godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/SliderConstraint.h

199 lines
8.8 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Physics/Constraints/TwoBodyConstraint.h>
#include <Jolt/Physics/Constraints/MotorSettings.h>
#include <Jolt/Physics/Constraints/ConstraintPart/DualAxisConstraintPart.h>
#include <Jolt/Physics/Constraints/ConstraintPart/RotationEulerConstraintPart.h>
#include <Jolt/Physics/Constraints/ConstraintPart/AxisConstraintPart.h>
JPH_NAMESPACE_BEGIN
/// Slider constraint settings, used to create a slider constraint
class JPH_EXPORT SliderConstraintSettings final : public TwoBodyConstraintSettings
{
JPH_DECLARE_SERIALIZABLE_VIRTUAL(JPH_EXPORT, SliderConstraintSettings)
public:
// See: ConstraintSettings::SaveBinaryState
virtual void SaveBinaryState(StreamOut &inStream) const override;
/// Create an instance of this constraint.
/// Note that the rotation constraint will be solved from body 1. This means that if body 1 and body 2 have different masses / inertias (kinematic body = infinite mass / inertia), body 1 should be the heaviest body.
virtual TwoBodyConstraint * Create(Body &inBody1, Body &inBody2) const override;
/// Simple way of setting the slider and normal axis in world space (assumes the bodies are already oriented correctly when the constraint is created)
void SetSliderAxis(Vec3Arg inSliderAxis);
/// This determines in which space the constraint is setup, all properties below should be in the specified space
EConstraintSpace mSpace = EConstraintSpace::WorldSpace;
/// When mSpace is WorldSpace mPoint1 and mPoint2 can be automatically calculated based on the positions of the bodies when the constraint is created (the current relative position/orientation is chosen as the '0' position). Set this to false if you want to supply the attachment points yourself.
bool mAutoDetectPoint = false;
/// Body 1 constraint reference frame (space determined by mSpace).
/// Slider axis is the axis along which movement is possible (direction), normal axis is a perpendicular vector to define the frame.
RVec3 mPoint1 = RVec3::sZero();
Vec3 mSliderAxis1 = Vec3::sAxisX();
Vec3 mNormalAxis1 = Vec3::sAxisY();
/// Body 2 constraint reference frame (space determined by mSpace)
RVec3 mPoint2 = RVec3::sZero();
Vec3 mSliderAxis2 = Vec3::sAxisX();
Vec3 mNormalAxis2 = Vec3::sAxisY();
/// When the bodies move so that mPoint1 coincides with mPoint2 the slider position is defined to be 0, movement will be limited between [mLimitsMin, mLimitsMax] where mLimitsMin e [-inf, 0] and mLimitsMax e [0, inf]
float mLimitsMin = -FLT_MAX;
float mLimitsMax = FLT_MAX;
/// When enabled, this makes the limits soft. When the constraint exceeds the limits, a spring force will pull it back.
SpringSettings mLimitsSpringSettings;
/// Maximum amount of friction force to apply (N) when not driven by a motor.
float mMaxFrictionForce = 0.0f;
/// In case the constraint is powered, this determines the motor settings around the sliding axis
MotorSettings mMotorSettings;
protected:
// See: ConstraintSettings::RestoreBinaryState
virtual void RestoreBinaryState(StreamIn &inStream) override;
};
/// A slider constraint allows movement in only 1 axis (and no rotation). Also known as a prismatic constraint.
class JPH_EXPORT SliderConstraint final : public TwoBodyConstraint
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Construct slider constraint
SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings);
// Generic interface of a constraint
virtual EConstraintSubType GetSubType() const override { return EConstraintSubType::Slider; }
virtual void NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM) override;
virtual void SetupVelocityConstraint(float inDeltaTime) override;
virtual void ResetWarmStart() override;
virtual void WarmStartVelocityConstraint(float inWarmStartImpulseRatio) override;
virtual bool SolveVelocityConstraint(float inDeltaTime) override;
virtual bool SolvePositionConstraint(float inDeltaTime, float inBaumgarte) override;
#ifdef JPH_DEBUG_RENDERER
virtual void DrawConstraint(DebugRenderer *inRenderer) const override;
virtual void DrawConstraintLimits(DebugRenderer *inRenderer) const override;
#endif // JPH_DEBUG_RENDERER
virtual void SaveState(StateRecorder &inStream) const override;
virtual void RestoreState(StateRecorder &inStream) override;
virtual Ref<ConstraintSettings> GetConstraintSettings() const override;
// See: TwoBodyConstraint
virtual Mat44 GetConstraintToBody1Matrix() const override;
virtual Mat44 GetConstraintToBody2Matrix() const override;
/// Get the current distance from the rest position
float GetCurrentPosition() const;
/// Friction control
void SetMaxFrictionForce(float inFrictionForce) { mMaxFrictionForce = inFrictionForce; }
float GetMaxFrictionForce() const { return mMaxFrictionForce; }
/// Motor settings
MotorSettings & GetMotorSettings() { return mMotorSettings; }
const MotorSettings & GetMotorSettings() const { return mMotorSettings; }
// Motor controls
void SetMotorState(EMotorState inState) { JPH_ASSERT(inState == EMotorState::Off || mMotorSettings.IsValid()); mMotorState = inState; }
EMotorState GetMotorState() const { return mMotorState; }
void SetTargetVelocity(float inVelocity) { mTargetVelocity = inVelocity; }
float GetTargetVelocity() const { return mTargetVelocity; }
void SetTargetPosition(float inPosition) { mTargetPosition = mHasLimits? Clamp(inPosition, mLimitsMin, mLimitsMax) : inPosition; }
float GetTargetPosition() const { return mTargetPosition; }
/// Update the limits of the slider constraint (see SliderConstraintSettings)
void SetLimits(float inLimitsMin, float inLimitsMax);
float GetLimitsMin() const { return mLimitsMin; }
float GetLimitsMax() const { return mLimitsMax; }
bool HasLimits() const { return mHasLimits; }
/// Update the limits spring settings
const SpringSettings & GetLimitsSpringSettings() const { return mLimitsSpringSettings; }
SpringSettings & GetLimitsSpringSettings() { return mLimitsSpringSettings; }
void SetLimitsSpringSettings(const SpringSettings &inLimitsSpringSettings) { mLimitsSpringSettings = inLimitsSpringSettings; }
///@name Get Lagrange multiplier from last physics update (the linear/angular impulse applied to satisfy the constraint)
inline Vector<2> GetTotalLambdaPosition() const { return mPositionConstraintPart.GetTotalLambda(); }
inline float GetTotalLambdaPositionLimits() const { return mPositionLimitsConstraintPart.GetTotalLambda(); }
inline Vec3 GetTotalLambdaRotation() const { return mRotationConstraintPart.GetTotalLambda(); }
inline float GetTotalLambdaMotor() const { return mMotorConstraintPart.GetTotalLambda(); }
private:
// Internal helper function to calculate the values below
void CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2);
void CalculateSlidingAxisAndPosition(Mat44Arg inRotation1);
void CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2);
void CalculatePositionLimitsConstraintProperties(float inDeltaTime);
void CalculateMotorConstraintProperties(float inDeltaTime);
// CONFIGURATION PROPERTIES FOLLOW
// Local space constraint positions
Vec3 mLocalSpacePosition1;
Vec3 mLocalSpacePosition2;
// Local space sliding direction
Vec3 mLocalSpaceSliderAxis1;
// Local space normals to the sliding direction (in body 1 space)
Vec3 mLocalSpaceNormal1;
Vec3 mLocalSpaceNormal2;
// Inverse of initial rotation from body 1 to body 2 in body 1 space
Quat mInvInitialOrientation;
// Slider limits
bool mHasLimits;
float mLimitsMin;
float mLimitsMax;
// Soft constraint limits
SpringSettings mLimitsSpringSettings;
// Friction
float mMaxFrictionForce;
// Motor controls
MotorSettings mMotorSettings;
EMotorState mMotorState = EMotorState::Off;
float mTargetVelocity = 0.0f;
float mTargetPosition = 0.0f;
// RUN TIME PROPERTIES FOLLOW
// Positions where the point constraint acts on (middle point between center of masses)
Vec3 mR1;
Vec3 mR2;
// X2 + R2 - X1 - R1
Vec3 mU;
// World space sliding direction
Vec3 mWorldSpaceSliderAxis;
// Normals to the slider axis
Vec3 mN1;
Vec3 mN2;
// Distance along the slide axis
float mD = 0.0f;
// The constraint parts
DualAxisConstraintPart mPositionConstraintPart;
RotationEulerConstraintPart mRotationConstraintPart;
AxisConstraintPart mPositionLimitsConstraintPart;
AxisConstraintPart mMotorConstraintPart;
};
JPH_NAMESPACE_END