godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/PulleyConstraint.h

138 lines
5.9 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2022 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#pragma once
#include <Jolt/Physics/Constraints/TwoBodyConstraint.h>
#include <Jolt/Physics/Constraints/ConstraintPart/IndependentAxisConstraintPart.h>
JPH_NAMESPACE_BEGIN
/// Pulley constraint settings, used to create a pulley constraint.
/// A pulley connects two bodies via two fixed world points to each other similar to a distance constraint.
/// We define Length1 = |BodyPoint1 - FixedPoint1| where Body1 is a point on body 1 in world space and FixedPoint1 a fixed point in world space
/// Length2 = |BodyPoint2 - FixedPoint2|
/// The constraint keeps the two line segments constrained so that
/// MinDistance <= Length1 + Ratio * Length2 <= MaxDistance
class JPH_EXPORT PulleyConstraintSettings final : public TwoBodyConstraintSettings
{
JPH_DECLARE_SERIALIZABLE_VIRTUAL(JPH_EXPORT, PulleyConstraintSettings)
public:
// See: ConstraintSettings::SaveBinaryState
virtual void SaveBinaryState(StreamOut &inStream) const override;
/// Create an instance of this constraint
virtual TwoBodyConstraint * Create(Body &inBody1, Body &inBody2) const override;
/// This determines in which space the constraint is setup, specified properties below should be in the specified space
EConstraintSpace mSpace = EConstraintSpace::WorldSpace;
/// Body 1 constraint attachment point (space determined by mSpace).
RVec3 mBodyPoint1 = RVec3::sZero();
/// Fixed world point to which body 1 is connected (always world space)
RVec3 mFixedPoint1 = RVec3::sZero();
/// Body 2 constraint attachment point (space determined by mSpace)
RVec3 mBodyPoint2 = RVec3::sZero();
/// Fixed world point to which body 2 is connected (always world space)
RVec3 mFixedPoint2 = RVec3::sZero();
/// Ratio between the two line segments (see formula above), can be used to create a block and tackle
float mRatio = 1.0f;
/// The minimum length of the line segments (see formula above), use -1 to calculate the length based on the positions of the objects when the constraint is created.
float mMinLength = 0.0f;
/// The maximum length of the line segments (see formula above), use -1 to calculate the length based on the positions of the objects when the constraint is created.
float mMaxLength = -1.0f;
protected:
// See: ConstraintSettings::RestoreBinaryState
virtual void RestoreBinaryState(StreamIn &inStream) override;
};
/// A pulley constraint.
class JPH_EXPORT PulleyConstraint final : public TwoBodyConstraint
{
public:
JPH_OVERRIDE_NEW_DELETE
/// Construct distance constraint
PulleyConstraint(Body &inBody1, Body &inBody2, const PulleyConstraintSettings &inSettings);
// Generic interface of a constraint
virtual EConstraintSubType GetSubType() const override { return EConstraintSubType::Pulley; }
virtual void NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM) override;
virtual void SetupVelocityConstraint(float inDeltaTime) override;
virtual void ResetWarmStart() override;
virtual void WarmStartVelocityConstraint(float inWarmStartImpulseRatio) override;
virtual bool SolveVelocityConstraint(float inDeltaTime) override;
virtual bool SolvePositionConstraint(float inDeltaTime, float inBaumgarte) override;
#ifdef JPH_DEBUG_RENDERER
virtual void DrawConstraint(DebugRenderer *inRenderer) const override;
#endif // JPH_DEBUG_RENDERER
virtual void SaveState(StateRecorder &inStream) const override;
virtual void RestoreState(StateRecorder &inStream) override;
virtual Ref<ConstraintSettings> GetConstraintSettings() const override;
// See: TwoBodyConstraint
virtual Mat44 GetConstraintToBody1Matrix() const override { return Mat44::sTranslation(mLocalSpacePosition1); }
virtual Mat44 GetConstraintToBody2Matrix() const override { return Mat44::sTranslation(mLocalSpacePosition2); } // Note: Incorrect rotation as we don't track the original rotation difference, should not matter though as the constraint is not limiting rotation.
/// Update the minimum and maximum length for the constraint
void SetLength(float inMinLength, float inMaxLength) { JPH_ASSERT(inMinLength >= 0.0f && inMinLength <= inMaxLength); mMinLength = inMinLength; mMaxLength = inMaxLength; }
float GetMinLength() const { return mMinLength; }
float GetMaxLength() const { return mMaxLength; }
/// Get the current length of both segments (multiplied by the ratio for segment 2)
float GetCurrentLength() const { return Vec3(mWorldSpacePosition1 - mFixedPosition1).Length() + mRatio * Vec3(mWorldSpacePosition2 - mFixedPosition2).Length(); }
///@name Get Lagrange multiplier from last physics update (the linear impulse applied to satisfy the constraint)
inline float GetTotalLambdaPosition() const { return mIndependentAxisConstraintPart.GetTotalLambda(); }
private:
// Calculates world positions and normals and returns current length
float CalculatePositionsNormalsAndLength();
// Internal helper function to calculate the values below
void CalculateConstraintProperties();
// CONFIGURATION PROPERTIES FOLLOW
// Local space constraint positions on the bodies
Vec3 mLocalSpacePosition1;
Vec3 mLocalSpacePosition2;
// World space fixed positions
RVec3 mFixedPosition1;
RVec3 mFixedPosition2;
/// Ratio between the two line segments
float mRatio;
// The minimum/maximum length of the line segments
float mMinLength;
float mMaxLength;
// RUN TIME PROPERTIES FOLLOW
// World space positions and normal
RVec3 mWorldSpacePosition1;
RVec3 mWorldSpacePosition2;
Vec3 mWorldSpaceNormal1;
Vec3 mWorldSpaceNormal2;
// Depending on if the length < min or length > max we can apply forces to prevent further violations
float mMinLambda;
float mMaxLambda;
// The constraint part
IndependentAxisConstraintPart mIndependentAxisConstraintPart;
};
JPH_NAMESPACE_END