godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/LargeIslandSplitter.h

186 lines
8 KiB
C++

// SPDX-FileCopyrightText: 2023 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Core/NonCopyable.h>
#include <Jolt/Core/Atomics.h>
JPH_NAMESPACE_BEGIN
class Body;
class BodyID;
class IslandBuilder;
class TempAllocator;
class Constraint;
class BodyManager;
class ContactConstraintManager;
class CalculateSolverSteps;
/// Assigns bodies in large islands to multiple groups that can run in parallel
///
/// This basically implements what is described in: High-Performance Physical Simulations on Next-Generation Architecture with Many Cores by Chen et al.
/// See: http://web.eecs.umich.edu/~msmelyan/papers/physsim_onmanycore_itj.pdf section "PARALLELIZATION METHODOLOGY"
class LargeIslandSplitter : public NonCopyable
{
private:
using SplitMask = uint32;
public:
static constexpr uint cNumSplits = sizeof(SplitMask) * 8;
static constexpr uint cNonParallelSplitIdx = cNumSplits - 1;
static constexpr uint cLargeIslandTreshold = 128; ///< If the number of constraints + contacts in an island is larger than this, we will try to split the island
/// Status code for retrieving a batch
enum class EStatus
{
WaitingForBatch, ///< Work is expected to be available later
BatchRetrieved, ///< Work is being returned
AllBatchesDone, ///< No further work is expected from this
};
/// Describes a split of constraints and contacts
struct Split
{
inline uint GetNumContacts() const { return mContactBufferEnd - mContactBufferBegin; }
inline uint GetNumConstraints() const { return mConstraintBufferEnd - mConstraintBufferBegin; }
inline uint GetNumItems() const { return GetNumContacts() + GetNumConstraints(); }
uint32 mContactBufferBegin; ///< Begin of the contact buffer (offset relative to mContactAndConstraintIndices)
uint32 mContactBufferEnd; ///< End of the contact buffer
uint32 mConstraintBufferBegin; ///< Begin of the constraint buffer (offset relative to mContactAndConstraintIndices)
uint32 mConstraintBufferEnd; ///< End of the constraint buffer
};
/// Structure that describes the resulting splits from the large island splitter
class Splits
{
public:
inline uint GetNumSplits() const
{
return mNumSplits;
}
inline void GetConstraintsInSplit(uint inSplitIndex, uint32 &outConstraintsBegin, uint32 &outConstraintsEnd) const
{
const Split &split = mSplits[inSplitIndex];
outConstraintsBegin = split.mConstraintBufferBegin;
outConstraintsEnd = split.mConstraintBufferEnd;
}
inline void GetContactsInSplit(uint inSplitIndex, uint32 &outContactsBegin, uint32 &outContactsEnd) const
{
const Split &split = mSplits[inSplitIndex];
outContactsBegin = split.mContactBufferBegin;
outContactsEnd = split.mContactBufferEnd;
}
/// Reset current status so that no work can be picked up from this split
inline void ResetStatus()
{
mStatus.store(StatusItemMask, memory_order_relaxed);
}
/// Make the first batch available to other threads
inline void StartFirstBatch()
{
uint split_index = mNumSplits > 0? 0 : cNonParallelSplitIdx;
mStatus.store(uint64(split_index) << StatusSplitShift, memory_order_release);
}
/// Fetch the next batch to process
EStatus FetchNextBatch(uint32 &outConstraintsBegin, uint32 &outConstraintsEnd, uint32 &outContactsBegin, uint32 &outContactsEnd, bool &outFirstIteration);
/// Mark a batch as processed
void MarkBatchProcessed(uint inNumProcessed, bool &outLastIteration, bool &outFinalBatch);
enum EIterationStatus : uint64
{
StatusIterationMask = 0xffff000000000000,
StatusIterationShift = 48,
StatusSplitMask = 0x0000ffff00000000,
StatusSplitShift = 32,
StatusItemMask = 0x00000000ffffffff,
};
static inline int sGetIteration(uint64 inStatus)
{
return int((inStatus & StatusIterationMask) >> StatusIterationShift);
}
static inline uint sGetSplit(uint64 inStatus)
{
return uint((inStatus & StatusSplitMask) >> StatusSplitShift);
}
static inline uint sGetItem(uint64 inStatus)
{
return uint(inStatus & StatusItemMask);
}
Split mSplits[cNumSplits]; ///< Data per split
uint32 mIslandIndex; ///< Index of the island that was split
uint mNumSplits; ///< Number of splits that were created (excluding the non-parallel split)
int mNumIterations; ///< Number of iterations to do
int mNumVelocitySteps; ///< Number of velocity steps to do (cached for 2nd sub step)
int mNumPositionSteps; ///< Number of position steps to do
atomic<uint64> mStatus; ///< Status of the split, see EIterationStatus
atomic<uint> mItemsProcessed; ///< Number of items that have been marked as processed
};
public:
/// Destructor
~LargeIslandSplitter();
/// Prepare the island splitter by allocating memory
void Prepare(const IslandBuilder &inIslandBuilder, uint32 inNumActiveBodies, TempAllocator *inTempAllocator);
/// Assign two bodies to a split. Returns the split index.
uint AssignSplit(const Body *inBody1, const Body *inBody2);
/// Force a body to be in a non parallel split. Returns the split index.
uint AssignToNonParallelSplit(const Body *inBody);
/// Splits up an island, the created splits will be added to the list of batches and can be fetched with FetchNextBatch. Returns false if the island did not need splitting.
bool SplitIsland(uint32 inIslandIndex, const IslandBuilder &inIslandBuilder, const BodyManager &inBodyManager, const ContactConstraintManager &inContactManager, Constraint **inActiveConstraints, CalculateSolverSteps &ioStepsCalculator);
/// Fetch the next batch to process, returns a handle in outSplitIslandIndex that must be provided to MarkBatchProcessed when complete
EStatus FetchNextBatch(uint &outSplitIslandIndex, uint32 *&outConstraintsBegin, uint32 *&outConstraintsEnd, uint32 *&outContactsBegin, uint32 *&outContactsEnd, bool &outFirstIteration);
/// Mark a batch as processed
void MarkBatchProcessed(uint inSplitIslandIndex, const uint32 *inConstraintsBegin, const uint32 *inConstraintsEnd, const uint32 *inContactsBegin, const uint32 *inContactsEnd, bool &outLastIteration, bool &outFinalBatch);
/// Get the island index of the island that was split for a particular split island index
inline uint32 GetIslandIndex(uint inSplitIslandIndex) const
{
JPH_ASSERT(inSplitIslandIndex < mNumSplitIslands);
return mSplitIslands[inSplitIslandIndex].mIslandIndex;
}
/// Prepare the island splitter for iterating over the split islands again for position solving. Marks all batches as startable.
void PrepareForSolvePositions();
/// Reset the island splitter
void Reset(TempAllocator *inTempAllocator);
private:
static constexpr uint cSplitCombineTreshold = 32; ///< If the number of constraints + contacts in a split is lower than this, we will merge this split into the 'non-parallel split'
static constexpr uint cBatchSize = 16; ///< Number of items to process in a constraint batch
uint32 mNumActiveBodies = 0; ///< Cached number of active bodies
SplitMask * mSplitMasks = nullptr; ///< Bits that indicate for each body in the BodyManager::mActiveBodies list which split they already belong to
uint32 * mContactAndConstraintsSplitIdx = nullptr; ///< Buffer to store the split index per constraint or contact
uint32 * mContactAndConstraintIndices = nullptr; ///< Buffer to store the ordered constraint indices per split
uint mContactAndConstraintsSize = 0; ///< Total size of mContactAndConstraintsSplitIdx and mContactAndConstraintIndices
atomic<uint> mContactAndConstraintsNextFree { 0 }; ///< Next element that is free in both buffers
uint mNumSplitIslands = 0; ///< Total number of islands that required splitting
Splits * mSplitIslands = nullptr; ///< List of islands that required splitting
atomic<uint> mNextSplitIsland = 0; ///< Next split island to pick from mSplitIslands
};
JPH_NAMESPACE_END