godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/SwingTwistConstraint.cpp

525 lines
20 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Constraints/SwingTwistConstraint.h>
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(SwingTwistConstraintSettings)
{
JPH_ADD_BASE_CLASS(SwingTwistConstraintSettings, TwoBodyConstraintSettings)
JPH_ADD_ENUM_ATTRIBUTE(SwingTwistConstraintSettings, mSpace)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mPosition1)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mTwistAxis1)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mPlaneAxis1)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mPosition2)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mTwistAxis2)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mPlaneAxis2)
JPH_ADD_ENUM_ATTRIBUTE(SwingTwistConstraintSettings, mSwingType)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mNormalHalfConeAngle)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mPlaneHalfConeAngle)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mTwistMinAngle)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mTwistMaxAngle)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mMaxFrictionTorque)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mSwingMotorSettings)
JPH_ADD_ATTRIBUTE(SwingTwistConstraintSettings, mTwistMotorSettings)
}
void SwingTwistConstraintSettings::SaveBinaryState(StreamOut &inStream) const
{
ConstraintSettings::SaveBinaryState(inStream);
inStream.Write(mSpace);
inStream.Write(mPosition1);
inStream.Write(mTwistAxis1);
inStream.Write(mPlaneAxis1);
inStream.Write(mPosition2);
inStream.Write(mTwistAxis2);
inStream.Write(mPlaneAxis2);
inStream.Write(mSwingType);
inStream.Write(mNormalHalfConeAngle);
inStream.Write(mPlaneHalfConeAngle);
inStream.Write(mTwistMinAngle);
inStream.Write(mTwistMaxAngle);
inStream.Write(mMaxFrictionTorque);
mSwingMotorSettings.SaveBinaryState(inStream);
mTwistMotorSettings.SaveBinaryState(inStream);
}
void SwingTwistConstraintSettings::RestoreBinaryState(StreamIn &inStream)
{
ConstraintSettings::RestoreBinaryState(inStream);
inStream.Read(mSpace);
inStream.Read(mPosition1);
inStream.Read(mTwistAxis1);
inStream.Read(mPlaneAxis1);
inStream.Read(mPosition2);
inStream.Read(mTwistAxis2);
inStream.Read(mPlaneAxis2);
inStream.Read(mSwingType);
inStream.Read(mNormalHalfConeAngle);
inStream.Read(mPlaneHalfConeAngle);
inStream.Read(mTwistMinAngle);
inStream.Read(mTwistMaxAngle);
inStream.Read(mMaxFrictionTorque);
mSwingMotorSettings.RestoreBinaryState(inStream);
mTwistMotorSettings.RestoreBinaryState(inStream);
}
TwoBodyConstraint *SwingTwistConstraintSettings::Create(Body &inBody1, Body &inBody2) const
{
return new SwingTwistConstraint(inBody1, inBody2, *this);
}
void SwingTwistConstraint::UpdateLimits()
{
// Pass limits on to swing twist constraint part
mSwingTwistConstraintPart.SetLimits(mTwistMinAngle, mTwistMaxAngle, -mPlaneHalfConeAngle, mPlaneHalfConeAngle, -mNormalHalfConeAngle, mNormalHalfConeAngle);
}
SwingTwistConstraint::SwingTwistConstraint(Body &inBody1, Body &inBody2, const SwingTwistConstraintSettings &inSettings) :
TwoBodyConstraint(inBody1, inBody2, inSettings),
mNormalHalfConeAngle(inSettings.mNormalHalfConeAngle),
mPlaneHalfConeAngle(inSettings.mPlaneHalfConeAngle),
mTwistMinAngle(inSettings.mTwistMinAngle),
mTwistMaxAngle(inSettings.mTwistMaxAngle),
mMaxFrictionTorque(inSettings.mMaxFrictionTorque),
mSwingMotorSettings(inSettings.mSwingMotorSettings),
mTwistMotorSettings(inSettings.mTwistMotorSettings)
{
// Override swing type
mSwingTwistConstraintPart.SetSwingType(inSettings.mSwingType);
// Calculate rotation needed to go from constraint space to body1 local space
Vec3 normal_axis1 = inSettings.mPlaneAxis1.Cross(inSettings.mTwistAxis1);
Mat44 c_to_b1(Vec4(inSettings.mTwistAxis1, 0), Vec4(normal_axis1, 0), Vec4(inSettings.mPlaneAxis1, 0), Vec4(0, 0, 0, 1));
mConstraintToBody1 = c_to_b1.GetQuaternion();
// Calculate rotation needed to go from constraint space to body2 local space
Vec3 normal_axis2 = inSettings.mPlaneAxis2.Cross(inSettings.mTwistAxis2);
Mat44 c_to_b2(Vec4(inSettings.mTwistAxis2, 0), Vec4(normal_axis2, 0), Vec4(inSettings.mPlaneAxis2, 0), Vec4(0, 0, 0, 1));
mConstraintToBody2 = c_to_b2.GetQuaternion();
if (inSettings.mSpace == EConstraintSpace::WorldSpace)
{
// If all properties were specified in world space, take them to local space now
mLocalSpacePosition1 = Vec3(inBody1.GetInverseCenterOfMassTransform() * inSettings.mPosition1);
mConstraintToBody1 = inBody1.GetRotation().Conjugated() * mConstraintToBody1;
mLocalSpacePosition2 = Vec3(inBody2.GetInverseCenterOfMassTransform() * inSettings.mPosition2);
mConstraintToBody2 = inBody2.GetRotation().Conjugated() * mConstraintToBody2;
}
else
{
mLocalSpacePosition1 = Vec3(inSettings.mPosition1);
mLocalSpacePosition2 = Vec3(inSettings.mPosition2);
}
UpdateLimits();
}
void SwingTwistConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
{
if (mBody1->GetID() == inBodyID)
mLocalSpacePosition1 -= inDeltaCOM;
else if (mBody2->GetID() == inBodyID)
mLocalSpacePosition2 -= inDeltaCOM;
}
Quat SwingTwistConstraint::GetRotationInConstraintSpace() const
{
// Let b1, b2 be the center of mass transform of body1 and body2 (For body1 this is mBody1->GetCenterOfMassTransform())
// Let c1, c2 be the transform that takes a vector from constraint space to local space of body1 and body2 (For body1 this is Mat44::sRotationTranslation(mConstraintToBody1, mLocalSpacePosition1))
// Let q be the rotation of the constraint in constraint space
// b2 takes a vector from the local space of body2 to world space
// To express this in terms of b1: b2 = b1 * c1 * q * c2^-1
// c2^-1 goes from local body 2 space to constraint space
// q rotates the constraint
// c1 goes from constraint space to body 1 local space
// b1 goes from body 1 local space to world space
// So when the body rotations are given, q = (b1 * c1)^-1 * b2 c2
// Or: q = (q1 * c1)^-1 * (q2 * c2) if we're only interested in rotations
Quat constraint_body1_to_world = mBody1->GetRotation() * mConstraintToBody1;
Quat constraint_body2_to_world = mBody2->GetRotation() * mConstraintToBody2;
return constraint_body1_to_world.Conjugated() * constraint_body2_to_world;
}
void SwingTwistConstraint::SetSwingMotorState(EMotorState inState)
{
JPH_ASSERT(inState == EMotorState::Off || mSwingMotorSettings.IsValid());
if (mSwingMotorState != inState)
{
mSwingMotorState = inState;
// Ensure that warm starting next frame doesn't apply any impulses (motor parts are repurposed for different modes)
for (AngleConstraintPart &c : mMotorConstraintPart)
c.Deactivate();
}
}
void SwingTwistConstraint::SetTwistMotorState(EMotorState inState)
{
JPH_ASSERT(inState == EMotorState::Off || mTwistMotorSettings.IsValid());
if (mTwistMotorState != inState)
{
mTwistMotorState = inState;
// Ensure that warm starting next frame doesn't apply any impulses (motor parts are repurposed for different modes)
mMotorConstraintPart[0].Deactivate();
}
}
void SwingTwistConstraint::SetTargetOrientationCS(QuatArg inOrientation)
{
Quat q_swing, q_twist;
inOrientation.GetSwingTwist(q_swing, q_twist);
uint clamped_axis;
mSwingTwistConstraintPart.ClampSwingTwist(q_swing, q_twist, clamped_axis);
if (clamped_axis != 0)
mTargetOrientation = q_swing * q_twist;
else
mTargetOrientation = inOrientation;
}
void SwingTwistConstraint::SetupVelocityConstraint(float inDeltaTime)
{
// Setup point constraint
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
mPointConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, mLocalSpacePosition1, *mBody2, rotation2, mLocalSpacePosition2);
// GetRotationInConstraintSpace written out since we reuse the sub expressions
Quat constraint_body1_to_world = mBody1->GetRotation() * mConstraintToBody1;
Quat constraint_body2_to_world = mBody2->GetRotation() * mConstraintToBody2;
Quat q = constraint_body1_to_world.Conjugated() * constraint_body2_to_world;
// Calculate constraint properties for the swing twist limit
mSwingTwistConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, q, constraint_body1_to_world);
if (mSwingMotorState != EMotorState::Off || mTwistMotorState != EMotorState::Off || mMaxFrictionTorque > 0.0f)
{
// Calculate rotation motor axis
Mat44 ws_axis = Mat44::sRotation(constraint_body2_to_world);
for (int i = 0; i < 3; ++i)
mWorldSpaceMotorAxis[i] = ws_axis.GetColumn3(i);
Vec3 rotation_error;
if (mSwingMotorState == EMotorState::Position || mTwistMotorState == EMotorState::Position)
{
// Get target orientation along the shortest path from q
Quat target_orientation = q.Dot(mTargetOrientation) > 0.0f? mTargetOrientation : -mTargetOrientation;
// The definition of the constraint rotation q:
// R2 * ConstraintToBody2 = R1 * ConstraintToBody1 * q (1)
//
// R2' is the rotation of body 2 when reaching the target_orientation:
// R2' * ConstraintToBody2 = R1 * ConstraintToBody1 * target_orientation (2)
//
// The difference in body 2 space:
// R2' = R2 * diff_body2 (3)
//
// We want to specify the difference in the constraint space of body 2:
// diff_body2 = ConstraintToBody2 * diff * ConstraintToBody2^* (4)
//
// Extracting R2' from 2: R2' = R1 * ConstraintToBody1 * target_orientation * ConstraintToBody2^* (5)
// Combining 3 & 4: R2' = R2 * ConstraintToBody2 * diff * ConstraintToBody2^* (6)
// Combining 1 & 6: R2' = R1 * ConstraintToBody1 * q * diff * ConstraintToBody2^* (7)
// Combining 5 & 7: R1 * ConstraintToBody1 * target_orientation * ConstraintToBody2^* = R1 * ConstraintToBody1 * q * diff * ConstraintToBody2^*
// <=> target_orientation = q * diff
// <=> diff = q^* * target_orientation
Quat diff = q.Conjugated() * target_orientation;
// Approximate error angles
// The imaginary part of a quaternion is rotation_axis * sin(angle / 2)
// If angle is small, sin(x) = x so angle[i] ~ 2.0f * rotation_axis[i]
// We'll be making small time steps, so if the angle is not small at least the sign will be correct and we'll move in the right direction
rotation_error = -2.0f * diff.GetXYZ();
}
// Swing motor
switch (mSwingMotorState)
{
case EMotorState::Off:
if (mMaxFrictionTorque > 0.0f)
{
// Enable friction
for (int i = 1; i < 3; ++i)
mMotorConstraintPart[i].CalculateConstraintProperties(*mBody1, *mBody2, mWorldSpaceMotorAxis[i], 0.0f);
}
else
{
// Disable friction
for (AngleConstraintPart &c : mMotorConstraintPart)
c.Deactivate();
}
break;
case EMotorState::Velocity:
// Use motor to create angular velocity around desired axis
for (int i = 1; i < 3; ++i)
mMotorConstraintPart[i].CalculateConstraintProperties(*mBody1, *mBody2, mWorldSpaceMotorAxis[i], -mTargetAngularVelocity[i]);
break;
case EMotorState::Position:
// Use motor to drive rotation error to zero
if (mSwingMotorSettings.mSpringSettings.HasStiffness())
{
for (int i = 1; i < 3; ++i)
mMotorConstraintPart[i].CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, mWorldSpaceMotorAxis[i], 0.0f, rotation_error[i], mSwingMotorSettings.mSpringSettings);
}
else
{
for (int i = 1; i < 3; ++i)
mMotorConstraintPart[i].Deactivate();
}
break;
}
// Twist motor
switch (mTwistMotorState)
{
case EMotorState::Off:
if (mMaxFrictionTorque > 0.0f)
{
// Enable friction
mMotorConstraintPart[0].CalculateConstraintProperties(*mBody1, *mBody2, mWorldSpaceMotorAxis[0], 0.0f);
}
else
{
// Disable friction
mMotorConstraintPart[0].Deactivate();
}
break;
case EMotorState::Velocity:
// Use motor to create angular velocity around desired axis
mMotorConstraintPart[0].CalculateConstraintProperties(*mBody1, *mBody2, mWorldSpaceMotorAxis[0], -mTargetAngularVelocity[0]);
break;
case EMotorState::Position:
// Use motor to drive rotation error to zero
if (mTwistMotorSettings.mSpringSettings.HasStiffness())
mMotorConstraintPart[0].CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, mWorldSpaceMotorAxis[0], 0.0f, rotation_error[0], mTwistMotorSettings.mSpringSettings);
else
mMotorConstraintPart[0].Deactivate();
break;
}
}
else
{
// Disable rotation motor
for (AngleConstraintPart &c : mMotorConstraintPart)
c.Deactivate();
}
}
void SwingTwistConstraint::ResetWarmStart()
{
for (AngleConstraintPart &c : mMotorConstraintPart)
c.Deactivate();
mSwingTwistConstraintPart.Deactivate();
mPointConstraintPart.Deactivate();
}
void SwingTwistConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
{
// Warm starting: Apply previous frame impulse
for (AngleConstraintPart &c : mMotorConstraintPart)
c.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
mSwingTwistConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
}
bool SwingTwistConstraint::SolveVelocityConstraint(float inDeltaTime)
{
bool impulse = false;
// Solve twist rotation motor
if (mMotorConstraintPart[0].IsActive())
{
// Twist limits
float min_twist_limit, max_twist_limit;
if (mTwistMotorState == EMotorState::Off)
{
max_twist_limit = inDeltaTime * mMaxFrictionTorque;
min_twist_limit = -max_twist_limit;
}
else
{
min_twist_limit = inDeltaTime * mTwistMotorSettings.mMinTorqueLimit;
max_twist_limit = inDeltaTime * mTwistMotorSettings.mMaxTorqueLimit;
}
impulse |= mMotorConstraintPart[0].SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceMotorAxis[0], min_twist_limit, max_twist_limit);
}
// Solve swing rotation motor
if (mMotorConstraintPart[1].IsActive())
{
// Swing parts should turn on / off together
JPH_ASSERT(mMotorConstraintPart[2].IsActive());
// Swing limits
float min_swing_limit, max_swing_limit;
if (mSwingMotorState == EMotorState::Off)
{
max_swing_limit = inDeltaTime * mMaxFrictionTorque;
min_swing_limit = -max_swing_limit;
}
else
{
min_swing_limit = inDeltaTime * mSwingMotorSettings.mMinTorqueLimit;
max_swing_limit = inDeltaTime * mSwingMotorSettings.mMaxTorqueLimit;
}
for (int i = 1; i < 3; ++i)
impulse |= mMotorConstraintPart[i].SolveVelocityConstraint(*mBody1, *mBody2, mWorldSpaceMotorAxis[i], min_swing_limit, max_swing_limit);
}
else
{
// Swing parts should turn on / off together
JPH_ASSERT(!mMotorConstraintPart[2].IsActive());
}
// Solve rotation limits
impulse |= mSwingTwistConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
// Solve position constraint
impulse |= mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
return impulse;
}
bool SwingTwistConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
{
bool impulse = false;
// Solve rotation violations
Quat q = GetRotationInConstraintSpace();
impulse |= mSwingTwistConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, q, mConstraintToBody1, mConstraintToBody2, inBaumgarte);
// Solve position violations
mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
impulse |= mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
return impulse;
}
#ifdef JPH_DEBUG_RENDERER
void SwingTwistConstraint::DrawConstraint(DebugRenderer *inRenderer) const
{
// Get constraint properties in world space
RMat44 transform1 = mBody1->GetCenterOfMassTransform();
RVec3 position1 = transform1 * mLocalSpacePosition1;
Quat rotation1 = mBody1->GetRotation() * mConstraintToBody1;
Quat rotation2 = mBody2->GetRotation() * mConstraintToBody2;
// Draw constraint orientation
inRenderer->DrawCoordinateSystem(RMat44::sRotationTranslation(rotation1, position1), mDrawConstraintSize);
// Draw current swing and twist
Quat q = GetRotationInConstraintSpace();
Quat q_swing, q_twist;
q.GetSwingTwist(q_swing, q_twist);
inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * q_twist).RotateAxisY(), Color::sWhite);
inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * q_swing).RotateAxisX(), Color::sWhite);
if (mSwingMotorState == EMotorState::Velocity || mTwistMotorState == EMotorState::Velocity)
{
// Draw target angular velocity
inRenderer->DrawArrow(position1, position1 + rotation2 * mTargetAngularVelocity, Color::sRed, 0.1f);
}
if (mSwingMotorState == EMotorState::Position || mTwistMotorState == EMotorState::Position)
{
// Draw motor swing and twist
Quat swing, twist;
mTargetOrientation.GetSwingTwist(swing, twist);
inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * twist).RotateAxisY(), Color::sYellow);
inRenderer->DrawLine(position1, position1 + mDrawConstraintSize * (rotation1 * swing).RotateAxisX(), Color::sCyan);
}
}
void SwingTwistConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
{
// Get matrix that transforms from constraint space to world space
RMat44 constraint_to_world = RMat44::sRotationTranslation(mBody1->GetRotation() * mConstraintToBody1, mBody1->GetCenterOfMassTransform() * mLocalSpacePosition1);
// Draw limits
if (mSwingTwistConstraintPart.GetSwingType() == ESwingType::Pyramid)
inRenderer->DrawSwingPyramidLimits(constraint_to_world, -mPlaneHalfConeAngle, mPlaneHalfConeAngle, -mNormalHalfConeAngle, mNormalHalfConeAngle, mDrawConstraintSize, Color::sGreen, DebugRenderer::ECastShadow::Off);
else
inRenderer->DrawSwingConeLimits(constraint_to_world, mPlaneHalfConeAngle, mNormalHalfConeAngle, mDrawConstraintSize, Color::sGreen, DebugRenderer::ECastShadow::Off);
inRenderer->DrawPie(constraint_to_world.GetTranslation(), mDrawConstraintSize, constraint_to_world.GetAxisX(), constraint_to_world.GetAxisY(), mTwistMinAngle, mTwistMaxAngle, Color::sPurple, DebugRenderer::ECastShadow::Off);
}
#endif // JPH_DEBUG_RENDERER
void SwingTwistConstraint::SaveState(StateRecorder &inStream) const
{
TwoBodyConstraint::SaveState(inStream);
mPointConstraintPart.SaveState(inStream);
mSwingTwistConstraintPart.SaveState(inStream);
for (const AngleConstraintPart &c : mMotorConstraintPart)
c.SaveState(inStream);
inStream.Write(mSwingMotorState);
inStream.Write(mTwistMotorState);
inStream.Write(mTargetAngularVelocity);
inStream.Write(mTargetOrientation);
}
void SwingTwistConstraint::RestoreState(StateRecorder &inStream)
{
TwoBodyConstraint::RestoreState(inStream);
mPointConstraintPart.RestoreState(inStream);
mSwingTwistConstraintPart.RestoreState(inStream);
for (AngleConstraintPart &c : mMotorConstraintPart)
c.RestoreState(inStream);
inStream.Read(mSwingMotorState);
inStream.Read(mTwistMotorState);
inStream.Read(mTargetAngularVelocity);
inStream.Read(mTargetOrientation);
}
Ref<ConstraintSettings> SwingTwistConstraint::GetConstraintSettings() const
{
SwingTwistConstraintSettings *settings = new SwingTwistConstraintSettings;
ToConstraintSettings(*settings);
settings->mSpace = EConstraintSpace::LocalToBodyCOM;
settings->mPosition1 = RVec3(mLocalSpacePosition1);
settings->mTwistAxis1 = mConstraintToBody1.RotateAxisX();
settings->mPlaneAxis1 = mConstraintToBody1.RotateAxisZ();
settings->mPosition2 = RVec3(mLocalSpacePosition2);
settings->mTwistAxis2 = mConstraintToBody2.RotateAxisX();
settings->mPlaneAxis2 = mConstraintToBody2.RotateAxisZ();
settings->mSwingType = mSwingTwistConstraintPart.GetSwingType();
settings->mNormalHalfConeAngle = mNormalHalfConeAngle;
settings->mPlaneHalfConeAngle = mPlaneHalfConeAngle;
settings->mTwistMinAngle = mTwistMinAngle;
settings->mTwistMaxAngle = mTwistMaxAngle;
settings->mMaxFrictionTorque = mMaxFrictionTorque;
settings->mSwingMotorSettings = mSwingMotorSettings;
settings->mTwistMotorSettings = mTwistMotorSettings;
return settings;
}
JPH_NAMESPACE_END