godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/LargeIslandSplitter.cpp

583 lines
21 KiB
C++

// SPDX-FileCopyrightText: 2023 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/LargeIslandSplitter.h>
#include <Jolt/Physics/IslandBuilder.h>
#include <Jolt/Physics/Constraints/CalculateSolverSteps.h>
#include <Jolt/Physics/Constraints/Constraint.h>
#include <Jolt/Physics/Constraints/ContactConstraintManager.h>
#include <Jolt/Physics/Body/BodyManager.h>
#include <Jolt/Core/Profiler.h>
#include <Jolt/Core/TempAllocator.h>
//#define JPH_LARGE_ISLAND_SPLITTER_DEBUG
JPH_NAMESPACE_BEGIN
LargeIslandSplitter::EStatus LargeIslandSplitter::Splits::FetchNextBatch(uint32 &outConstraintsBegin, uint32 &outConstraintsEnd, uint32 &outContactsBegin, uint32 &outContactsEnd, bool &outFirstIteration)
{
{
// First check if we can get a new batch (doing a read to avoid hammering an atomic with an atomic subtract)
// Note this also avoids overflowing the status counter if we're done but there's still one thread processing items
uint64 status = mStatus.load(memory_order_acquire);
// Check for special value that indicates that the splits are still being built
// (note we do not check for this condition again below as we reset all splits before kicking off jobs that fetch batches of work)
if (status == StatusItemMask)
return EStatus::WaitingForBatch;
// Next check if all items have been processed. Note that we do this after checking if the job can be started
// as mNumIterations is not initialized until the split is started.
if (sGetIteration(status) >= mNumIterations)
return EStatus::AllBatchesDone;
uint item = sGetItem(status);
uint split_index = sGetSplit(status);
if (split_index == cNonParallelSplitIdx)
{
// Non parallel split needs to be taken as a single batch, only the thread that takes element 0 will do it
if (item != 0)
return EStatus::WaitingForBatch;
}
else
{
// Parallel split is split into batches
JPH_ASSERT(split_index < mNumSplits);
const Split &split = mSplits[split_index];
if (item >= split.GetNumItems())
return EStatus::WaitingForBatch;
}
}
// Then try to actually get the batch
uint64 status = mStatus.fetch_add(cBatchSize, memory_order_acquire);
int iteration = sGetIteration(status);
if (iteration >= mNumIterations)
return EStatus::AllBatchesDone;
uint split_index = sGetSplit(status);
JPH_ASSERT(split_index < mNumSplits || split_index == cNonParallelSplitIdx);
const Split &split = mSplits[split_index];
uint item_begin = sGetItem(status);
if (split_index == cNonParallelSplitIdx)
{
if (item_begin == 0)
{
// Non-parallel split always goes as a single batch
outConstraintsBegin = split.mConstraintBufferBegin;
outConstraintsEnd = split.mConstraintBufferEnd;
outContactsBegin = split.mContactBufferBegin;
outContactsEnd = split.mContactBufferEnd;
outFirstIteration = iteration == 0;
return EStatus::BatchRetrieved;
}
else
{
// Otherwise we're done with this split
return EStatus::WaitingForBatch;
}
}
// Parallel split is split into batches
uint num_constraints = split.GetNumConstraints();
uint num_contacts = split.GetNumContacts();
uint num_items = num_constraints + num_contacts;
if (item_begin >= num_items)
return EStatus::WaitingForBatch;
uint item_end = min(item_begin + cBatchSize, num_items);
if (item_end >= num_constraints)
{
if (item_begin < num_constraints)
{
// Partially from constraints and partially from contacts
outConstraintsBegin = split.mConstraintBufferBegin + item_begin;
outConstraintsEnd = split.mConstraintBufferEnd;
}
else
{
// Only contacts
outConstraintsBegin = 0;
outConstraintsEnd = 0;
}
outContactsBegin = split.mContactBufferBegin + (max(item_begin, num_constraints) - num_constraints);
outContactsEnd = split.mContactBufferBegin + (item_end - num_constraints);
}
else
{
// Only constraints
outConstraintsBegin = split.mConstraintBufferBegin + item_begin;
outConstraintsEnd = split.mConstraintBufferBegin + item_end;
outContactsBegin = 0;
outContactsEnd = 0;
}
outFirstIteration = iteration == 0;
return EStatus::BatchRetrieved;
}
void LargeIslandSplitter::Splits::MarkBatchProcessed(uint inNumProcessed, bool &outLastIteration, bool &outFinalBatch)
{
// We fetched this batch, nobody should change the split and or iteration until we mark the last batch as processed so we can safely get the current status
uint64 status = mStatus.load(memory_order_relaxed);
uint split_index = sGetSplit(status);
JPH_ASSERT(split_index < mNumSplits || split_index == cNonParallelSplitIdx);
const Split &split = mSplits[split_index];
uint num_items_in_split = split.GetNumItems();
// Determine if this is the last iteration before possibly incrementing it
int iteration = sGetIteration(status);
outLastIteration = iteration == mNumIterations - 1;
// Add the number of items we processed to the total number of items processed
// Note: This needs to happen after we read the status as other threads may update the status after we mark items as processed
JPH_ASSERT(inNumProcessed > 0); // Logic will break if we mark a block of 0 items as processed
uint total_items_processed = mItemsProcessed.fetch_add(inNumProcessed, memory_order_acq_rel) + inNumProcessed;
// Check if we're at the end of the split
if (total_items_processed >= num_items_in_split)
{
JPH_ASSERT(total_items_processed == num_items_in_split); // Should not overflow, that means we're retiring more items than we should process
// Set items processed back to 0 for the next split/iteration
mItemsProcessed.store(0, memory_order_release);
// Determine next split
do
{
if (split_index == cNonParallelSplitIdx)
{
// At start of next iteration
split_index = 0;
++iteration;
}
else
{
// At start of next split
++split_index;
}
// If we're beyond the end of splits, go to the non-parallel split
if (split_index >= mNumSplits)
split_index = cNonParallelSplitIdx;
}
while (iteration < mNumIterations
&& mSplits[split_index].GetNumItems() == 0); // We don't support processing empty splits, skip to the next split in this case
mStatus.store((uint64(iteration) << StatusIterationShift) | (uint64(split_index) << StatusSplitShift), memory_order_release);
}
// Track if this is the final batch
outFinalBatch = iteration >= mNumIterations;
}
LargeIslandSplitter::~LargeIslandSplitter()
{
JPH_ASSERT(mSplitMasks == nullptr);
JPH_ASSERT(mContactAndConstraintsSplitIdx == nullptr);
JPH_ASSERT(mContactAndConstraintIndices == nullptr);
JPH_ASSERT(mSplitIslands == nullptr);
}
void LargeIslandSplitter::Prepare(const IslandBuilder &inIslandBuilder, uint32 inNumActiveBodies, TempAllocator *inTempAllocator)
{
JPH_PROFILE_FUNCTION();
// Count the total number of constraints and contacts that we will be putting in splits
mContactAndConstraintsSize = 0;
for (uint32 island = 0; island < inIslandBuilder.GetNumIslands(); ++island)
{
// Get the contacts in this island
uint32 *contacts_start, *contacts_end;
inIslandBuilder.GetContactsInIsland(island, contacts_start, contacts_end);
uint num_contacts_in_island = uint(contacts_end - contacts_start);
// Get the constraints in this island
uint32 *constraints_start, *constraints_end;
inIslandBuilder.GetConstraintsInIsland(island, constraints_start, constraints_end);
uint num_constraints_in_island = uint(constraints_end - constraints_start);
uint island_size = num_contacts_in_island + num_constraints_in_island;
if (island_size >= cLargeIslandTreshold)
{
mNumSplitIslands++;
mContactAndConstraintsSize += island_size;
}
else
break; // If this island doesn't have enough constraints, the next islands won't either since they're sorted from big to small
}
if (mContactAndConstraintsSize > 0)
{
mNumActiveBodies = inNumActiveBodies;
// Allocate split mask buffer
mSplitMasks = (SplitMask *)inTempAllocator->Allocate(mNumActiveBodies * sizeof(SplitMask));
// Allocate contact and constraint buffer
uint contact_and_constraint_indices_size = mContactAndConstraintsSize * sizeof(uint32);
mContactAndConstraintsSplitIdx = (uint32 *)inTempAllocator->Allocate(contact_and_constraint_indices_size);
mContactAndConstraintIndices = (uint32 *)inTempAllocator->Allocate(contact_and_constraint_indices_size);
// Allocate island split buffer
mSplitIslands = (Splits *)inTempAllocator->Allocate(mNumSplitIslands * sizeof(Splits));
// Prevent any of the splits from being picked up as work
for (uint i = 0; i < mNumSplitIslands; ++i)
mSplitIslands[i].ResetStatus();
}
}
uint LargeIslandSplitter::AssignSplit(const Body *inBody1, const Body *inBody2)
{
uint32 idx1 = inBody1->GetIndexInActiveBodiesInternal();
uint32 idx2 = inBody2->GetIndexInActiveBodiesInternal();
// Test if either index is negative
if (idx1 == Body::cInactiveIndex || !inBody1->IsDynamic())
{
// Body 1 is not active or a kinematic body, so we only need to set 1 body
JPH_ASSERT(idx2 < mNumActiveBodies);
SplitMask &mask = mSplitMasks[idx2];
uint split = min(CountTrailingZeros(~uint32(mask)), cNonParallelSplitIdx);
mask |= SplitMask(1U << split);
return split;
}
else if (idx2 == Body::cInactiveIndex || !inBody2->IsDynamic())
{
// Body 2 is not active or a kinematic body, so we only need to set 1 body
JPH_ASSERT(idx1 < mNumActiveBodies);
SplitMask &mask = mSplitMasks[idx1];
uint split = min(CountTrailingZeros(~uint32(mask)), cNonParallelSplitIdx);
mask |= SplitMask(1U << split);
return split;
}
else
{
// If both bodies are active, we need to set 2 bodies
JPH_ASSERT(idx1 < mNumActiveBodies);
JPH_ASSERT(idx2 < mNumActiveBodies);
SplitMask &mask1 = mSplitMasks[idx1];
SplitMask &mask2 = mSplitMasks[idx2];
uint split = min(CountTrailingZeros((~uint32(mask1)) & (~uint32(mask2))), cNonParallelSplitIdx);
SplitMask mask = SplitMask(1U << split);
mask1 |= mask;
mask2 |= mask;
return split;
}
}
uint LargeIslandSplitter::AssignToNonParallelSplit(const Body *inBody)
{
uint32 idx = inBody->GetIndexInActiveBodiesInternal();
if (idx != Body::cInactiveIndex)
{
JPH_ASSERT(idx < mNumActiveBodies);
mSplitMasks[idx] |= 1U << cNonParallelSplitIdx;
}
return cNonParallelSplitIdx;
}
bool LargeIslandSplitter::SplitIsland(uint32 inIslandIndex, const IslandBuilder &inIslandBuilder, const BodyManager &inBodyManager, const ContactConstraintManager &inContactManager, Constraint **inActiveConstraints, CalculateSolverSteps &ioStepsCalculator)
{
JPH_PROFILE_FUNCTION();
// Get the contacts in this island
uint32 *contacts_start, *contacts_end;
inIslandBuilder.GetContactsInIsland(inIslandIndex, contacts_start, contacts_end);
uint num_contacts_in_island = uint(contacts_end - contacts_start);
// Get the constraints in this island
uint32 *constraints_start, *constraints_end;
inIslandBuilder.GetConstraintsInIsland(inIslandIndex, constraints_start, constraints_end);
uint num_constraints_in_island = uint(constraints_end - constraints_start);
// Check if it exceeds the threshold
uint island_size = num_contacts_in_island + num_constraints_in_island;
if (island_size < cLargeIslandTreshold)
return false;
// Get bodies in this island
BodyID *bodies_start, *bodies_end;
inIslandBuilder.GetBodiesInIsland(inIslandIndex, bodies_start, bodies_end);
// Reset the split mask for all bodies in this island
Body const * const *bodies = inBodyManager.GetBodies().data();
for (const BodyID *b = bodies_start; b < bodies_end; ++b)
mSplitMasks[bodies[b->GetIndex()]->GetIndexInActiveBodiesInternal()] = 0;
// Count the number of contacts and constraints per split
uint num_contacts_in_split[cNumSplits] = { };
uint num_constraints_in_split[cNumSplits] = { };
// Get space to store split indices
uint offset = mContactAndConstraintsNextFree.fetch_add(island_size, memory_order_relaxed);
uint32 *contact_split_idx = mContactAndConstraintsSplitIdx + offset;
uint32 *constraint_split_idx = contact_split_idx + num_contacts_in_island;
// Assign the contacts to a split
uint32 *cur_contact_split_idx = contact_split_idx;
for (const uint32 *c = contacts_start; c < contacts_end; ++c)
{
const Body *body1, *body2;
inContactManager.GetAffectedBodies(*c, body1, body2);
uint split = AssignSplit(body1, body2);
num_contacts_in_split[split]++;
*cur_contact_split_idx++ = split;
if (body1->IsDynamic())
ioStepsCalculator(body1->GetMotionPropertiesUnchecked());
if (body2->IsDynamic())
ioStepsCalculator(body2->GetMotionPropertiesUnchecked());
}
// Assign the constraints to a split
uint32 *cur_constraint_split_idx = constraint_split_idx;
for (const uint32 *c = constraints_start; c < constraints_end; ++c)
{
const Constraint *constraint = inActiveConstraints[*c];
uint split = constraint->BuildIslandSplits(*this);
num_constraints_in_split[split]++;
*cur_constraint_split_idx++ = split;
ioStepsCalculator(constraint);
}
ioStepsCalculator.Finalize();
// Start with 0 splits
uint split_remap_table[cNumSplits];
uint new_split_idx = mNextSplitIsland.fetch_add(1, memory_order_relaxed);
JPH_ASSERT(new_split_idx < mNumSplitIslands);
Splits &splits = mSplitIslands[new_split_idx];
splits.mIslandIndex = inIslandIndex;
splits.mNumSplits = 0;
splits.mNumIterations = ioStepsCalculator.GetNumVelocitySteps() + 1; // Iteration 0 is used for warm starting
splits.mNumVelocitySteps = ioStepsCalculator.GetNumVelocitySteps();
splits.mNumPositionSteps = ioStepsCalculator.GetNumPositionSteps();
splits.mItemsProcessed.store(0, memory_order_release);
// Allocate space to store the sorted constraint and contact indices per split
uint32 *constraint_buffer_cur[cNumSplits], *contact_buffer_cur[cNumSplits];
for (uint s = 0; s < cNumSplits; ++s)
{
// If this split doesn't contain enough constraints and contacts, we will combine it with the non parallel split
if (num_constraints_in_split[s] + num_contacts_in_split[s] < cSplitCombineTreshold
&& s < cNonParallelSplitIdx) // The non-parallel split cannot merge into itself
{
// Remap it
split_remap_table[s] = cNonParallelSplitIdx;
// Add the counts to the non parallel split
num_contacts_in_split[cNonParallelSplitIdx] += num_contacts_in_split[s];
num_constraints_in_split[cNonParallelSplitIdx] += num_constraints_in_split[s];
}
else
{
// This split is valid, map it to the next empty slot
uint target_split;
if (s < cNonParallelSplitIdx)
target_split = splits.mNumSplits++;
else
target_split = cNonParallelSplitIdx;
Split &split = splits.mSplits[target_split];
split_remap_table[s] = target_split;
// Allocate space for contacts
split.mContactBufferBegin = offset;
split.mContactBufferEnd = split.mContactBufferBegin + num_contacts_in_split[s];
// Allocate space for constraints
split.mConstraintBufferBegin = split.mContactBufferEnd;
split.mConstraintBufferEnd = split.mConstraintBufferBegin + num_constraints_in_split[s];
// Store start for each split
contact_buffer_cur[target_split] = mContactAndConstraintIndices + split.mContactBufferBegin;
constraint_buffer_cur[target_split] = mContactAndConstraintIndices + split.mConstraintBufferBegin;
// Update offset
offset = split.mConstraintBufferEnd;
}
}
// Split the contacts
for (uint c = 0; c < num_contacts_in_island; ++c)
{
uint split = split_remap_table[contact_split_idx[c]];
*contact_buffer_cur[split]++ = contacts_start[c];
}
// Split the constraints
for (uint c = 0; c < num_constraints_in_island; ++c)
{
uint split = split_remap_table[constraint_split_idx[c]];
*constraint_buffer_cur[split]++ = constraints_start[c];
}
#ifdef JPH_LARGE_ISLAND_SPLITTER_DEBUG
// Trace the size of all splits
uint sum = 0;
String stats;
for (uint s = 0; s < cNumSplits; ++s)
{
// If we've processed all splits, jump to the non-parallel split
if (s >= splits.GetNumSplits())
s = cNonParallelSplitIdx;
const Split &split = splits.mSplits[s];
stats += StringFormat("g:%d:%d:%d, ", s, split.GetNumContacts(), split.GetNumConstraints());
sum += split.GetNumItems();
}
stats += StringFormat("sum: %d", sum);
Trace(stats.c_str());
#endif // JPH_LARGE_ISLAND_SPLITTER_DEBUG
#ifdef JPH_ENABLE_ASSERTS
for (uint s = 0; s < cNumSplits; ++s)
{
// If there are no more splits, process the non-parallel split
if (s >= splits.mNumSplits)
s = cNonParallelSplitIdx;
// Check that we wrote all elements
Split &split = splits.mSplits[s];
JPH_ASSERT(contact_buffer_cur[s] == mContactAndConstraintIndices + split.mContactBufferEnd);
JPH_ASSERT(constraint_buffer_cur[s] == mContactAndConstraintIndices + split.mConstraintBufferEnd);
}
#ifdef JPH_DEBUG
// Validate that the splits are indeed not touching the same body
for (uint s = 0; s < splits.mNumSplits; ++s)
{
Array<bool> body_used(mNumActiveBodies, false);
// Validate contacts
uint32 split_contacts_begin, split_contacts_end;
splits.GetContactsInSplit(s, split_contacts_begin, split_contacts_end);
for (uint32 *c = mContactAndConstraintIndices + split_contacts_begin; c < mContactAndConstraintIndices + split_contacts_end; ++c)
{
const Body *body1, *body2;
inContactManager.GetAffectedBodies(*c, body1, body2);
uint32 idx1 = body1->GetIndexInActiveBodiesInternal();
if (idx1 != Body::cInactiveIndex && body1->IsDynamic())
{
JPH_ASSERT(!body_used[idx1]);
body_used[idx1] = true;
}
uint32 idx2 = body2->GetIndexInActiveBodiesInternal();
if (idx2 != Body::cInactiveIndex && body2->IsDynamic())
{
JPH_ASSERT(!body_used[idx2]);
body_used[idx2] = true;
}
}
}
#endif // JPH_DEBUG
#endif // JPH_ENABLE_ASSERTS
// Allow other threads to pick up this split island now
splits.StartFirstBatch();
return true;
}
LargeIslandSplitter::EStatus LargeIslandSplitter::FetchNextBatch(uint &outSplitIslandIndex, uint32 *&outConstraintsBegin, uint32 *&outConstraintsEnd, uint32 *&outContactsBegin, uint32 *&outContactsEnd, bool &outFirstIteration)
{
// We can't be done when all islands haven't been submitted yet
uint num_splits_created = mNextSplitIsland.load(memory_order_acquire);
bool all_done = num_splits_created == mNumSplitIslands;
// Loop over all split islands to find work
uint32 constraints_begin, constraints_end, contacts_begin, contacts_end;
for (Splits *s = mSplitIslands; s < mSplitIslands + num_splits_created; ++s)
switch (s->FetchNextBatch(constraints_begin, constraints_end, contacts_begin, contacts_end, outFirstIteration))
{
case EStatus::AllBatchesDone:
break;
case EStatus::WaitingForBatch:
all_done = false;
break;
case EStatus::BatchRetrieved:
outSplitIslandIndex = uint(s - mSplitIslands);
outConstraintsBegin = mContactAndConstraintIndices + constraints_begin;
outConstraintsEnd = mContactAndConstraintIndices + constraints_end;
outContactsBegin = mContactAndConstraintIndices + contacts_begin;
outContactsEnd = mContactAndConstraintIndices + contacts_end;
return EStatus::BatchRetrieved;
}
return all_done? EStatus::AllBatchesDone : EStatus::WaitingForBatch;
}
void LargeIslandSplitter::MarkBatchProcessed(uint inSplitIslandIndex, const uint32 *inConstraintsBegin, const uint32 *inConstraintsEnd, const uint32 *inContactsBegin, const uint32 *inContactsEnd, bool &outLastIteration, bool &outFinalBatch)
{
uint num_items_processed = uint(inConstraintsEnd - inConstraintsBegin) + uint(inContactsEnd - inContactsBegin);
JPH_ASSERT(inSplitIslandIndex < mNextSplitIsland.load(memory_order_relaxed));
Splits &splits = mSplitIslands[inSplitIslandIndex];
splits.MarkBatchProcessed(num_items_processed, outLastIteration, outFinalBatch);
}
void LargeIslandSplitter::PrepareForSolvePositions()
{
for (Splits *s = mSplitIslands, *s_end = mSplitIslands + mNumSplitIslands; s < s_end; ++s)
{
// Set the number of iterations to the number of position steps
s->mNumIterations = s->mNumPositionSteps;
// We can start again from the first batch
s->StartFirstBatch();
}
}
void LargeIslandSplitter::Reset(TempAllocator *inTempAllocator)
{
JPH_PROFILE_FUNCTION();
// Everything should have been used
JPH_ASSERT(mContactAndConstraintsNextFree.load(memory_order_relaxed) == mContactAndConstraintsSize);
JPH_ASSERT(mNextSplitIsland.load(memory_order_relaxed) == mNumSplitIslands);
// Free split islands
if (mNumSplitIslands > 0)
{
inTempAllocator->Free(mSplitIslands, mNumSplitIslands * sizeof(Splits));
mSplitIslands = nullptr;
mNumSplitIslands = 0;
mNextSplitIsland.store(0, memory_order_relaxed);
}
// Free contact and constraint buffers
if (mContactAndConstraintsSize > 0)
{
inTempAllocator->Free(mContactAndConstraintIndices, mContactAndConstraintsSize * sizeof(uint32));
mContactAndConstraintIndices = nullptr;
inTempAllocator->Free(mContactAndConstraintsSplitIdx, mContactAndConstraintsSize * sizeof(uint32));
mContactAndConstraintsSplitIdx = nullptr;
mContactAndConstraintsSize = 0;
mContactAndConstraintsNextFree.store(0, memory_order_relaxed);
}
// Free split masks
if (mSplitMasks != nullptr)
{
inTempAllocator->Free(mSplitMasks, mNumActiveBodies * sizeof(SplitMask));
mSplitMasks = nullptr;
mNumActiveBodies = 0;
}
}
JPH_NAMESPACE_END