godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Vehicle/TrackedVehicleController.cpp

532 lines
21 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Vehicle/TrackedVehicleController.h>
#include <Jolt/Physics/PhysicsSystem.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(TrackedVehicleControllerSettings)
{
JPH_ADD_BASE_CLASS(TrackedVehicleControllerSettings, VehicleControllerSettings)
JPH_ADD_ATTRIBUTE(TrackedVehicleControllerSettings, mEngine)
JPH_ADD_ATTRIBUTE(TrackedVehicleControllerSettings, mTransmission)
JPH_ADD_ATTRIBUTE(TrackedVehicleControllerSettings, mTracks)
}
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(WheelSettingsTV)
{
JPH_ADD_ATTRIBUTE(WheelSettingsTV, mLongitudinalFriction)
JPH_ADD_ATTRIBUTE(WheelSettingsTV, mLateralFriction)
}
void WheelSettingsTV::SaveBinaryState(StreamOut &inStream) const
{
inStream.Write(mLongitudinalFriction);
inStream.Write(mLateralFriction);
}
void WheelSettingsTV::RestoreBinaryState(StreamIn &inStream)
{
inStream.Read(mLongitudinalFriction);
inStream.Read(mLateralFriction);
}
WheelTV::WheelTV(const WheelSettingsTV &inSettings) :
Wheel(inSettings)
{
}
void WheelTV::CalculateAngularVelocity(const VehicleConstraint &inConstraint)
{
const WheelSettingsTV *settings = GetSettings();
const Wheels &wheels = inConstraint.GetWheels();
const VehicleTrack &track = static_cast<const TrackedVehicleController *>(inConstraint.GetController())->GetTracks()[mTrackIndex];
// Calculate angular velocity of this wheel
mAngularVelocity = track.mAngularVelocity * wheels[track.mDrivenWheel]->GetSettings()->mRadius / settings->mRadius;
}
void WheelTV::Update(uint inWheelIndex, float inDeltaTime, const VehicleConstraint &inConstraint)
{
CalculateAngularVelocity(inConstraint);
// Update rotation of wheel
mAngle = fmod(mAngle + mAngularVelocity * inDeltaTime, 2.0f * JPH_PI);
// Reset brake impulse, will be set during post collision again
mBrakeImpulse = 0.0f;
if (mContactBody != nullptr)
{
// Friction at the point of this wheel between track and floor
const WheelSettingsTV *settings = GetSettings();
VehicleConstraint::CombineFunction combine_friction = inConstraint.GetCombineFriction();
mCombinedLongitudinalFriction = settings->mLongitudinalFriction;
mCombinedLateralFriction = settings->mLateralFriction;
combine_friction(inWheelIndex, mCombinedLongitudinalFriction, mCombinedLateralFriction, *mContactBody, mContactSubShapeID);
}
else
{
// No collision
mCombinedLongitudinalFriction = mCombinedLateralFriction = 0.0f;
}
}
VehicleController *TrackedVehicleControllerSettings::ConstructController(VehicleConstraint &inConstraint) const
{
return new TrackedVehicleController(*this, inConstraint);
}
TrackedVehicleControllerSettings::TrackedVehicleControllerSettings()
{
// Numbers guestimated from: https://en.wikipedia.org/wiki/M1_Abrams
mEngine.mMinRPM = 500.0f;
mEngine.mMaxRPM = 4000.0f;
mEngine.mMaxTorque = 500.0f; // Note actual torque for M1 is around 5000 but we need a reduced mass in order to keep the simulation sane
mTransmission.mShiftDownRPM = 1000.0f;
mTransmission.mShiftUpRPM = 3500.0f;
mTransmission.mGearRatios = { 4.0f, 3.0f, 2.0f, 1.0f };
mTransmission.mReverseGearRatios = { -4.0f, -3.0f };
}
void TrackedVehicleControllerSettings::SaveBinaryState(StreamOut &inStream) const
{
mEngine.SaveBinaryState(inStream);
mTransmission.SaveBinaryState(inStream);
for (const VehicleTrackSettings &t : mTracks)
t.SaveBinaryState(inStream);
}
void TrackedVehicleControllerSettings::RestoreBinaryState(StreamIn &inStream)
{
mEngine.RestoreBinaryState(inStream);
mTransmission.RestoreBinaryState(inStream);
for (VehicleTrackSettings &t : mTracks)
t.RestoreBinaryState(inStream);
}
TrackedVehicleController::TrackedVehicleController(const TrackedVehicleControllerSettings &inSettings, VehicleConstraint &inConstraint) :
VehicleController(inConstraint)
{
// Copy engine settings
static_cast<VehicleEngineSettings &>(mEngine) = inSettings.mEngine;
JPH_ASSERT(inSettings.mEngine.mMinRPM >= 0.0f);
JPH_ASSERT(inSettings.mEngine.mMinRPM <= inSettings.mEngine.mMaxRPM);
mEngine.SetCurrentRPM(mEngine.mMinRPM);
// Copy transmission settings
static_cast<VehicleTransmissionSettings &>(mTransmission) = inSettings.mTransmission;
#ifdef JPH_ENABLE_ASSERTS
for (float r : inSettings.mTransmission.mGearRatios)
JPH_ASSERT(r > 0.0f);
for (float r : inSettings.mTransmission.mReverseGearRatios)
JPH_ASSERT(r < 0.0f);
#endif // JPH_ENABLE_ASSERTS
JPH_ASSERT(inSettings.mTransmission.mSwitchTime >= 0.0f);
JPH_ASSERT(inSettings.mTransmission.mShiftDownRPM > 0.0f);
JPH_ASSERT(inSettings.mTransmission.mMode != ETransmissionMode::Auto || inSettings.mTransmission.mShiftUpRPM < inSettings.mEngine.mMaxRPM);
JPH_ASSERT(inSettings.mTransmission.mShiftUpRPM > inSettings.mTransmission.mShiftDownRPM);
// Copy track settings
for (uint i = 0; i < std::size(mTracks); ++i)
{
const VehicleTrackSettings &d = inSettings.mTracks[i];
static_cast<VehicleTrackSettings &>(mTracks[i]) = d;
JPH_ASSERT(d.mInertia >= 0.0f);
JPH_ASSERT(d.mAngularDamping >= 0.0f);
JPH_ASSERT(d.mMaxBrakeTorque >= 0.0f);
JPH_ASSERT(d.mDifferentialRatio > 0.0f);
}
}
bool TrackedVehicleController::AllowSleep() const
{
return mForwardInput == 0.0f // No user input
&& mTransmission.AllowSleep() // Transmission is not shifting
&& mEngine.AllowSleep(); // Engine is idling
}
void TrackedVehicleController::PreCollide(float inDeltaTime, PhysicsSystem &inPhysicsSystem)
{
Wheels &wheels = mConstraint.GetWheels();
// Fill in track index
for (size_t t = 0; t < std::size(mTracks); ++t)
for (uint w : mTracks[t].mWheels)
static_cast<WheelTV *>(wheels[w])->mTrackIndex = (uint)t;
// Angular damping: dw/dt = -c * w
// Solution: w(t) = w(0) * e^(-c * t) or w2 = w1 * e^(-c * dt)
// Taylor expansion of e^(-c * dt) = 1 - c * dt + ...
// Since dt is usually in the order of 1/60 and c is a low number too this approximation is good enough
for (VehicleTrack &t : mTracks)
t.mAngularVelocity *= max(0.0f, 1.0f - t.mAngularDamping * inDeltaTime);
}
void TrackedVehicleController::SyncLeftRightTracks()
{
// Apply left to right ratio according to track inertias
VehicleTrack &tl = mTracks[(int)ETrackSide::Left];
VehicleTrack &tr = mTracks[(int)ETrackSide::Right];
if (mLeftRatio * mRightRatio > 0.0f)
{
// Solve: (tl.mAngularVelocity + dl) / (tr.mAngularVelocity + dr) = mLeftRatio / mRightRatio and dl * tr.mInertia = -dr * tl.mInertia, where dl/dr are the delta angular velocities for left and right tracks
float impulse = (mLeftRatio * tr.mAngularVelocity - mRightRatio * tl.mAngularVelocity) / (mLeftRatio * tr.mInertia + mRightRatio * tl.mInertia);
tl.mAngularVelocity += impulse * tl.mInertia;
tr.mAngularVelocity -= impulse * tr.mInertia;
}
else
{
// Solve: (tl.mAngularVelocity + dl) / (tr.mAngularVelocity + dr) = mLeftRatio / mRightRatio and dl * tr.mInertia = dr * tl.mInertia, where dl/dr are the delta angular velocities for left and right tracks
float impulse = (mLeftRatio * tr.mAngularVelocity - mRightRatio * tl.mAngularVelocity) / (mRightRatio * tl.mInertia - mLeftRatio * tr.mInertia);
tl.mAngularVelocity += impulse * tl.mInertia;
tr.mAngularVelocity += impulse * tr.mInertia;
}
}
void TrackedVehicleController::PostCollide(float inDeltaTime, PhysicsSystem &inPhysicsSystem)
{
JPH_PROFILE_FUNCTION();
Wheels &wheels = mConstraint.GetWheels();
// Update wheel angle, do this before applying torque to the wheels (as friction will slow them down again)
for (uint wheel_index = 0, num_wheels = (uint)wheels.size(); wheel_index < num_wheels; ++wheel_index)
{
WheelTV *w = static_cast<WheelTV *>(wheels[wheel_index]);
w->Update(wheel_index, inDeltaTime, mConstraint);
}
// First calculate engine speed based on speed of all wheels
bool can_engine_apply_torque = false;
if (mTransmission.GetCurrentGear() != 0 && mTransmission.GetClutchFriction() > 1.0e-3f)
{
float transmission_ratio = mTransmission.GetCurrentRatio();
bool forward = transmission_ratio >= 0.0f;
float fastest_wheel_speed = forward? -FLT_MAX : FLT_MAX;
for (const VehicleTrack &t : mTracks)
{
if (forward)
fastest_wheel_speed = max(fastest_wheel_speed, t.mAngularVelocity * t.mDifferentialRatio);
else
fastest_wheel_speed = min(fastest_wheel_speed, t.mAngularVelocity * t.mDifferentialRatio);
for (uint w : t.mWheels)
if (wheels[w]->HasContact())
{
can_engine_apply_torque = true;
break;
}
}
// Update RPM only if the tracks are connected to the engine
if (fastest_wheel_speed > -FLT_MAX && fastest_wheel_speed < FLT_MAX)
mEngine.SetCurrentRPM(fastest_wheel_speed * mTransmission.GetCurrentRatio() * VehicleEngine::cAngularVelocityToRPM);
}
else
{
// Update engine with damping
mEngine.ApplyDamping(inDeltaTime);
// In auto transmission mode, don't accelerate the engine when switching gears
float forward_input = mTransmission.mMode == ETransmissionMode::Manual? abs(mForwardInput) : 0.0f;
// Engine not connected to wheels, update RPM based on engine inertia alone
mEngine.ApplyTorque(mEngine.GetTorque(forward_input), inDeltaTime);
}
// Update transmission
// Note: only allow switching gears up when the tracks are rolling in the same direction
mTransmission.Update(inDeltaTime, mEngine.GetCurrentRPM(), mForwardInput, mLeftRatio * mRightRatio > 0.0f && can_engine_apply_torque);
// Calculate the amount of torque the transmission gives to the differentials
float transmission_ratio = mTransmission.GetCurrentRatio();
float transmission_torque = mTransmission.GetClutchFriction() * transmission_ratio * mEngine.GetTorque(abs(mForwardInput));
if (transmission_torque != 0.0f)
{
// Apply the transmission torque to the wheels
for (uint i = 0; i < std::size(mTracks); ++i)
{
VehicleTrack &t = mTracks[i];
// Get wheel rotation ratio for this track
float ratio = i == 0? mLeftRatio : mRightRatio;
// Calculate the max angular velocity of the driven wheel of the track given current engine RPM
// Note this adds 0.1% slop to avoid numerical accuracy issues
float track_max_angular_velocity = mEngine.GetCurrentRPM() / (transmission_ratio * t.mDifferentialRatio * ratio * VehicleEngine::cAngularVelocityToRPM) * 1.001f;
// Calculate torque on the driven wheel
float differential_torque = t.mDifferentialRatio * ratio * transmission_torque;
// Apply torque to driven wheel
if (t.mAngularVelocity * track_max_angular_velocity < 0.0f || abs(t.mAngularVelocity) < abs(track_max_angular_velocity))
t.mAngularVelocity += differential_torque * inDeltaTime / t.mInertia;
}
}
// Ensure that we have the correct ratio between the two tracks
SyncLeftRightTracks();
// Braking
for (VehicleTrack &t : mTracks)
{
// Calculate brake torque
float brake_torque = mBrakeInput * t.mMaxBrakeTorque;
if (brake_torque > 0.0f)
{
// Calculate how much torque is needed to stop the track from rotating in this time step
float brake_torque_to_lock_track = abs(t.mAngularVelocity) * t.mInertia / inDeltaTime;
if (brake_torque > brake_torque_to_lock_track)
{
// Wheels are locked
t.mAngularVelocity = 0.0f;
brake_torque -= brake_torque_to_lock_track;
}
else
{
// Slow down the track
t.mAngularVelocity -= Sign(t.mAngularVelocity) * brake_torque * inDeltaTime / t.mInertia;
}
}
if (brake_torque > 0.0f)
{
// Sum the radius of all wheels touching the floor
float total_radius = 0.0f;
for (uint wheel_index : t.mWheels)
{
const WheelTV *w = static_cast<WheelTV *>(wheels[wheel_index]);
if (w->HasContact())
total_radius += w->GetSettings()->mRadius;
}
if (total_radius > 0.0f)
{
brake_torque /= total_radius;
for (uint wheel_index : t.mWheels)
{
WheelTV *w = static_cast<WheelTV *>(wheels[wheel_index]);
if (w->HasContact())
{
// Impulse: p = F * dt = Torque / Wheel_Radius * dt, Torque = Total_Torque * Wheel_Radius / Summed_Radius => p = Total_Torque * dt / Summed_Radius
w->mBrakeImpulse = brake_torque * inDeltaTime;
}
}
}
}
}
// Update wheel angular velocity based on that of the track
for (Wheel *w_base : wheels)
{
WheelTV *w = static_cast<WheelTV *>(w_base);
w->CalculateAngularVelocity(mConstraint);
}
}
bool TrackedVehicleController::SolveLongitudinalAndLateralConstraints(float inDeltaTime)
{
bool impulse = false;
for (Wheel *w_base : mConstraint.GetWheels())
if (w_base->HasContact())
{
WheelTV *w = static_cast<WheelTV *>(w_base);
const WheelSettingsTV *settings = w->GetSettings();
VehicleTrack &track = mTracks[w->mTrackIndex];
// Calculate max impulse that we can apply on the ground
float max_longitudinal_friction_impulse = w->mCombinedLongitudinalFriction * w->GetSuspensionLambda();
// Calculate relative velocity between wheel contact point and floor in longitudinal direction
Vec3 relative_velocity = mConstraint.GetVehicleBody()->GetPointVelocity(w->GetContactPosition()) - w->GetContactPointVelocity();
float relative_longitudinal_velocity = relative_velocity.Dot(w->GetContactLongitudinal());
// Calculate brake force to apply
float min_longitudinal_impulse, max_longitudinal_impulse;
if (w->mBrakeImpulse != 0.0f)
{
// Limit brake force by max tire friction
float brake_impulse = min(w->mBrakeImpulse, max_longitudinal_friction_impulse);
// Check which direction the brakes should be applied (we don't want to apply an impulse that would accelerate the vehicle)
if (relative_longitudinal_velocity >= 0.0f)
{
min_longitudinal_impulse = -brake_impulse;
max_longitudinal_impulse = 0.0f;
}
else
{
min_longitudinal_impulse = 0.0f;
max_longitudinal_impulse = brake_impulse;
}
// Longitudinal impulse, note that we assume that once the wheels are locked that the brakes have more than enough torque to keep the wheels locked so we exclude any rotation deltas
impulse |= w->SolveLongitudinalConstraintPart(mConstraint, min_longitudinal_impulse, max_longitudinal_impulse);
}
else
{
// Assume we want to apply an angular impulse that makes the delta velocity between track and ground zero in one time step, calculate the amount of linear impulse needed to do that
float desired_angular_velocity = relative_longitudinal_velocity / settings->mRadius;
float linear_impulse = (track.mAngularVelocity - desired_angular_velocity) * track.mInertia / settings->mRadius;
// Limit the impulse by max track friction
float prev_lambda = w->GetLongitudinalLambda();
min_longitudinal_impulse = max_longitudinal_impulse = Clamp(prev_lambda + linear_impulse, -max_longitudinal_friction_impulse, max_longitudinal_friction_impulse);
// Longitudinal impulse
impulse |= w->SolveLongitudinalConstraintPart(mConstraint, min_longitudinal_impulse, max_longitudinal_impulse);
// Update the angular velocity of the track according to the lambda that was applied
track.mAngularVelocity -= (w->GetLongitudinalLambda() - prev_lambda) * settings->mRadius / track.mInertia;
SyncLeftRightTracks();
}
}
for (Wheel *w_base : mConstraint.GetWheels())
if (w_base->HasContact())
{
WheelTV *w = static_cast<WheelTV *>(w_base);
// Update angular velocity of wheel for the next iteration
w->CalculateAngularVelocity(mConstraint);
// Lateral friction
float max_lateral_friction_impulse = w->mCombinedLateralFriction * w->GetSuspensionLambda();
impulse |= w->SolveLateralConstraintPart(mConstraint, -max_lateral_friction_impulse, max_lateral_friction_impulse);
}
return impulse;
}
#ifdef JPH_DEBUG_RENDERER
void TrackedVehicleController::Draw(DebugRenderer *inRenderer) const
{
float constraint_size = mConstraint.GetDrawConstraintSize();
// Draw RPM
Body *body = mConstraint.GetVehicleBody();
Vec3 rpm_meter_up = body->GetRotation() * mConstraint.GetLocalUp();
RVec3 rpm_meter_pos = body->GetPosition() + body->GetRotation() * mRPMMeterPosition;
Vec3 rpm_meter_fwd = body->GetRotation() * mConstraint.GetLocalForward();
mEngine.DrawRPM(inRenderer, rpm_meter_pos, rpm_meter_fwd, rpm_meter_up, mRPMMeterSize, mTransmission.mShiftDownRPM, mTransmission.mShiftUpRPM);
// Draw current vehicle state
String status = StringFormat("Forward: %.1f, LRatio: %.1f, RRatio: %.1f, Brake: %.1f\n"
"Gear: %d, Clutch: %.1f, EngineRPM: %.0f, V: %.1f km/h",
(double)mForwardInput, (double)mLeftRatio, (double)mRightRatio, (double)mBrakeInput,
mTransmission.GetCurrentGear(), (double)mTransmission.GetClutchFriction(), (double)mEngine.GetCurrentRPM(), (double)body->GetLinearVelocity().Length() * 3.6);
inRenderer->DrawText3D(body->GetPosition(), status, Color::sWhite, constraint_size);
for (const VehicleTrack &t : mTracks)
{
const WheelTV *w = static_cast<const WheelTV *>(mConstraint.GetWheels()[t.mDrivenWheel]);
const WheelSettings *settings = w->GetSettings();
// Calculate where the suspension attaches to the body in world space
RVec3 ws_position = body->GetCenterOfMassPosition() + body->GetRotation() * (settings->mPosition - body->GetShape()->GetCenterOfMass());
DebugRenderer::sInstance->DrawText3D(ws_position, StringFormat("W: %.1f", (double)t.mAngularVelocity), Color::sWhite, constraint_size);
}
RMat44 body_transform = body->GetWorldTransform();
for (const Wheel *w_base : mConstraint.GetWheels())
{
const WheelTV *w = static_cast<const WheelTV *>(w_base);
const WheelSettings *settings = w->GetSettings();
// Calculate where the suspension attaches to the body in world space
RVec3 ws_position = body_transform * settings->mPosition;
Vec3 ws_direction = body_transform.Multiply3x3(settings->mSuspensionDirection);
// Draw suspension
RVec3 min_suspension_pos = ws_position + ws_direction * settings->mSuspensionMinLength;
RVec3 max_suspension_pos = ws_position + ws_direction * settings->mSuspensionMaxLength;
inRenderer->DrawLine(ws_position, min_suspension_pos, Color::sRed);
inRenderer->DrawLine(min_suspension_pos, max_suspension_pos, Color::sGreen);
// Draw current length
RVec3 wheel_pos = ws_position + ws_direction * w->GetSuspensionLength();
inRenderer->DrawMarker(wheel_pos, w->GetSuspensionLength() < settings->mSuspensionMinLength? Color::sRed : Color::sGreen, constraint_size);
// Draw wheel basis
Vec3 wheel_forward, wheel_up, wheel_right;
mConstraint.GetWheelLocalBasis(w, wheel_forward, wheel_up, wheel_right);
wheel_forward = body_transform.Multiply3x3(wheel_forward);
wheel_up = body_transform.Multiply3x3(wheel_up);
wheel_right = body_transform.Multiply3x3(wheel_right);
Vec3 steering_axis = body_transform.Multiply3x3(settings->mSteeringAxis);
inRenderer->DrawLine(wheel_pos, wheel_pos + wheel_forward, Color::sRed);
inRenderer->DrawLine(wheel_pos, wheel_pos + wheel_up, Color::sGreen);
inRenderer->DrawLine(wheel_pos, wheel_pos + wheel_right, Color::sBlue);
inRenderer->DrawLine(wheel_pos, wheel_pos + steering_axis, Color::sYellow);
// Draw wheel
RMat44 wheel_transform(Vec4(wheel_up, 0.0f), Vec4(wheel_right, 0.0f), Vec4(wheel_forward, 0.0f), wheel_pos);
wheel_transform.SetRotation(wheel_transform.GetRotation() * Mat44::sRotationY(-w->GetRotationAngle()));
inRenderer->DrawCylinder(wheel_transform, settings->mWidth * 0.5f, settings->mRadius, w->GetSuspensionLength() <= settings->mSuspensionMinLength? Color::sRed : Color::sGreen, DebugRenderer::ECastShadow::Off, DebugRenderer::EDrawMode::Wireframe);
if (w->HasContact())
{
// Draw contact
inRenderer->DrawLine(w->GetContactPosition(), w->GetContactPosition() + w->GetContactNormal(), Color::sYellow);
inRenderer->DrawLine(w->GetContactPosition(), w->GetContactPosition() + w->GetContactLongitudinal(), Color::sRed);
inRenderer->DrawLine(w->GetContactPosition(), w->GetContactPosition() + w->GetContactLateral(), Color::sBlue);
DebugRenderer::sInstance->DrawText3D(w->GetContactPosition(), StringFormat("S: %.2f", (double)w->GetSuspensionLength()), Color::sWhite, constraint_size);
}
}
}
#endif // JPH_DEBUG_RENDERER
void TrackedVehicleController::SaveState(StateRecorder &inStream) const
{
inStream.Write(mForwardInput);
inStream.Write(mLeftRatio);
inStream.Write(mRightRatio);
inStream.Write(mBrakeInput);
mEngine.SaveState(inStream);
mTransmission.SaveState(inStream);
for (const VehicleTrack &t : mTracks)
t.SaveState(inStream);
}
void TrackedVehicleController::RestoreState(StateRecorder &inStream)
{
inStream.Read(mForwardInput);
inStream.Read(mLeftRatio);
inStream.Read(mRightRatio);
inStream.Read(mBrakeInput);
mEngine.RestoreState(inStream);
mTransmission.RestoreState(inStream);
for (VehicleTrack &t : mTracks)
t.RestoreState(inStream);
}
JPH_NAMESPACE_END