godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/SixDOFConstraint.h

290 lines
15 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Physics/Constraints/TwoBodyConstraint.h>
#include <Jolt/Physics/Constraints/MotorSettings.h>
#include <Jolt/Physics/Constraints/ConstraintPart/PointConstraintPart.h>
#include <Jolt/Physics/Constraints/ConstraintPart/AxisConstraintPart.h>
#include <Jolt/Physics/Constraints/ConstraintPart/AngleConstraintPart.h>
#include <Jolt/Physics/Constraints/ConstraintPart/RotationEulerConstraintPart.h>
#include <Jolt/Physics/Constraints/ConstraintPart/SwingTwistConstraintPart.h>
JPH_NAMESPACE_BEGIN
/// 6 Degree Of Freedom Constraint setup structure. Allows control over each of the 6 degrees of freedom.
class JPH_EXPORT SixDOFConstraintSettings final : public TwoBodyConstraintSettings
{
JPH_DECLARE_SERIALIZABLE_VIRTUAL(JPH_EXPORT, SixDOFConstraintSettings)
public:
/// Constraint is split up into translation/rotation around X, Y and Z axis.
enum EAxis
{
TranslationX,
TranslationY,
TranslationZ,
RotationX,
RotationY,
RotationZ,
Num,
NumTranslation = TranslationZ + 1,
};
// See: ConstraintSettings::SaveBinaryState
virtual void SaveBinaryState(StreamOut &inStream) const override;
/// Create an instance of this constraint
virtual TwoBodyConstraint * Create(Body &inBody1, Body &inBody2) const override;
/// This determines in which space the constraint is setup, all properties below should be in the specified space
EConstraintSpace mSpace = EConstraintSpace::WorldSpace;
/// Body 1 constraint reference frame (space determined by mSpace)
RVec3 mPosition1 = RVec3::sZero();
Vec3 mAxisX1 = Vec3::sAxisX();
Vec3 mAxisY1 = Vec3::sAxisY();
/// Body 2 constraint reference frame (space determined by mSpace)
RVec3 mPosition2 = RVec3::sZero();
Vec3 mAxisX2 = Vec3::sAxisX();
Vec3 mAxisY2 = Vec3::sAxisY();
/// Friction settings.
/// For translation: Max friction force in N. 0 = no friction.
/// For rotation: Max friction torque in Nm. 0 = no friction.
float mMaxFriction[EAxis::Num] = { 0, 0, 0, 0, 0, 0 };
/// The type of swing constraint that we want to use.
ESwingType mSwingType = ESwingType::Cone;
/// Limits.
/// For translation: Min and max linear limits in m (0 is frame of body 1 and 2 coincide).
/// For rotation: Min and max angular limits in rad (0 is frame of body 1 and 2 coincide). See comments at Axis enum for limit ranges.
///
/// Remove degree of freedom by setting min = FLT_MAX and max = -FLT_MAX. The constraint will be driven to 0 for this axis.
///
/// Free movement over an axis is allowed when min = -FLT_MAX and max = FLT_MAX.
///
/// Rotation limit around X-Axis: When limited, should be \f$\in [-\pi, \pi]\f$. Can be asymmetric around zero.
///
/// Rotation limit around Y-Z Axis: Forms a pyramid or cone shaped limit:
/// * For pyramid, should be \f$\in [-\pi, \pi]\f$ and does not need to be symmetrical around zero.
/// * For cone should be \f$\in [0, \pi]\f$ and needs to be symmetrical around zero (min limit is assumed to be -max limit).
float mLimitMin[EAxis::Num] = { -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX, -FLT_MAX };
float mLimitMax[EAxis::Num] = { FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX };
/// When enabled, this makes the limits soft. When the constraint exceeds the limits, a spring force will pull it back.
/// Only soft translation limits are supported, soft rotation limits are not currently supported.
SpringSettings mLimitsSpringSettings[EAxis::NumTranslation];
/// Make axis free (unconstrained)
void MakeFreeAxis(EAxis inAxis) { mLimitMin[inAxis] = -FLT_MAX; mLimitMax[inAxis] = FLT_MAX; }
bool IsFreeAxis(EAxis inAxis) const { return mLimitMin[inAxis] == -FLT_MAX && mLimitMax[inAxis] == FLT_MAX; }
/// Make axis fixed (fixed at value 0)
void MakeFixedAxis(EAxis inAxis) { mLimitMin[inAxis] = FLT_MAX; mLimitMax[inAxis] = -FLT_MAX; }
bool IsFixedAxis(EAxis inAxis) const { return mLimitMin[inAxis] >= mLimitMax[inAxis]; }
/// Set a valid range for the constraint (if inMax < inMin, the axis will become fixed)
void SetLimitedAxis(EAxis inAxis, float inMin, float inMax) { mLimitMin[inAxis] = inMin; mLimitMax[inAxis] = inMax; }
/// Motor settings for each axis
MotorSettings mMotorSettings[EAxis::Num];
protected:
// See: ConstraintSettings::RestoreBinaryState
virtual void RestoreBinaryState(StreamIn &inStream) override;
};
/// 6 Degree Of Freedom Constraint. Allows control over each of the 6 degrees of freedom.
class JPH_EXPORT SixDOFConstraint final : public TwoBodyConstraint
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Get Axis from settings class
using EAxis = SixDOFConstraintSettings::EAxis;
/// Construct six DOF constraint
SixDOFConstraint(Body &inBody1, Body &inBody2, const SixDOFConstraintSettings &inSettings);
/// Generic interface of a constraint
virtual EConstraintSubType GetSubType() const override { return EConstraintSubType::SixDOF; }
virtual void NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM) override;
virtual void SetupVelocityConstraint(float inDeltaTime) override;
virtual void ResetWarmStart() override;
virtual void WarmStartVelocityConstraint(float inWarmStartImpulseRatio) override;
virtual bool SolveVelocityConstraint(float inDeltaTime) override;
virtual bool SolvePositionConstraint(float inDeltaTime, float inBaumgarte) override;
#ifdef JPH_DEBUG_RENDERER
virtual void DrawConstraint(DebugRenderer *inRenderer) const override;
virtual void DrawConstraintLimits(DebugRenderer *inRenderer) const override;
#endif // JPH_DEBUG_RENDERER
virtual void SaveState(StateRecorder &inStream) const override;
virtual void RestoreState(StateRecorder &inStream) override;
virtual Ref<ConstraintSettings> GetConstraintSettings() const override;
// See: TwoBodyConstraint
virtual Mat44 GetConstraintToBody1Matrix() const override { return Mat44::sRotationTranslation(mConstraintToBody1, mLocalSpacePosition1); }
virtual Mat44 GetConstraintToBody2Matrix() const override { return Mat44::sRotationTranslation(mConstraintToBody2, mLocalSpacePosition2); }
/// Update the translation limits for this constraint
void SetTranslationLimits(Vec3Arg inLimitMin, Vec3Arg inLimitMax);
/// Update the rotational limits for this constraint
void SetRotationLimits(Vec3Arg inLimitMin, Vec3Arg inLimitMax);
/// Get constraint Limits
float GetLimitsMin(EAxis inAxis) const { return mLimitMin[inAxis]; }
float GetLimitsMax(EAxis inAxis) const { return mLimitMax[inAxis]; }
Vec3 GetTranslationLimitsMin() const { return Vec3::sLoadFloat3Unsafe(*reinterpret_cast<const Float3 *>(&mLimitMin[EAxis::TranslationX])); }
Vec3 GetTranslationLimitsMax() const { return Vec3::sLoadFloat3Unsafe(*reinterpret_cast<const Float3 *>(&mLimitMax[EAxis::TranslationX])); }
Vec3 GetRotationLimitsMin() const { return Vec3::sLoadFloat3Unsafe(*reinterpret_cast<const Float3 *>(&mLimitMin[EAxis::RotationX])); }
Vec3 GetRotationLimitsMax() const { return Vec3::sLoadFloat3Unsafe(*reinterpret_cast<const Float3 *>(&mLimitMax[EAxis::RotationX])); }
/// Check which axis are fixed/free
inline bool IsFixedAxis(EAxis inAxis) const { return (mFixedAxis & (1 << inAxis)) != 0; }
inline bool IsFreeAxis(EAxis inAxis) const { return (mFreeAxis & (1 << inAxis)) != 0; }
/// Update the limits spring settings
const SpringSettings & GetLimitsSpringSettings(EAxis inAxis) const { JPH_ASSERT(inAxis < EAxis::NumTranslation); return mLimitsSpringSettings[inAxis]; }
void SetLimitsSpringSettings(EAxis inAxis, const SpringSettings& inLimitsSpringSettings) { JPH_ASSERT(inAxis < EAxis::NumTranslation); mLimitsSpringSettings[inAxis] = inLimitsSpringSettings; CacheHasSpringLimits(); }
/// Set the max friction for each axis
void SetMaxFriction(EAxis inAxis, float inFriction);
float GetMaxFriction(EAxis inAxis) const { return mMaxFriction[inAxis]; }
/// Get rotation of constraint in constraint space
Quat GetRotationInConstraintSpace() const;
/// Motor settings
MotorSettings & GetMotorSettings(EAxis inAxis) { return mMotorSettings[inAxis]; }
const MotorSettings & GetMotorSettings(EAxis inAxis) const { return mMotorSettings[inAxis]; }
/// Motor controls.
/// Translation motors work in constraint space of body 1.
/// Rotation motors work in constraint space of body 2 (!).
void SetMotorState(EAxis inAxis, EMotorState inState);
EMotorState GetMotorState(EAxis inAxis) const { return mMotorState[inAxis]; }
/// Set the target velocity in body 1 constraint space
Vec3 GetTargetVelocityCS() const { return mTargetVelocity; }
void SetTargetVelocityCS(Vec3Arg inVelocity) { mTargetVelocity = inVelocity; }
/// Set the target angular velocity in body 2 constraint space (!)
void SetTargetAngularVelocityCS(Vec3Arg inAngularVelocity) { mTargetAngularVelocity = inAngularVelocity; }
Vec3 GetTargetAngularVelocityCS() const { return mTargetAngularVelocity; }
/// Set the target position in body 1 constraint space
Vec3 GetTargetPositionCS() const { return mTargetPosition; }
void SetTargetPositionCS(Vec3Arg inPosition) { mTargetPosition = inPosition; }
/// Set the target orientation in body 1 constraint space
void SetTargetOrientationCS(QuatArg inOrientation);
Quat GetTargetOrientationCS() const { return mTargetOrientation; }
/// Set the target orientation in body space (R2 = R1 * inOrientation, where R1 and R2 are the world space rotations for body 1 and 2).
/// Solve: R2 * ConstraintToBody2 = R1 * ConstraintToBody1 * q (see SwingTwistConstraint::GetSwingTwist) and R2 = R1 * inOrientation for q.
void SetTargetOrientationBS(QuatArg inOrientation) { SetTargetOrientationCS(mConstraintToBody1.Conjugated() * inOrientation * mConstraintToBody2); }
///@name Get Lagrange multiplier from last physics update (the linear/angular impulse applied to satisfy the constraint)
inline Vec3 GetTotalLambdaPosition() const { return IsTranslationFullyConstrained()? mPointConstraintPart.GetTotalLambda() : Vec3(mTranslationConstraintPart[0].GetTotalLambda(), mTranslationConstraintPart[1].GetTotalLambda(), mTranslationConstraintPart[2].GetTotalLambda()); }
inline Vec3 GetTotalLambdaRotation() const { return IsRotationFullyConstrained()? mRotationConstraintPart.GetTotalLambda() : Vec3(mSwingTwistConstraintPart.GetTotalTwistLambda(), mSwingTwistConstraintPart.GetTotalSwingYLambda(), mSwingTwistConstraintPart.GetTotalSwingZLambda()); }
inline Vec3 GetTotalLambdaMotorTranslation() const { return Vec3(mMotorTranslationConstraintPart[0].GetTotalLambda(), mMotorTranslationConstraintPart[1].GetTotalLambda(), mMotorTranslationConstraintPart[2].GetTotalLambda()); }
inline Vec3 GetTotalLambdaMotorRotation() const { return Vec3(mMotorRotationConstraintPart[0].GetTotalLambda(), mMotorRotationConstraintPart[1].GetTotalLambda(), mMotorRotationConstraintPart[2].GetTotalLambda()); }
private:
// Calculate properties needed for the position constraint
inline void GetPositionConstraintProperties(Vec3 &outR1PlusU, Vec3 &outR2, Vec3 &outU) const;
// Sanitize the translation limits
inline void UpdateTranslationLimits();
// Propagate the rotation limits to the constraint part
inline void UpdateRotationLimits();
// Update the cached state of which axis are free and which ones are fixed
inline void UpdateFixedFreeAxis();
// Cache the state of mTranslationMotorActive
void CacheTranslationMotorActive();
// Cache the state of mRotationMotorActive
void CacheRotationMotorActive();
// Cache the state of mRotationPositionMotorActive
void CacheRotationPositionMotorActive();
/// Cache the state of mHasSpringLimits
void CacheHasSpringLimits();
// Constraint settings helper functions
inline bool IsTranslationConstrained() const { return (mFreeAxis & 0b111) != 0b111; }
inline bool IsTranslationFullyConstrained() const { return (mFixedAxis & 0b111) == 0b111 && !mHasSpringLimits; }
inline bool IsRotationConstrained() const { return (mFreeAxis & 0b111000) != 0b111000; }
inline bool IsRotationFullyConstrained() const { return (mFixedAxis & 0b111000) == 0b111000; }
inline bool HasFriction(EAxis inAxis) const { return !IsFixedAxis(inAxis) && mMaxFriction[inAxis] > 0.0f; }
// CONFIGURATION PROPERTIES FOLLOW
// Local space constraint positions
Vec3 mLocalSpacePosition1;
Vec3 mLocalSpacePosition2;
// Transforms from constraint space to body space
Quat mConstraintToBody1;
Quat mConstraintToBody2;
// Limits
uint8 mFreeAxis = 0; // Bitmask of free axis (bit 0 = TranslationX)
uint8 mFixedAxis = 0; // Bitmask of fixed axis (bit 0 = TranslationX)
bool mTranslationMotorActive = false; // If any of the translational frictions / motors are active
bool mRotationMotorActive = false; // If any of the rotational frictions / motors are active
uint8 mRotationPositionMotorActive = 0; // Bitmask of axis that have position motor active (bit 0 = RotationX)
bool mHasSpringLimits = false; // If any of the limit springs have a non-zero frequency/stiffness
float mLimitMin[EAxis::Num];
float mLimitMax[EAxis::Num];
SpringSettings mLimitsSpringSettings[EAxis::NumTranslation];
// Motor settings for each axis
MotorSettings mMotorSettings[EAxis::Num];
// Friction settings for each axis
float mMaxFriction[EAxis::Num];
// Motor controls
EMotorState mMotorState[EAxis::Num] = { EMotorState::Off, EMotorState::Off, EMotorState::Off, EMotorState::Off, EMotorState::Off, EMotorState::Off };
Vec3 mTargetVelocity = Vec3::sZero();
Vec3 mTargetAngularVelocity = Vec3::sZero();
Vec3 mTargetPosition = Vec3::sZero();
Quat mTargetOrientation = Quat::sIdentity();
// RUN TIME PROPERTIES FOLLOW
// Constraint space axis in world space
Vec3 mTranslationAxis[3];
Vec3 mRotationAxis[3];
// Translation displacement (valid when translation axis has a range limit)
float mDisplacement[3];
// Individual constraint parts for translation, or a combined point constraint part if all axis are fixed
AxisConstraintPart mTranslationConstraintPart[3];
PointConstraintPart mPointConstraintPart;
// Individual constraint parts for rotation or a combined constraint part if rotation is fixed
SwingTwistConstraintPart mSwingTwistConstraintPart;
RotationEulerConstraintPart mRotationConstraintPart;
// Motor or friction constraints
AxisConstraintPart mMotorTranslationConstraintPart[3];
AngleConstraintPart mMotorRotationConstraintPart[3];
};
JPH_NAMESPACE_END