godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Vehicle/VehicleCollisionTester.cpp
2025-04-12 18:40:44 +02:00

377 lines
17 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Vehicle/VehicleCollisionTester.h>
#include <Jolt/Physics/Vehicle/VehicleConstraint.h>
#include <Jolt/Physics/Collision/RayCast.h>
#include <Jolt/Physics/Collision/ShapeCast.h>
#include <Jolt/Physics/Collision/CastResult.h>
#include <Jolt/Physics/Collision/Shape/SphereShape.h>
#include <Jolt/Physics/Collision/Shape/CylinderShape.h>
#include <Jolt/Physics/Collision/CollisionCollectorImpl.h>
#include <Jolt/Physics/PhysicsSystem.h>
JPH_NAMESPACE_BEGIN
bool VehicleCollisionTesterRay::Collide(PhysicsSystem &inPhysicsSystem, const VehicleConstraint &inVehicleConstraint, uint inWheelIndex, RVec3Arg inOrigin, Vec3Arg inDirection, const BodyID &inVehicleBodyID, Body *&outBody, SubShapeID &outSubShapeID, RVec3 &outContactPosition, Vec3 &outContactNormal, float &outSuspensionLength) const
{
const DefaultBroadPhaseLayerFilter default_broadphase_layer_filter = inPhysicsSystem.GetDefaultBroadPhaseLayerFilter(mObjectLayer);
const BroadPhaseLayerFilter &broadphase_layer_filter = mBroadPhaseLayerFilter != nullptr? *mBroadPhaseLayerFilter : default_broadphase_layer_filter;
const DefaultObjectLayerFilter default_object_layer_filter = inPhysicsSystem.GetDefaultLayerFilter(mObjectLayer);
const ObjectLayerFilter &object_layer_filter = mObjectLayerFilter != nullptr? *mObjectLayerFilter : default_object_layer_filter;
const IgnoreSingleBodyFilter default_body_filter(inVehicleBodyID);
const BodyFilter &body_filter = mBodyFilter != nullptr? *mBodyFilter : default_body_filter;
const WheelSettings *wheel_settings = inVehicleConstraint.GetWheel(inWheelIndex)->GetSettings();
float wheel_radius = wheel_settings->mRadius;
float ray_length = wheel_settings->mSuspensionMaxLength + wheel_radius;
RRayCast ray { inOrigin, ray_length * inDirection };
class MyCollector : public CastRayCollector
{
public:
MyCollector(PhysicsSystem &inPhysicsSystem, const RRayCast &inRay, Vec3Arg inUpDirection, float inCosMaxSlopeAngle) :
mPhysicsSystem(inPhysicsSystem),
mRay(inRay),
mUpDirection(inUpDirection),
mCosMaxSlopeAngle(inCosMaxSlopeAngle)
{
}
virtual void AddHit(const RayCastResult &inResult) override
{
// Test if this collision is closer than the previous one
if (inResult.mFraction < GetEarlyOutFraction())
{
// Lock the body
BodyLockRead lock(mPhysicsSystem.GetBodyLockInterfaceNoLock(), inResult.mBodyID);
JPH_ASSERT(lock.Succeeded()); // When this runs all bodies are locked so this should not fail
const Body *body = &lock.GetBody();
if (body->IsSensor())
return;
// Test that we're not hitting a vertical wall
RVec3 contact_pos = mRay.GetPointOnRay(inResult.mFraction);
Vec3 normal = body->GetWorldSpaceSurfaceNormal(inResult.mSubShapeID2, contact_pos);
if (normal.Dot(mUpDirection) > mCosMaxSlopeAngle)
{
// Update early out fraction to this hit
UpdateEarlyOutFraction(inResult.mFraction);
// Get the contact properties
mBody = body;
mSubShapeID2 = inResult.mSubShapeID2;
mContactPosition = contact_pos;
mContactNormal = normal;
}
}
}
// Configuration
PhysicsSystem & mPhysicsSystem;
RRayCast mRay;
Vec3 mUpDirection;
float mCosMaxSlopeAngle;
// Resulting closest collision
const Body * mBody = nullptr;
SubShapeID mSubShapeID2;
RVec3 mContactPosition;
Vec3 mContactNormal;
};
RayCastSettings settings;
MyCollector collector(inPhysicsSystem, ray, mUp, mCosMaxSlopeAngle);
inPhysicsSystem.GetNarrowPhaseQueryNoLock().CastRay(ray, settings, collector, broadphase_layer_filter, object_layer_filter, body_filter);
if (collector.mBody == nullptr)
return false;
outBody = const_cast<Body *>(collector.mBody);
outSubShapeID = collector.mSubShapeID2;
outContactPosition = collector.mContactPosition;
outContactNormal = collector.mContactNormal;
outSuspensionLength = max(0.0f, ray_length * collector.GetEarlyOutFraction() - wheel_radius);
return true;
}
void VehicleCollisionTesterRay::PredictContactProperties(PhysicsSystem &inPhysicsSystem, const VehicleConstraint &inVehicleConstraint, uint inWheelIndex, RVec3Arg inOrigin, Vec3Arg inDirection, const BodyID &inVehicleBodyID, Body *&ioBody, SubShapeID &ioSubShapeID, RVec3 &ioContactPosition, Vec3 &ioContactNormal, float &ioSuspensionLength) const
{
// Recalculate the contact points assuming the contact point is on an infinite plane
const WheelSettings *wheel_settings = inVehicleConstraint.GetWheel(inWheelIndex)->GetSettings();
float d_dot_n = inDirection.Dot(ioContactNormal);
if (d_dot_n < -1.0e-6f)
{
// Reproject the contact position using the suspension ray and the plane formed by the contact position and normal
ioContactPosition = inOrigin + Vec3(ioContactPosition - inOrigin).Dot(ioContactNormal) / d_dot_n * inDirection;
// The suspension length is simply the distance between the contact position and the suspension origin excluding the wheel radius
ioSuspensionLength = Clamp(Vec3(ioContactPosition - inOrigin).Dot(inDirection) - wheel_settings->mRadius, 0.0f, wheel_settings->mSuspensionMaxLength);
}
else
{
// If the normal is pointing away we assume there's no collision anymore
ioSuspensionLength = wheel_settings->mSuspensionMaxLength;
}
}
bool VehicleCollisionTesterCastSphere::Collide(PhysicsSystem &inPhysicsSystem, const VehicleConstraint &inVehicleConstraint, uint inWheelIndex, RVec3Arg inOrigin, Vec3Arg inDirection, const BodyID &inVehicleBodyID, Body *&outBody, SubShapeID &outSubShapeID, RVec3 &outContactPosition, Vec3 &outContactNormal, float &outSuspensionLength) const
{
const DefaultBroadPhaseLayerFilter default_broadphase_layer_filter = inPhysicsSystem.GetDefaultBroadPhaseLayerFilter(mObjectLayer);
const BroadPhaseLayerFilter &broadphase_layer_filter = mBroadPhaseLayerFilter != nullptr? *mBroadPhaseLayerFilter : default_broadphase_layer_filter;
const DefaultObjectLayerFilter default_object_layer_filter = inPhysicsSystem.GetDefaultLayerFilter(mObjectLayer);
const ObjectLayerFilter &object_layer_filter = mObjectLayerFilter != nullptr? *mObjectLayerFilter : default_object_layer_filter;
const IgnoreSingleBodyFilter default_body_filter(inVehicleBodyID);
const BodyFilter &body_filter = mBodyFilter != nullptr? *mBodyFilter : default_body_filter;
SphereShape sphere(mRadius);
sphere.SetEmbedded();
const WheelSettings *wheel_settings = inVehicleConstraint.GetWheel(inWheelIndex)->GetSettings();
float wheel_radius = wheel_settings->mRadius;
float shape_cast_length = wheel_settings->mSuspensionMaxLength + wheel_radius - mRadius;
RShapeCast shape_cast(&sphere, Vec3::sOne(), RMat44::sTranslation(inOrigin), inDirection * shape_cast_length);
ShapeCastSettings settings;
settings.mUseShrunkenShapeAndConvexRadius = true;
settings.mReturnDeepestPoint = true;
class MyCollector : public CastShapeCollector
{
public:
MyCollector(PhysicsSystem &inPhysicsSystem, const RShapeCast &inShapeCast, Vec3Arg inUpDirection, float inCosMaxSlopeAngle) :
mPhysicsSystem(inPhysicsSystem),
mShapeCast(inShapeCast),
mUpDirection(inUpDirection),
mCosMaxSlopeAngle(inCosMaxSlopeAngle)
{
}
virtual void AddHit(const ShapeCastResult &inResult) override
{
// Test if this collision is closer/deeper than the previous one
float early_out = inResult.GetEarlyOutFraction();
if (early_out < GetEarlyOutFraction())
{
// Lock the body
BodyLockRead lock(mPhysicsSystem.GetBodyLockInterfaceNoLock(), inResult.mBodyID2);
JPH_ASSERT(lock.Succeeded()); // When this runs all bodies are locked so this should not fail
const Body *body = &lock.GetBody();
if (body->IsSensor())
return;
// Test that we're not hitting a vertical wall
Vec3 normal = -inResult.mPenetrationAxis.Normalized();
if (normal.Dot(mUpDirection) > mCosMaxSlopeAngle)
{
// Update early out fraction to this hit
UpdateEarlyOutFraction(early_out);
// Get the contact properties
mBody = body;
mSubShapeID2 = inResult.mSubShapeID2;
mContactPosition = mShapeCast.mCenterOfMassStart.GetTranslation() + inResult.mContactPointOn2;
mContactNormal = normal;
mFraction = inResult.mFraction;
}
}
}
// Configuration
PhysicsSystem & mPhysicsSystem;
const RShapeCast & mShapeCast;
Vec3 mUpDirection;
float mCosMaxSlopeAngle;
// Resulting closest collision
const Body * mBody = nullptr;
SubShapeID mSubShapeID2;
RVec3 mContactPosition;
Vec3 mContactNormal;
float mFraction;
};
MyCollector collector(inPhysicsSystem, shape_cast, mUp, mCosMaxSlopeAngle);
inPhysicsSystem.GetNarrowPhaseQueryNoLock().CastShape(shape_cast, settings, shape_cast.mCenterOfMassStart.GetTranslation(), collector, broadphase_layer_filter, object_layer_filter, body_filter);
if (collector.mBody == nullptr)
return false;
outBody = const_cast<Body *>(collector.mBody);
outSubShapeID = collector.mSubShapeID2;
outContactPosition = collector.mContactPosition;
outContactNormal = collector.mContactNormal;
outSuspensionLength = max(0.0f, shape_cast_length * collector.mFraction + mRadius - wheel_radius);
return true;
}
void VehicleCollisionTesterCastSphere::PredictContactProperties(PhysicsSystem &inPhysicsSystem, const VehicleConstraint &inVehicleConstraint, uint inWheelIndex, RVec3Arg inOrigin, Vec3Arg inDirection, const BodyID &inVehicleBodyID, Body *&ioBody, SubShapeID &ioSubShapeID, RVec3 &ioContactPosition, Vec3 &ioContactNormal, float &ioSuspensionLength) const
{
// Recalculate the contact points assuming the contact point is on an infinite plane
const WheelSettings *wheel_settings = inVehicleConstraint.GetWheel(inWheelIndex)->GetSettings();
float d_dot_n = inDirection.Dot(ioContactNormal);
if (d_dot_n < -1.0e-6f)
{
// Reproject the contact position using the suspension cast sphere and the plane formed by the contact position and normal
// This solves x = inOrigin + fraction * inDirection and (x - ioContactPosition) . ioContactNormal = mRadius for fraction
float oc_dot_n = Vec3(ioContactPosition - inOrigin).Dot(ioContactNormal);
float fraction = (mRadius + oc_dot_n) / d_dot_n;
ioContactPosition = inOrigin + fraction * inDirection - mRadius * ioContactNormal;
// Calculate the new suspension length in the same way as the cast sphere normally does
ioSuspensionLength = Clamp(fraction + mRadius - wheel_settings->mRadius, 0.0f, wheel_settings->mSuspensionMaxLength);
}
else
{
// If the normal is pointing away we assume there's no collision anymore
ioSuspensionLength = wheel_settings->mSuspensionMaxLength;
}
}
bool VehicleCollisionTesterCastCylinder::Collide(PhysicsSystem &inPhysicsSystem, const VehicleConstraint &inVehicleConstraint, uint inWheelIndex, RVec3Arg inOrigin, Vec3Arg inDirection, const BodyID &inVehicleBodyID, Body *&outBody, SubShapeID &outSubShapeID, RVec3 &outContactPosition, Vec3 &outContactNormal, float &outSuspensionLength) const
{
const DefaultBroadPhaseLayerFilter default_broadphase_layer_filter = inPhysicsSystem.GetDefaultBroadPhaseLayerFilter(mObjectLayer);
const BroadPhaseLayerFilter &broadphase_layer_filter = mBroadPhaseLayerFilter != nullptr? *mBroadPhaseLayerFilter : default_broadphase_layer_filter;
const DefaultObjectLayerFilter default_object_layer_filter = inPhysicsSystem.GetDefaultLayerFilter(mObjectLayer);
const ObjectLayerFilter &object_layer_filter = mObjectLayerFilter != nullptr? *mObjectLayerFilter : default_object_layer_filter;
const IgnoreSingleBodyFilter default_body_filter(inVehicleBodyID);
const BodyFilter &body_filter = mBodyFilter != nullptr? *mBodyFilter : default_body_filter;
const WheelSettings *wheel_settings = inVehicleConstraint.GetWheel(inWheelIndex)->GetSettings();
float max_suspension_length = wheel_settings->mSuspensionMaxLength;
// Get the wheel transform given that the cylinder rotates around the Y axis
RMat44 shape_cast_start = inVehicleConstraint.GetWheelWorldTransform(inWheelIndex, Vec3::sAxisY(), Vec3::sAxisX());
shape_cast_start.SetTranslation(inOrigin);
// Construct a cylinder with the dimensions of the wheel
float wheel_half_width = 0.5f * wheel_settings->mWidth;
CylinderShape cylinder(wheel_half_width, wheel_settings->mRadius, min(wheel_half_width, wheel_settings->mRadius) * mConvexRadiusFraction);
cylinder.SetEmbedded();
RShapeCast shape_cast(&cylinder, Vec3::sOne(), shape_cast_start, inDirection * max_suspension_length);
ShapeCastSettings settings;
settings.mUseShrunkenShapeAndConvexRadius = true;
settings.mReturnDeepestPoint = true;
class MyCollector : public CastShapeCollector
{
public:
MyCollector(PhysicsSystem &inPhysicsSystem, const RShapeCast &inShapeCast) :
mPhysicsSystem(inPhysicsSystem),
mShapeCast(inShapeCast)
{
}
virtual void AddHit(const ShapeCastResult &inResult) override
{
// Test if this collision is closer/deeper than the previous one
float early_out = inResult.GetEarlyOutFraction();
if (early_out < GetEarlyOutFraction())
{
// Lock the body
BodyLockRead lock(mPhysicsSystem.GetBodyLockInterfaceNoLock(), inResult.mBodyID2);
JPH_ASSERT(lock.Succeeded()); // When this runs all bodies are locked so this should not fail
const Body *body = &lock.GetBody();
if (body->IsSensor())
return;
// Update early out fraction to this hit
UpdateEarlyOutFraction(early_out);
// Get the contact properties
mBody = body;
mSubShapeID2 = inResult.mSubShapeID2;
mContactPosition = mShapeCast.mCenterOfMassStart.GetTranslation() + inResult.mContactPointOn2;
mContactNormal = -inResult.mPenetrationAxis.Normalized();
mFraction = inResult.mFraction;
}
}
// Configuration
PhysicsSystem & mPhysicsSystem;
const RShapeCast & mShapeCast;
// Resulting closest collision
const Body * mBody = nullptr;
SubShapeID mSubShapeID2;
RVec3 mContactPosition;
Vec3 mContactNormal;
float mFraction;
};
MyCollector collector(inPhysicsSystem, shape_cast);
inPhysicsSystem.GetNarrowPhaseQueryNoLock().CastShape(shape_cast, settings, shape_cast.mCenterOfMassStart.GetTranslation(), collector, broadphase_layer_filter, object_layer_filter, body_filter);
if (collector.mBody == nullptr)
return false;
outBody = const_cast<Body *>(collector.mBody);
outSubShapeID = collector.mSubShapeID2;
outContactPosition = collector.mContactPosition;
outContactNormal = collector.mContactNormal;
outSuspensionLength = max_suspension_length * collector.mFraction;
return true;
}
void VehicleCollisionTesterCastCylinder::PredictContactProperties(PhysicsSystem &inPhysicsSystem, const VehicleConstraint &inVehicleConstraint, uint inWheelIndex, RVec3Arg inOrigin, Vec3Arg inDirection, const BodyID &inVehicleBodyID, Body *&ioBody, SubShapeID &ioSubShapeID, RVec3 &ioContactPosition, Vec3 &ioContactNormal, float &ioSuspensionLength) const
{
// Recalculate the contact points assuming the contact point is on an infinite plane
const WheelSettings *wheel_settings = inVehicleConstraint.GetWheel(inWheelIndex)->GetSettings();
float d_dot_n = inDirection.Dot(ioContactNormal);
if (d_dot_n < -1.0e-6f)
{
// Wheel size
float half_width = 0.5f * wheel_settings->mWidth;
float radius = wheel_settings->mRadius;
// Get the inverse local space contact normal for a cylinder pointing along Y
RMat44 wheel_transform = inVehicleConstraint.GetWheelWorldTransform(inWheelIndex, Vec3::sAxisY(), Vec3::sAxisX());
Vec3 inverse_local_normal = -wheel_transform.Multiply3x3Transposed(ioContactNormal);
// Get the support point of this normal in local space of the cylinder
// See CylinderShape::Cylinder::GetSupport
float x = inverse_local_normal.GetX(), y = inverse_local_normal.GetY(), z = inverse_local_normal.GetZ();
float o = sqrt(Square(x) + Square(z));
Vec3 support_point;
if (o > 0.0f)
support_point = Vec3((radius * x) / o, Sign(y) * half_width, (radius * z) / o);
else
support_point = Vec3(0, Sign(y) * half_width, 0);
// Rotate back to world space
support_point = wheel_transform.Multiply3x3(support_point);
// Now we can use inOrigin + support_point as the start of a ray of our suspension to the contact plane
// as know that it is the first point on the wheel that will hit the plane
RVec3 origin = inOrigin + support_point;
// Calculate contact position and suspension length, the is the same as VehicleCollisionTesterRay
// but we don't need to take the radius into account anymore
Vec3 oc(ioContactPosition - origin);
ioContactPosition = origin + oc.Dot(ioContactNormal) / d_dot_n * inDirection;
ioSuspensionLength = Clamp(oc.Dot(inDirection), 0.0f, wheel_settings->mSuspensionMaxLength);
}
else
{
// If the normal is pointing away we assume there's no collision anymore
ioSuspensionLength = wheel_settings->mSuspensionMaxLength;
}
}
JPH_NAMESPACE_END