return inDirection; };
// Construct geometries
mSphere = new Geometry(AABox(Vec3(-1, -1, -1), Vec3(1, 1, 1)));
mCapsuleBottom = new Geometry(AABox(Vec3(-1, -1, -1), Vec3(1, 0, 1)));
mCapsuleTop = new Geometry(AABox(Vec3(-1, 0, -1), Vec3(1, 1, 1)));
mCapsuleMid = new Geometry(AABox(Vec3(-1, -1, -1), Vec3(1, 1, 1)));
mOpenCone = new Geometry(AABox(Vec3(-1, 0, -1), Vec3(1, 1, 1)));
mCylinder = new Geometry(AABox(Vec3(-1, -1, -1), Vec3(1, 1, 1)));
// Iterate over levels
for (int level = sMaxLevel; level >= 1; --level)
{
// Determine at which distance this level should be active
float distance = sLODDistanceForLevel[sMaxLevel - level];
// Sphere
mSphere->mLODs.push_back({ CreateTriangleBatchForConvex(sphere_support, level), distance });
// Capsule bottom half sphere
{
Array<Vertex> capsule_bottom_vertices;
Array<uint32> capsule_bottom_indices;
Create8thSphere(capsule_bottom_indices, capsule_bottom_vertices, -Vec3::sAxisX(), -Vec3::sAxisY(), Vec3::sAxisZ(), Float2(0.25f, 0.25f), sphere_support, level);
Create8thSphere(capsule_bottom_indices, capsule_bottom_vertices, -Vec3::sAxisY(), Vec3::sAxisX(), Vec3::sAxisZ(), Float2(0.25f, 0.75f), sphere_support, level);
Create8thSphere(capsule_bottom_indices, capsule_bottom_vertices, Vec3::sAxisX(), -Vec3::sAxisY(), -Vec3::sAxisZ(), Float2(0.25f, 0.25f), sphere_support, level);
Create8thSphere(capsule_bottom_indices, capsule_bottom_vertices, -Vec3::sAxisY(), -Vec3::sAxisX(), -Vec3::sAxisZ(), Float2(0.25f, 0.75f), sphere_support, level);
mCapsuleBottom->mLODs.push_back({ CreateTriangleBatch(capsule_bottom_vertices, capsule_bottom_indices), distance });
}
// Capsule top half sphere
{
Array<Vertex> capsule_top_vertices;
Array<uint32> capsule_top_indices;
Create8thSphere(capsule_top_indices, capsule_top_vertices, Vec3::sAxisX(), Vec3::sAxisY(), Vec3::sAxisZ(), Float2(0.25f, 0.75f), sphere_support, level);
Create8thSphere(capsule_top_indices, capsule_top_vertices, Vec3::sAxisY(), -Vec3::sAxisX(), Vec3::sAxisZ(), Float2(0.25f, 0.25f), sphere_support, level);
Create8thSphere(capsule_top_indices, capsule_top_vertices, Vec3::sAxisY(), Vec3::sAxisX(), -Vec3::sAxisZ(), Float2(0.25f, 0.25f), sphere_support, level);
Create8thSphere(capsule_top_indices, capsule_top_vertices, -Vec3::sAxisX(), Vec3::sAxisY(), -Vec3::sAxisZ(), Float2(0.25f, 0.75f), sphere_support, level);
mCapsuleTop->mLODs.push_back({ CreateTriangleBatch(capsule_top_vertices, capsule_top_indices), distance });
}
// Capsule middle part
{
Array<Vertex> capsule_mid_vertices;
Array<uint32> capsule_mid_indices;
for (int q = 0; q < 4; ++q)
{
Float2 uv = (q & 1) == 0? Float2(0.25f, 0.25f) : Float2(0.25f, 0.75f);
uint32 start_idx = (uint32)capsule_mid_vertices.size();
int num_parts = 1 << level;
for (int i = 0; i <= num_parts; ++i)
{
float angle = 0.5f * JPH_PI * (float(q) + float(i) / num_parts);
float s = Sin(angle);
float c = Cos(angle);
Float3 vt(s, 1.0f, c);
Float3 vb(s, -1.0f, c);
Float3 n(s, 0, c);
capsule_mid_vertices.push_back({ vt, n, uv, Color::sWhite });
capsule_mid_vertices.push_back({ vb, n, uv, Color::sWhite });
}
for (int i = 0; i < num_parts; ++i)
{
uint32 start = start_idx + 2 * i;
capsule_mid_indices.push_back(start);
capsule_mid_indices.push_back(start + 1);
capsule_mid_indices.push_back(start + 3);
capsule_mid_indices.push_back(start);
capsule_mid_indices.push_back(start + 3);
capsule_mid_indices.push_back(start + 2);
}
}
mCapsuleMid->mLODs.push_back({ CreateTriangleBatch(capsule_mid_vertices, capsule_mid_indices), distance });
}
// Open cone
{
Array<Vertex> open_cone_vertices;
Array<uint32> open_cone_indices;
for (int q = 0; q < 4; ++q)
{
Float2 uv = (q & 1) == 0? Float2(0.25f, 0.25f) : Float2(0.25f, 0.75f);
uint32 start_idx = (uint32)open_cone_vertices.size();
int num_parts = 2 << level;
Float3 vt(0, 0, 0);
for (int i = 0; i <= num_parts; ++i)
{
// Calculate bottom vertex
float angle = 0.5f * JPH_PI * (float(q) + float(i) / num_parts);
float s = Sin(angle);
float c = Cos(angle);
Float3 vb(s, 1.0f, c);
// Calculate normal
// perpendicular = Y cross vb (perpendicular to the plane in which 0, y and vb exists)
// normal = perpendicular cross vb (normal to the edge 0 vb)
Vec3 normal = Vec3(s, -Square(s) - Square(c), c).Normalized();
Float3 n; normal.StoreFloat3(&n);
open_cone_vertices.push_back({ vt, n, uv, Color::sWhite });
open_cone_vertices.push_back({ vb, n, uv, Color::sWhite });
}
for (int i = 0; i < num_parts; ++i)
{
uint32 start = start_idx + 2 * i;
open_cone_indices.push_back(start);
open_cone_indices.push_back(start + 1);
open_cone_indices.push_back(start + 3);
}
}
mOpenCone->mLODs.push_back({ CreateTriangleBatch(open_cone_vertices, open_cone_indices), distance });
}
// Cylinder
mCylinder->mLODs.push_back({ CreateCylinder(1.0f, -1.0f, 1.0f, 1.0f, level), distance });
}
}
AABox DebugRenderer::sCalculateBounds(const Vertex *inVertices, int inVertexCount)
{
AABox bounds;
for (const Vertex *v = inVertices, *v_end = inVertices + inVertexCount; v < v_end; ++v)
bounds.Encapsulate(Vec3(v->mPosition));
return bounds;
}
DebugRenderer::Batch DebugRenderer::CreateTriangleBatch(const VertexList &inVertices, const IndexedTriangleNoMaterialList &inTriangles)
{
JPH_PROFILE_FUNCTION();
Array<Vertex> vertices;
// Create render vertices
vertices.resize(inVertices.size());
for (size_t v = 0; v < inVertices.size(); ++v)
{
vertices[v].mPosition = inVertices[v];
vertices[v].mNormal = Float3(0, 0, 0);
vertices[v].mUV = Float2(0, 0);
vertices[v].mColor = Color::sWhite;
}
// Calculate normals
for (size_t i = 0; i < inTriangles.size(); ++i)
{
const IndexedTriangleNoMaterial &tri = inTriangles[i];
// Calculate normal of face
Vec3 vtx[3];
for (int j = 0; j < 3; ++j)
vtx[j] = Vec3::sLoadFloat3Unsafe(vertices[tri.mIdx[j]].mPosition);
Vec3 normal = ((vtx[1] - vtx[0]).Cross(vtx[2] - vtx[0])).Normalized();
// Add normal to all vertices in face
for (int j = 0; j < 3; ++j)
(Vec3::sLoadFloat3Unsafe(vertices[tri.mIdx[j]].mNormal) + normal).StoreFloat3(&vertices[tri.mIdx[j]].mNormal);
}
// Renormalize vertex normals
for (size_t i = 0; i < vertices.size(); ++i)
Vec3::sLoadFloat3Unsafe(vertices[i].mNormal).Normalized().StoreFloat3(&vertices[i].mNormal);
return CreateTriangleBatch(&vertices[0], (int)vertices.size(), &inTriangles[0].mIdx[0], (int)(3 * inTriangles.size()));
}
DebugRenderer::Batch DebugRenderer::CreateTriangleBatchForConvex(SupportFunction inGetSupport, int inLevel, AABox *outBounds)
{
JPH_PROFILE_FUNCTION();
Array<Vertex> vertices;
Array<uint32> indices;
Create8thSphere(indices, vertices, Vec3::sAxisX(), Vec3::sAxisY(), Vec3::sAxisZ(), Float2(0.25f, 0.25f), inGetSupport, inLevel);
Create8thSphere(indices, vertices, Vec3::sAxisY(), -Vec3::sAxisX(), Vec3::sAxisZ(), Float2(0.25f, 0.75f), inGetSupport, inLevel);
Create8thSphere(indices, vertices, -Vec3::sAxisY(), Vec3::sAxisX(), Vec3::sAxisZ(), Float2(0.25f, 0.75f), inGetSupport, inLevel);
Create8thSphere(indices, vertices, -Vec3::sAxisX(), -Vec3::sAxisY(), Vec3::sAxisZ(), Float2(0.25f, 0.25f), inGetSupport, inLevel);
Create8thSphere(indices, vertices, Vec3::sAxisY(), Vec3::sAxisX(), -Vec3::sAxisZ(), Float2(0.25f, 0.75f), inGetSupport, inLevel);
Create8thSphere(indices, vertices, -Vec3::sAxisX(), Vec3::sAxisY(), -Vec3::sAxisZ(), Float2(0.25f, 0.25f), inGetSupport, inLevel);
Create8thSphere(indices, vertices, Vec3::sAxisX(), -Vec3::sAxisY(), -Vec3::sAxisZ(), Float2(0.25f, 0.25f), inGetSupport, inLevel);
Create8thSphere(indices, vertices, -Vec3::sAxisY(), -Vec3::sAxisX(), -Vec3::sAxisZ(), Float2(0.25f, 0.75f), inGetSupport, inLevel);
if (outBounds != nullptr)
*outBounds = sCalculateBounds(&vertices[0], (int)vertices.size());
return CreateTriangleBatch(vertices, indices);
}
DebugRenderer::GeometryRef DebugRenderer::CreateTriangleGeometryForConvex(SupportFunction inGetSupport)
{
GeometryRef geometry;
// Iterate over levels
for (int level = sMaxLevel; level >= 1; --level)
{
// Determine at which distance this level should be active
float distance = sLODDistanceForLevel[sMaxLevel - level];
// Create triangle batch and only calculate bounds for highest LOD level
AABox bounds;
Batch batch = CreateTriangleBatchForConvex(inGetSupport, level, geometry == nullptr? &bounds : nullptr);
// Construct geometry in the first iteration
if (geometry == nullptr)
geometry = new Geometry(bounds);
// Add the LOD
geometry->mLODs.push_back({ batch, distance });
}
return geometry;
}
void DebugRenderer::DrawBox(const AABox &inBox, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
JPH_PROFILE_FUNCTION();
RMat44 m = RMat44::sScale(Vec3::sMax(inBox.GetExtent(), Vec3::sReplicate(1.0e-6f))); // Prevent div by zero when one of the edges has length 0
m.SetTranslation(RVec3(inBox.GetCenter()));
DrawGeometry(m, inColor, mBox, ECullMode::CullBackFace, inCastShadow, inDrawMode);
}
void DebugRenderer::DrawBox(RMat44Arg inMatrix, const AABox &inBox, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
JPH_PROFILE_FUNCTION();
Mat44 m = Mat44::sScale(Vec3::sMax(inBox.GetExtent(), Vec3::sReplicate(1.0e-6f))); // Prevent div by zero when one of the edges has length 0
m.SetTranslation(inBox.GetCenter());
DrawGeometry(inMatrix * m, inColor, mBox, ECullMode::CullBackFace, inCastShadow, inDrawMode);
}
void DebugRenderer::DrawSphere(RVec3Arg inCenter, float inRadius, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
JPH_PROFILE_FUNCTION();
RMat44 matrix = RMat44::sTranslation(inCenter) * Mat44::sScale(inRadius);
DrawUnitSphere(matrix, inColor, inCastShadow, inDrawMode);
}
void DebugRenderer::DrawUnitSphere(RMat44Arg inMatrix, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
JPH_PROFILE_FUNCTION();
DrawGeometry(inMatrix, inColor, mSphere, ECullMode::CullBackFace, inCastShadow, inDrawMode);
}
void DebugRenderer::DrawCapsule(RMat44Arg inMatrix, float inHalfHeightOfCylinder, float inRadius, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
JPH_PROFILE_FUNCTION();
Mat44 scale_matrix = Mat44::sScale(inRadius);
// Calculate world space bounding box
AABox local_bounds(Vec3(-inRadius, -inHalfHeightOfCylinder - inRadius, -inRadius), Vec3(inRadius, inHalfHeightOfCylinder + inRadius, inRadius));
AABox world_bounds = local_bounds.Transformed(inMatrix);
float radius_sq = Square(inRadius);
// Draw bottom half sphere
RMat44 bottom_matrix = inMatrix * Mat44::sTranslation(Vec3(0, -inHalfHeightOfCylinder, 0)) * scale_matrix;
DrawGeometry(bottom_matrix, world_bounds, radius_sq, inColor, mCapsuleBottom, ECullMode::CullBackFace, inCastShadow, inDrawMode);
// Draw top half sphere
RMat44 top_matrix = inMatrix * Mat44::sTranslation(Vec3(0, inHalfHeightOfCylinder, 0)) * scale_matrix;
DrawGeometry(top_matrix, world_bounds, radius_sq, inColor, mCapsuleTop, ECullMode::CullBackFace, inCastShadow, inDrawMode);
// Draw middle part
DrawGeometry(inMatrix * Mat44::sScale(Vec3(inRadius, inHalfHeightOfCylinder, inRadius)), world_bounds, radius_sq, inColor, mCapsuleMid, ECullMode::CullBackFace, inCastShadow, inDrawMode);
}
void DebugRenderer::DrawCylinder(RMat44Arg inMatrix, float inHalfHeight, float inRadius, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
JPH_PROFILE_FUNCTION();
Mat44 local_transform(Vec4(inRadius, 0, 0, 0), Vec4(0, inHalfHeight, 0, 0), Vec4(0, 0, inRadius, 0), Vec4(0, 0, 0, 1));
RMat44 transform = inMatrix * local_transform;
DrawGeometry(transform, mCylinder->mBounds.Transformed(transform), Square(inRadius), inColor, mCylinder, ECullMode::CullBackFace, inCastShadow, inDrawMode);
}
void DebugRenderer::DrawOpenCone(RVec3Arg inTop, Vec3Arg inAxis, Vec3Arg inPerpendicular, float inHalfAngle, float inLength, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
JPH_PROFILE_FUNCTION();
JPH_ASSERT(inAxis.IsNormalized(1.0e-4f));
JPH_ASSERT(inPerpendicular.IsNormalized(1.0e-4f));
JPH_ASSERT(abs(inPerpendicular.Dot(inAxis)) < 1.0e-4f);
Vec3 axis = Sign(inHalfAngle) * inLength * inAxis;
float scale = inLength * Tan(abs(inHalfAngle));
if (scale != 0.0f)
{
Vec3 perp1 = scale * inPerpendicular;
Vec3 perp2 = scale * inAxis.Cross(inPerpendicular);
RMat44 transform(Vec4(perp1, 0), Vec4(axis, 0), Vec4(perp2, 0), inTop);
DrawGeometry(transform, inColor, mOpenCone, ECullMode::Off, inCastShadow, inDrawMode);
}
}
DebugRenderer::Geometry *DebugRenderer::CreateSwingLimitGeometry(int inNumSegments, const Vec3 *inVertices)
{
// Allocate space for vertices
int num_vertices = 2 * inNumSegments;
Vertex *vertices_start = (Vertex *)JPH_STACK_ALLOC(num_vertices * sizeof(Vertex));
Vertex *vertices = vertices_start;
for (int i = 0; i < inNumSegments; ++i)
{
// Get output vertices
Vertex &top = *(vertices++);
Vertex &bottom = *(vertices++);
// Get local position
const Vec3 &pos = inVertices[i];
// Get local normal
const Vec3 &prev_pos = inVertices[(i + inNumSegments - 1) % inNumSegments];
const Vec3 &next_pos = inVertices[(i + 1) % inNumSegments];
Vec3 normal = 0.5f * (next_pos.Cross(pos).NormalizedOr(Vec3::sZero()) + pos.Cross(prev_pos).NormalizedOr(Vec3::sZero()));
// Store top vertex
top.mPosition = { 0, 0, 0 };
normal.StoreFloat3(&top.mNormal);
top.mColor = Color::sWhite;
top.mUV = { 0, 0 };
// Store bottom vertex
pos.StoreFloat3(&bottom.mPosition);
normal.StoreFloat3(&bottom.mNormal);
bottom.mColor = Color::sWhite;
bottom.mUV = { 0, 0 };
}
// Allocate space for indices
int num_indices = 3 * inNumSegments;
uint32 *indices_start = (uint32 *)JPH_STACK_ALLOC(num_indices * sizeof(uint32));
uint32 *indices = indices_start;
// Calculate indices
for (int i = 0; i < inNumSegments; ++i)
{
int first = 2 * i;
int second = (first + 3) % num_vertices;
int third = first + 1;
// Triangle
*indices++ = first;
*indices++ = second;
*indices++ = third;
}
// Convert to triangle batch
return new Geometry(CreateTriangleBatch(vertices_start, num_vertices, indices_start, num_indices), sCalculateBounds(vertices_start, num_vertices));
}
void DebugRenderer::DrawSwingConeLimits(RMat44Arg inMatrix, float inSwingYHalfAngle, float inSwingZHalfAngle, float inEdgeLength, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
JPH_PROFILE_FUNCTION();
// Assert sane input
JPH_ASSERT(inSwingYHalfAngle >= 0.0f && inSwingYHalfAngle <= JPH_PI);
JPH_ASSERT(inSwingZHalfAngle >= 0.0f && inSwingZHalfAngle <= JPH_PI);
JPH_ASSERT(inEdgeLength > 0.0f);
// Check cache
SwingConeLimits limits { inSwingYHalfAngle, inSwingZHalfAngle };
GeometryRef &geometry = mSwingConeLimits[limits];
if (geometry == nullptr)
{
SwingConeBatches::iterator it = mPrevSwingConeLimits.find(limits);
if (it != mPrevSwingConeLimits.end())
geometry = it->second;
}
if (geometry == nullptr)
{
// Number of segments to draw the cone with
const int num_segments = 64;
int half_num_segments = num_segments / 2;
// The y and z values of the quaternion are limited to an ellipse, e1 and e2 are the radii of this ellipse
float e1 = Sin(0.5f * inSwingZHalfAngle);
float e2 = Sin(0.5f * inSwingYHalfAngle);
// Check if the limits will draw something
if ((e1 <= 0.0f && e2 <= 0.0f) || (e2 >= 1.0f && e1 >= 1.0f))
return;
// Calculate squared values
float e1_sq = Square(e1);
float e2_sq = Square(e2);
// Calculate local space vertices for shape
Vec3 ls_vertices[num_segments];
int tgt_vertex = 0;
for (int side_iter = 0; side_iter < 2; ++side_iter)
for (int segment_iter = 0; segment_iter < half_num_segments; ++segment_iter)
{
float y, z;
if (e2_sq > e1_sq)
{
// Trace the y value of the quaternion
y = e2 - 2.0f * segment_iter * e2 / half_num_segments;
// Calculate the corresponding z value of the quaternion
float z_sq = e1_sq - e1_sq / e2_sq * Square(y);
z = z_sq <= 0.0f? 0.0f : sqrt(z_sq);
}
else
{
// Trace the z value of the quaternion
z = -e1 + 2.0f * segment_iter * e1 / half_num_segments;
// Calculate the corresponding y value of the quaternion
float y_sq = e2_sq - e2_sq / e1_sq * Square(z);
y = y_sq <= 0.0f? 0.0f : sqrt(y_sq);
}
// If we're tracing the opposite side, flip the values
if (side_iter == 1)
{
z = -z;
y = -y;
}
// Create quaternion
Vec3 q_xyz(0, y, z);
float w = sqrt(1.0f - q_xyz.LengthSq());
Quat q(Vec4(q_xyz, w));
// Store vertex
ls_vertices[tgt_vertex++] = q.RotateAxisX();
}
geometry = CreateSwingLimitGeometry(num_segments, ls_vertices);
}
DrawGeometry(inMatrix * Mat44::sScale(inEdgeLength), inColor, geometry, ECullMode::Off, inCastShadow, inDrawMode);
}
void DebugRenderer::DrawSwingPyramidLimits(RMat44Arg inMatrix, float inMinSwingYAngle, float inMaxSwingYAngle, float inMinSwingZAngle, float inMaxSwingZAngle, float inEdgeLength, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
JPH_PROFILE_FUNCTION();
// Assert sane input
JPH_ASSERT(inMinSwingYAngle <= inMaxSwingYAngle && inMinSwingZAngle <= inMaxSwingZAngle);
JPH_ASSERT(inEdgeLength > 0.0f);
// Check cache
SwingPyramidLimits limits { inMinSwingYAngle, inMaxSwingYAngle, inMinSwingZAngle, inMaxSwingZAngle };
GeometryRef &geometry = mSwingPyramidLimits[limits];
if (geometry == nullptr)
{
SwingPyramidBatches::iterator it = mPrevSwingPyramidLimits.find(limits);
if (it != mPrevSwingPyramidLimits.end())
geometry = it->second;
}
if (geometry == nullptr)
{
// Number of segments to draw the cone with
const int num_segments = 64;
int quarter_num_segments = num_segments / 4;
// Note that this is q = Quat::sRotation(Vec3::sAxisZ(), z) * Quat::sRotation(Vec3::sAxisY(), y) with q.x set to zero so we don't introduce twist
// This matches the calculation in SwingTwistConstraintPart::ClampSwingTwist
auto get_axis = [](float inY, float inZ) {
float hy = 0.5f * inY;
float hz = 0.5f * inZ;
float cos_hy = Cos(hy);
float cos_hz = Cos(hz);
return Quat(0, Sin(hy) * cos_hz, cos_hy * Sin(hz), cos_hy * cos_hz).Normalized().RotateAxisX();
};
// Calculate local space vertices for shape
Vec3 ls_vertices[num_segments];
int tgt_vertex = 0;
for (int segment_iter = 0; segment_iter < quarter_num_segments; ++segment_iter)
ls_vertices[tgt_vertex++] = get_axis(inMinSwingYAngle, inMaxSwingZAngle - (inMaxSwingZAngle - inMinSwingZAngle) * segment_iter / quarter_num_segments);
for (int segment_iter = 0; segment_iter < quarter_num_segments; ++segment_iter)
ls_vertices[tgt_vertex++] = get_axis(inMinSwingYAngle + (inMaxSwingYAngle - inMinSwingYAngle) * segment_iter / quarter_num_segments, inMinSwingZAngle);
for (int segment_iter = 0; segment_iter < quarter_num_segments; ++segment_iter)
ls_vertices[tgt_vertex++] = get_axis(inMaxSwingYAngle, inMinSwingZAngle + (inMaxSwingZAngle - inMinSwingZAngle) * segment_iter / quarter_num_segments);
for (int segment_iter = 0; segment_iter < quarter_num_segments; ++segment_iter)
ls_vertices[tgt_vertex++] = get_axis(inMaxSwingYAngle - (inMaxSwingYAngle - inMinSwingYAngle) * segment_iter / quarter_num_segments, inMaxSwingZAngle);
geometry = CreateSwingLimitGeometry(num_segments, ls_vertices);
}
DrawGeometry(inMatrix * Mat44::sScale(inEdgeLength), inColor, geometry, ECullMode::Off, inCastShadow, inDrawMode);
}
void DebugRenderer::DrawPie(RVec3Arg inCenter, float inRadius, Vec3Arg inNormal, Vec3Arg inAxis, float inMinAngle, float inMaxAngle, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
if (inMinAngle >= inMaxAngle)
return;
JPH_PROFILE_FUNCTION();
JPH_ASSERT(inAxis.IsNormalized(1.0e-4f));
JPH_ASSERT(inNormal.IsNormalized(1.0e-4f));
JPH_ASSERT(abs(inNormal.Dot(inAxis)) < 1.0e-4f);
// Pies have a unique batch based on the difference between min and max angle
float delta_angle = inMaxAngle - inMinAngle;
GeometryRef &geometry = mPieLimits[delta_angle];
if (geometry == nullptr)
{
PieBatces::iterator it = mPrevPieLimits.find(delta_angle);
if (it != mPrevPieLimits.end())
geometry = it->second;
}
if (geometry == nullptr)
{
int num_parts = (int)ceil(64.0f * delta_angle / (2.0f * JPH_PI));
Float3 normal = { 0, 1, 0 };
Float3 center = { 0, 0, 0 };
// Allocate space for vertices
int num_vertices = num_parts + 2;
Vertex *vertices_start = (Vertex *)JPH_STACK_ALLOC(num_vertices * sizeof(Vertex));
Vertex *vertices = vertices_start;
// Center of circle
*vertices++ = { center, normal, { 0, 0 }, Color::sWhite };
// Outer edge of pie
for (int i = 0; i <= num_parts; ++i)
{
float angle = float(i) / float(num_parts) * delta_angle;
Float3 pos = { Cos(angle), 0, Sin(angle) };
*vertices++ = { pos, normal, { 0, 0 }, Color::sWhite };
}
// Allocate space for indices
int num_indices = num_parts * 3;
uint32 *indices_start = (uint32 *)JPH_STACK_ALLOC(num_indices * sizeof(uint32));
uint32 *indices = indices_start;
for (int i = 0; i < num_parts; ++i)
{
*indices++ = 0;
*indices++ = i + 1;
*indices++ = i + 2;
}
// Convert to triangle batch
geometry = new Geometry(CreateTriangleBatch(vertices_start, num_vertices, indices_start, num_indices), sCalculateBounds(vertices_start, num_vertices));
}
// Construct matrix that transforms pie into world space
RMat44 matrix = RMat44(Vec4(inRadius * inAxis, 0), Vec4(inRadius * inNormal, 0), Vec4(inRadius * inNormal.Cross(inAxis), 0), inCenter) * Mat44::sRotationY(-inMinAngle);
DrawGeometry(matrix, inColor, geometry, ECullMode::Off, inCastShadow, inDrawMode);
}
void DebugRenderer::DrawTaperedCylinder(RMat44Arg inMatrix, float inTop, float inBottom, float inTopRadius, float inBottomRadius, ColorArg inColor, ECastShadow inCastShadow, EDrawMode inDrawMode)
{
TaperedCylinder tapered_cylinder { inTop, inBottom, inTopRadius, inBottomRadius };
GeometryRef &geometry = mTaperedCylinders[tapered_cylinder];
if (geometry == nullptr)
{
TaperedCylinderBatces::iterator it = mPrevTaperedCylinders.find(tapered_cylinder);
if (it != mPrevTaperedCylinders.end())
geometry = it->second;
}
if (geometry == nullptr)
{
float max_radius = max(inTopRadius, inBottomRadius);
geometry = new Geometry(AABox(Vec3(-max_radius, inBottom, -max_radius), Vec3(max_radius, inTop, max_radius)));
for (int level = sMaxLevel; level >= 1; --level)
geometry->mLODs.push_back({ CreateCylinder(inTop, inBottom, inTopRadius, inBottomRadius, level), sLODDistanceForLevel[sMaxLevel - level] });
}
DrawGeometry(inMatrix, inColor, geometry, ECullMode::CullBackFace, inCastShadow, inDrawMode);
}
void DebugRenderer::NextFrame()
{
mPrevSwingConeLimits.clear();
std::swap(mSwingConeLimits, mPrevSwingConeLimits);
mPrevSwingPyramidLimits.clear();
std::swap(mSwingPyramidLimits, mPrevSwingPyramidLimits);
mPrevPieLimits.clear();
std::swap(mPieLimits, mPrevPieLimits);
mPrevTaperedCylinders.clear();
std::swap(mTaperedCylinders, mPrevTaperedCylinders);
}
JPH_NAMESPACE_END
#endif // JPH_DEBUG_RENDERER