199 lines
8.8 KiB
C++
199 lines
8.8 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#pragma once
|
|
|
|
#include <Jolt/Physics/Constraints/TwoBodyConstraint.h>
|
|
#include <Jolt/Physics/Constraints/MotorSettings.h>
|
|
#include <Jolt/Physics/Constraints/ConstraintPart/DualAxisConstraintPart.h>
|
|
#include <Jolt/Physics/Constraints/ConstraintPart/RotationEulerConstraintPart.h>
|
|
#include <Jolt/Physics/Constraints/ConstraintPart/AxisConstraintPart.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
/// Slider constraint settings, used to create a slider constraint
|
|
class JPH_EXPORT SliderConstraintSettings final : public TwoBodyConstraintSettings
|
|
{
|
|
JPH_DECLARE_SERIALIZABLE_VIRTUAL(JPH_EXPORT, SliderConstraintSettings)
|
|
|
|
public:
|
|
// See: ConstraintSettings::SaveBinaryState
|
|
virtual void SaveBinaryState(StreamOut &inStream) const override;
|
|
|
|
/// Create an instance of this constraint.
|
|
/// Note that the rotation constraint will be solved from body 1. This means that if body 1 and body 2 have different masses / inertias (kinematic body = infinite mass / inertia), body 1 should be the heaviest body.
|
|
virtual TwoBodyConstraint * Create(Body &inBody1, Body &inBody2) const override;
|
|
|
|
/// Simple way of setting the slider and normal axis in world space (assumes the bodies are already oriented correctly when the constraint is created)
|
|
void SetSliderAxis(Vec3Arg inSliderAxis);
|
|
|
|
/// This determines in which space the constraint is setup, all properties below should be in the specified space
|
|
EConstraintSpace mSpace = EConstraintSpace::WorldSpace;
|
|
|
|
/// When mSpace is WorldSpace mPoint1 and mPoint2 can be automatically calculated based on the positions of the bodies when the constraint is created (the current relative position/orientation is chosen as the '0' position). Set this to false if you want to supply the attachment points yourself.
|
|
bool mAutoDetectPoint = false;
|
|
|
|
/// Body 1 constraint reference frame (space determined by mSpace).
|
|
/// Slider axis is the axis along which movement is possible (direction), normal axis is a perpendicular vector to define the frame.
|
|
RVec3 mPoint1 = RVec3::sZero();
|
|
Vec3 mSliderAxis1 = Vec3::sAxisX();
|
|
Vec3 mNormalAxis1 = Vec3::sAxisY();
|
|
|
|
/// Body 2 constraint reference frame (space determined by mSpace)
|
|
RVec3 mPoint2 = RVec3::sZero();
|
|
Vec3 mSliderAxis2 = Vec3::sAxisX();
|
|
Vec3 mNormalAxis2 = Vec3::sAxisY();
|
|
|
|
/// When the bodies move so that mPoint1 coincides with mPoint2 the slider position is defined to be 0, movement will be limited between [mLimitsMin, mLimitsMax] where mLimitsMin e [-inf, 0] and mLimitsMax e [0, inf]
|
|
float mLimitsMin = -FLT_MAX;
|
|
float mLimitsMax = FLT_MAX;
|
|
|
|
/// When enabled, this makes the limits soft. When the constraint exceeds the limits, a spring force will pull it back.
|
|
SpringSettings mLimitsSpringSettings;
|
|
|
|
/// Maximum amount of friction force to apply (N) when not driven by a motor.
|
|
float mMaxFrictionForce = 0.0f;
|
|
|
|
/// In case the constraint is powered, this determines the motor settings around the sliding axis
|
|
MotorSettings mMotorSettings;
|
|
|
|
protected:
|
|
// See: ConstraintSettings::RestoreBinaryState
|
|
virtual void RestoreBinaryState(StreamIn &inStream) override;
|
|
};
|
|
|
|
/// A slider constraint allows movement in only 1 axis (and no rotation). Also known as a prismatic constraint.
|
|
class JPH_EXPORT SliderConstraint final : public TwoBodyConstraint
|
|
{
|
|
public:
|
|
JPH_OVERRIDE_NEW_DELETE
|
|
|
|
/// Construct slider constraint
|
|
SliderConstraint(Body &inBody1, Body &inBody2, const SliderConstraintSettings &inSettings);
|
|
|
|
// Generic interface of a constraint
|
|
virtual EConstraintSubType GetSubType() const override { return EConstraintSubType::Slider; }
|
|
virtual void NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM) override;
|
|
virtual void SetupVelocityConstraint(float inDeltaTime) override;
|
|
virtual void ResetWarmStart() override;
|
|
virtual void WarmStartVelocityConstraint(float inWarmStartImpulseRatio) override;
|
|
virtual bool SolveVelocityConstraint(float inDeltaTime) override;
|
|
virtual bool SolvePositionConstraint(float inDeltaTime, float inBaumgarte) override;
|
|
#ifdef JPH_DEBUG_RENDERER
|
|
virtual void DrawConstraint(DebugRenderer *inRenderer) const override;
|
|
virtual void DrawConstraintLimits(DebugRenderer *inRenderer) const override;
|
|
#endif // JPH_DEBUG_RENDERER
|
|
virtual void SaveState(StateRecorder &inStream) const override;
|
|
virtual void RestoreState(StateRecorder &inStream) override;
|
|
virtual Ref<ConstraintSettings> GetConstraintSettings() const override;
|
|
|
|
// See: TwoBodyConstraint
|
|
virtual Mat44 GetConstraintToBody1Matrix() const override;
|
|
virtual Mat44 GetConstraintToBody2Matrix() const override;
|
|
|
|
/// Get the current distance from the rest position
|
|
float GetCurrentPosition() const;
|
|
|
|
/// Friction control
|
|
void SetMaxFrictionForce(float inFrictionForce) { mMaxFrictionForce = inFrictionForce; }
|
|
float GetMaxFrictionForce() const { return mMaxFrictionForce; }
|
|
|
|
/// Motor settings
|
|
MotorSettings & GetMotorSettings() { return mMotorSettings; }
|
|
const MotorSettings & GetMotorSettings() const { return mMotorSettings; }
|
|
|
|
// Motor controls
|
|
void SetMotorState(EMotorState inState) { JPH_ASSERT(inState == EMotorState::Off || mMotorSettings.IsValid()); mMotorState = inState; }
|
|
EMotorState GetMotorState() const { return mMotorState; }
|
|
void SetTargetVelocity(float inVelocity) { mTargetVelocity = inVelocity; }
|
|
float GetTargetVelocity() const { return mTargetVelocity; }
|
|
void SetTargetPosition(float inPosition) { mTargetPosition = mHasLimits? Clamp(inPosition, mLimitsMin, mLimitsMax) : inPosition; }
|
|
float GetTargetPosition() const { return mTargetPosition; }
|
|
|
|
/// Update the limits of the slider constraint (see SliderConstraintSettings)
|
|
void SetLimits(float inLimitsMin, float inLimitsMax);
|
|
float GetLimitsMin() const { return mLimitsMin; }
|
|
float GetLimitsMax() const { return mLimitsMax; }
|
|
bool HasLimits() const { return mHasLimits; }
|
|
|
|
/// Update the limits spring settings
|
|
const SpringSettings & GetLimitsSpringSettings() const { return mLimitsSpringSettings; }
|
|
SpringSettings & GetLimitsSpringSettings() { return mLimitsSpringSettings; }
|
|
void SetLimitsSpringSettings(const SpringSettings &inLimitsSpringSettings) { mLimitsSpringSettings = inLimitsSpringSettings; }
|
|
|
|
///@name Get Lagrange multiplier from last physics update (the linear/angular impulse applied to satisfy the constraint)
|
|
inline Vector<2> GetTotalLambdaPosition() const { return mPositionConstraintPart.GetTotalLambda(); }
|
|
inline float GetTotalLambdaPositionLimits() const { return mPositionLimitsConstraintPart.GetTotalLambda(); }
|
|
inline Vec3 GetTotalLambdaRotation() const { return mRotationConstraintPart.GetTotalLambda(); }
|
|
inline float GetTotalLambdaMotor() const { return mMotorConstraintPart.GetTotalLambda(); }
|
|
|
|
private:
|
|
// Internal helper function to calculate the values below
|
|
void CalculateR1R2U(Mat44Arg inRotation1, Mat44Arg inRotation2);
|
|
void CalculateSlidingAxisAndPosition(Mat44Arg inRotation1);
|
|
void CalculatePositionConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2);
|
|
void CalculatePositionLimitsConstraintProperties(float inDeltaTime);
|
|
void CalculateMotorConstraintProperties(float inDeltaTime);
|
|
|
|
// CONFIGURATION PROPERTIES FOLLOW
|
|
|
|
// Local space constraint positions
|
|
Vec3 mLocalSpacePosition1;
|
|
Vec3 mLocalSpacePosition2;
|
|
|
|
// Local space sliding direction
|
|
Vec3 mLocalSpaceSliderAxis1;
|
|
|
|
// Local space normals to the sliding direction (in body 1 space)
|
|
Vec3 mLocalSpaceNormal1;
|
|
Vec3 mLocalSpaceNormal2;
|
|
|
|
// Inverse of initial rotation from body 1 to body 2 in body 1 space
|
|
Quat mInvInitialOrientation;
|
|
|
|
// Slider limits
|
|
bool mHasLimits;
|
|
float mLimitsMin;
|
|
float mLimitsMax;
|
|
|
|
// Soft constraint limits
|
|
SpringSettings mLimitsSpringSettings;
|
|
|
|
// Friction
|
|
float mMaxFrictionForce;
|
|
|
|
// Motor controls
|
|
MotorSettings mMotorSettings;
|
|
EMotorState mMotorState = EMotorState::Off;
|
|
float mTargetVelocity = 0.0f;
|
|
float mTargetPosition = 0.0f;
|
|
|
|
// RUN TIME PROPERTIES FOLLOW
|
|
|
|
// Positions where the point constraint acts on (middle point between center of masses)
|
|
Vec3 mR1;
|
|
Vec3 mR2;
|
|
|
|
// X2 + R2 - X1 - R1
|
|
Vec3 mU;
|
|
|
|
// World space sliding direction
|
|
Vec3 mWorldSpaceSliderAxis;
|
|
|
|
// Normals to the slider axis
|
|
Vec3 mN1;
|
|
Vec3 mN2;
|
|
|
|
// Distance along the slide axis
|
|
float mD = 0.0f;
|
|
|
|
// The constraint parts
|
|
DualAxisConstraintPart mPositionConstraintPart;
|
|
RotationEulerConstraintPart mRotationConstraintPart;
|
|
AxisConstraintPart mPositionLimitsConstraintPart;
|
|
AxisConstraintPart mMotorConstraintPart;
|
|
};
|
|
|
|
JPH_NAMESPACE_END
|