godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/RackAndPinionConstraint.cpp

190 lines
6.3 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Constraints/RackAndPinionConstraint.h>
#include <Jolt/Physics/Constraints/HingeConstraint.h>
#include <Jolt/Physics/Constraints/SliderConstraint.h>
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(RackAndPinionConstraintSettings)
{
JPH_ADD_BASE_CLASS(RackAndPinionConstraintSettings, TwoBodyConstraintSettings)
JPH_ADD_ENUM_ATTRIBUTE(RackAndPinionConstraintSettings, mSpace)
JPH_ADD_ATTRIBUTE(RackAndPinionConstraintSettings, mHingeAxis)
JPH_ADD_ATTRIBUTE(RackAndPinionConstraintSettings, mSliderAxis)
JPH_ADD_ATTRIBUTE(RackAndPinionConstraintSettings, mRatio)
}
void RackAndPinionConstraintSettings::SaveBinaryState(StreamOut &inStream) const
{
ConstraintSettings::SaveBinaryState(inStream);
inStream.Write(mSpace);
inStream.Write(mHingeAxis);
inStream.Write(mSliderAxis);
inStream.Write(mRatio);
}
void RackAndPinionConstraintSettings::RestoreBinaryState(StreamIn &inStream)
{
ConstraintSettings::RestoreBinaryState(inStream);
inStream.Read(mSpace);
inStream.Read(mHingeAxis);
inStream.Read(mSliderAxis);
inStream.Read(mRatio);
}
TwoBodyConstraint *RackAndPinionConstraintSettings::Create(Body &inBody1, Body &inBody2) const
{
return new RackAndPinionConstraint(inBody1, inBody2, *this);
}
RackAndPinionConstraint::RackAndPinionConstraint(Body &inBody1, Body &inBody2, const RackAndPinionConstraintSettings &inSettings) :
TwoBodyConstraint(inBody1, inBody2, inSettings),
mLocalSpaceHingeAxis(inSettings.mHingeAxis),
mLocalSpaceSliderAxis(inSettings.mSliderAxis),
mRatio(inSettings.mRatio)
{
if (inSettings.mSpace == EConstraintSpace::WorldSpace)
{
// If all properties were specified in world space, take them to local space now
mLocalSpaceHingeAxis = inBody1.GetInverseCenterOfMassTransform().Multiply3x3(mLocalSpaceHingeAxis).Normalized();
mLocalSpaceSliderAxis = inBody2.GetInverseCenterOfMassTransform().Multiply3x3(mLocalSpaceSliderAxis).Normalized();
}
}
void RackAndPinionConstraint::CalculateConstraintProperties(Mat44Arg inRotation1, Mat44Arg inRotation2)
{
// Calculate world space normals
mWorldSpaceHingeAxis = inRotation1 * mLocalSpaceHingeAxis;
mWorldSpaceSliderAxis = inRotation2 * mLocalSpaceSliderAxis;
mRackAndPinionConstraintPart.CalculateConstraintProperties(*mBody1, mWorldSpaceHingeAxis, *mBody2, mWorldSpaceSliderAxis, mRatio);
}
void RackAndPinionConstraint::SetupVelocityConstraint(float inDeltaTime)
{
// Calculate constraint properties that are constant while bodies don't move
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
CalculateConstraintProperties(rotation1, rotation2);
}
void RackAndPinionConstraint::ResetWarmStart()
{
mRackAndPinionConstraintPart.Deactivate();
}
void RackAndPinionConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
{
// Warm starting: Apply previous frame impulse
mRackAndPinionConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
}
bool RackAndPinionConstraint::SolveVelocityConstraint(float inDeltaTime)
{
return mRackAndPinionConstraintPart.SolveVelocityConstraint(*mBody1, mWorldSpaceHingeAxis, *mBody2, mWorldSpaceSliderAxis, mRatio);
}
bool RackAndPinionConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
{
if (mRackConstraint == nullptr || mPinionConstraint == nullptr)
return false;
float rotation;
if (mPinionConstraint->GetSubType() == EConstraintSubType::Hinge)
{
rotation = StaticCast<HingeConstraint>(mPinionConstraint)->GetCurrentAngle();
}
else
{
JPH_ASSERT(false, "Unsupported");
return false;
}
float translation;
if (mRackConstraint->GetSubType() == EConstraintSubType::Slider)
{
translation = StaticCast<SliderConstraint>(mRackConstraint)->GetCurrentPosition();
}
else
{
JPH_ASSERT(false, "Unsupported");
return false;
}
float error = CenterAngleAroundZero(fmod(rotation - mRatio * translation, 2.0f * JPH_PI));
if (error == 0.0f)
return false;
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
CalculateConstraintProperties(rotation1, rotation2);
return mRackAndPinionConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, error, inBaumgarte);
}
#ifdef JPH_DEBUG_RENDERER
void RackAndPinionConstraint::DrawConstraint(DebugRenderer *inRenderer) const
{
RMat44 transform1 = mBody1->GetCenterOfMassTransform();
RMat44 transform2 = mBody2->GetCenterOfMassTransform();
// Draw constraint axis
inRenderer->DrawArrow(transform1.GetTranslation(), transform1 * mLocalSpaceHingeAxis, Color::sGreen, 0.01f);
inRenderer->DrawArrow(transform2.GetTranslation(), transform2 * mLocalSpaceSliderAxis, Color::sBlue, 0.01f);
}
#endif // JPH_DEBUG_RENDERER
void RackAndPinionConstraint::SaveState(StateRecorder &inStream) const
{
TwoBodyConstraint::SaveState(inStream);
mRackAndPinionConstraintPart.SaveState(inStream);
}
void RackAndPinionConstraint::RestoreState(StateRecorder &inStream)
{
TwoBodyConstraint::RestoreState(inStream);
mRackAndPinionConstraintPart.RestoreState(inStream);
}
Ref<ConstraintSettings> RackAndPinionConstraint::GetConstraintSettings() const
{
RackAndPinionConstraintSettings *settings = new RackAndPinionConstraintSettings;
ToConstraintSettings(*settings);
settings->mSpace = EConstraintSpace::LocalToBodyCOM;
settings->mHingeAxis = mLocalSpaceHingeAxis;
settings->mSliderAxis = mLocalSpaceSliderAxis;
settings->mRatio = mRatio;
return settings;
}
Mat44 RackAndPinionConstraint::GetConstraintToBody1Matrix() const
{
Vec3 perp = mLocalSpaceHingeAxis.GetNormalizedPerpendicular();
return Mat44(Vec4(mLocalSpaceHingeAxis, 0), Vec4(perp, 0), Vec4(mLocalSpaceHingeAxis.Cross(perp), 0), Vec4(0, 0, 0, 1));
}
Mat44 RackAndPinionConstraint::GetConstraintToBody2Matrix() const
{
Vec3 perp = mLocalSpaceSliderAxis.GetNormalizedPerpendicular();
return Mat44(Vec4(mLocalSpaceSliderAxis, 0), Vec4(perp, 0), Vec4(mLocalSpaceSliderAxis.Cross(perp), 0), Vec4(0, 0, 0, 1));
}
JPH_NAMESPACE_END