309 lines
10 KiB
C++
309 lines
10 KiB
C++
// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
|
|
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
|
|
// SPDX-License-Identifier: MIT
|
|
|
|
#include <Jolt/Jolt.h>
|
|
|
|
#include <Jolt/Physics/Constraints/PathConstraintPathHermite.h>
|
|
#include <Jolt/Core/Profiler.h>
|
|
#include <Jolt/ObjectStream/TypeDeclarations.h>
|
|
#include <Jolt/Core/StreamIn.h>
|
|
#include <Jolt/Core/StreamOut.h>
|
|
|
|
JPH_NAMESPACE_BEGIN
|
|
|
|
JPH_IMPLEMENT_SERIALIZABLE_NON_VIRTUAL(PathConstraintPathHermite::Point)
|
|
{
|
|
JPH_ADD_ATTRIBUTE(PathConstraintPathHermite::Point, mPosition)
|
|
JPH_ADD_ATTRIBUTE(PathConstraintPathHermite::Point, mTangent)
|
|
JPH_ADD_ATTRIBUTE(PathConstraintPathHermite::Point, mNormal)
|
|
}
|
|
|
|
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(PathConstraintPathHermite)
|
|
{
|
|
JPH_ADD_BASE_CLASS(PathConstraintPathHermite, PathConstraintPath)
|
|
|
|
JPH_ADD_ATTRIBUTE(PathConstraintPathHermite, mPoints)
|
|
}
|
|
|
|
// Calculate position and tangent for a Cubic Hermite Spline segment
|
|
static inline void sCalculatePositionAndTangent(Vec3Arg inP1, Vec3Arg inM1, Vec3Arg inP2, Vec3Arg inM2, float inT, Vec3 &outPosition, Vec3 &outTangent)
|
|
{
|
|
// Calculate factors for Cubic Hermite Spline
|
|
// See: https://en.wikipedia.org/wiki/Cubic_Hermite_spline
|
|
float t2 = inT * inT;
|
|
float t3 = inT * t2;
|
|
float h00 = 2.0f * t3 - 3.0f * t2 + 1.0f;
|
|
float h10 = t3 - 2.0f * t2 + inT;
|
|
float h01 = -2.0f * t3 + 3.0f * t2;
|
|
float h11 = t3 - t2;
|
|
|
|
// Calculate d/dt for factors to calculate the tangent
|
|
float ddt_h00 = 6.0f * (t2 - inT);
|
|
float ddt_h10 = 3.0f * t2 - 4.0f * inT + 1.0f;
|
|
float ddt_h01 = -ddt_h00;
|
|
float ddt_h11 = 3.0f * t2 - 2.0f * inT;
|
|
|
|
outPosition = h00 * inP1 + h10 * inM1 + h01 * inP2 + h11 * inM2;
|
|
outTangent = ddt_h00 * inP1 + ddt_h10 * inM1 + ddt_h01 * inP2 + ddt_h11 * inM2;
|
|
}
|
|
|
|
// Calculate the closest point to the origin for a Cubic Hermite Spline segment
|
|
// This is used to get an estimate for the interval in which the closest point can be found,
|
|
// the interval [0, 1] is too big for Newton Raphson to work on because it is solving a 5th degree polynomial which may
|
|
// have multiple local minima that are not the root. This happens especially when the path is straight (tangents aligned with inP2 - inP1).
|
|
// Based on the bisection method: https://en.wikipedia.org/wiki/Bisection_method
|
|
static inline void sCalculateClosestPointThroughBisection(Vec3Arg inP1, Vec3Arg inM1, Vec3Arg inP2, Vec3Arg inM2, float &outTMin, float &outTMax)
|
|
{
|
|
outTMin = 0.0f;
|
|
outTMax = 1.0f;
|
|
|
|
// To get the closest point of the curve to the origin we need to solve:
|
|
// d/dt P(t) . P(t) = 0 for t, where P(t) is the point on the curve segment
|
|
// Using d/dt (a(t) . b(t)) = d/dt a(t) . b(t) + a(t) . d/dt b(t)
|
|
// See: https://proofwiki.org/wiki/Derivative_of_Dot_Product_of_Vector-Valued_Functions
|
|
// d/dt P(t) . P(t) = 2 P(t) d/dt P(t) = 2 P(t) . Tangent(t)
|
|
|
|
// Calculate the derivative at t = 0, we know P(0) = inP1 and Tangent(0) = inM1
|
|
float ddt_min = inP1.Dot(inM1); // Leaving out factor 2, we're only interested in the root
|
|
if (abs(ddt_min) < 1.0e-6f)
|
|
{
|
|
// Derivative is near zero, we found our root
|
|
outTMax = 0.0f;
|
|
return;
|
|
}
|
|
bool ddt_min_negative = ddt_min < 0.0f;
|
|
|
|
// Calculate derivative at t = 1, we know P(1) = inP2 and Tangent(1) = inM2
|
|
float ddt_max = inP2.Dot(inM2);
|
|
if (abs(ddt_max) < 1.0e-6f)
|
|
{
|
|
// Derivative is near zero, we found our root
|
|
outTMin = 1.0f;
|
|
return;
|
|
}
|
|
bool ddt_max_negative = ddt_max < 0.0f;
|
|
|
|
// If the signs of the derivative are not different, this algorithm can't find the root
|
|
if (ddt_min_negative == ddt_max_negative)
|
|
return;
|
|
|
|
// With 4 iterations we'll get a result accurate to 1 / 2^4 = 0.0625
|
|
for (int iteration = 0; iteration < 4; ++iteration)
|
|
{
|
|
float t_mid = 0.5f * (outTMin + outTMax);
|
|
Vec3 position, tangent;
|
|
sCalculatePositionAndTangent(inP1, inM1, inP2, inM2, t_mid, position, tangent);
|
|
float ddt_mid = position.Dot(tangent);
|
|
if (abs(ddt_mid) < 1.0e-6f)
|
|
{
|
|
// Derivative is near zero, we found our root
|
|
outTMin = outTMax = t_mid;
|
|
return;
|
|
}
|
|
bool ddt_mid_negative = ddt_mid < 0.0f;
|
|
|
|
// Update the search interval so that the signs of the derivative at both ends of the interval are still different
|
|
if (ddt_mid_negative == ddt_min_negative)
|
|
outTMin = t_mid;
|
|
else
|
|
outTMax = t_mid;
|
|
}
|
|
}
|
|
|
|
// Calculate the closest point to the origin for a Cubic Hermite Spline segment
|
|
// Only considers the range t e [inTMin, inTMax] and will stop as soon as the closest point falls outside of that range
|
|
static inline float sCalculateClosestPointThroughNewtonRaphson(Vec3Arg inP1, Vec3Arg inM1, Vec3Arg inP2, Vec3Arg inM2, float inTMin, float inTMax, float &outDistanceSq)
|
|
{
|
|
// This is the closest position on the curve to the origin that we found
|
|
Vec3 position;
|
|
|
|
// Calculate the size of the interval
|
|
float interval = inTMax - inTMin;
|
|
|
|
// Start in the middle of the interval
|
|
float t = 0.5f * (inTMin + inTMax);
|
|
|
|
// Do max 10 iterations to prevent taking too much CPU time
|
|
for (int iteration = 0; iteration < 10; ++iteration)
|
|
{
|
|
// Calculate derivative at t, see comment at sCalculateClosestPointThroughBisection for derivation of the equations
|
|
Vec3 tangent;
|
|
sCalculatePositionAndTangent(inP1, inM1, inP2, inM2, t, position, tangent);
|
|
float ddt = position.Dot(tangent); // Leaving out factor 2, we're only interested in the root
|
|
|
|
// Calculate derivative of ddt: d^2/dt P(t) . P(t) = d/dt (2 P(t) . Tangent(t))
|
|
// = 2 (d/dt P(t)) . Tangent(t) + P(t) . d/dt Tangent(t)) = 2 (Tangent(t) . Tangent(t) + P(t) . d/dt Tangent(t))
|
|
float d2dt_h00 = 12.0f * t - 6.0f;
|
|
float d2dt_h10 = 6.0f * t - 4.0f;
|
|
float d2dt_h01 = -d2dt_h00;
|
|
float d2dt_h11 = 6.0f * t - 2.0f;
|
|
Vec3 ddt_tangent = d2dt_h00 * inP1 + d2dt_h10 * inM1 + d2dt_h01 * inP2 + d2dt_h11 * inM2;
|
|
float d2dt = tangent.Dot(tangent) + position.Dot(ddt_tangent); // Leaving out factor 2, because we left it out above too
|
|
|
|
// If d2dt is zero, the curve is flat and there are multiple t's for which we are closest to the origin, stop now
|
|
if (d2dt == 0.0f)
|
|
break;
|
|
|
|
// Do a Newton Raphson step
|
|
// See: https://en.wikipedia.org/wiki/Newton%27s_method
|
|
// Clamp against [-interval, interval] to avoid overshooting too much, we're not interested outside the interval
|
|
float delta = Clamp(-ddt / d2dt, -interval, interval);
|
|
|
|
// If we're stepping away further from t e [inTMin, inTMax] stop now
|
|
if ((t > inTMax && delta > 0.0f) || (t < inTMin && delta < 0.0f))
|
|
break;
|
|
|
|
// If we've converged, stop now
|
|
t += delta;
|
|
if (abs(delta) < 1.0e-4f)
|
|
break;
|
|
}
|
|
|
|
// Calculate the distance squared for the origin to the curve
|
|
outDistanceSq = position.LengthSq();
|
|
return t;
|
|
}
|
|
|
|
void PathConstraintPathHermite::GetIndexAndT(float inFraction, int &outIndex, float &outT) const
|
|
{
|
|
int num_points = int(mPoints.size());
|
|
|
|
// Start by truncating the fraction to get the index and storing the remainder in t
|
|
int index = int(trunc(inFraction));
|
|
float t = inFraction - float(index);
|
|
|
|
if (IsLooping())
|
|
{
|
|
JPH_ASSERT(!mPoints.front().mPosition.IsClose(mPoints.back().mPosition), "A looping path should have a different first and last point!");
|
|
|
|
// Make sure index is positive by adding a multiple of num_points
|
|
if (index < 0)
|
|
index += (-index / num_points + 1) * num_points;
|
|
|
|
// Index needs to be modulo num_points
|
|
index = index % num_points;
|
|
}
|
|
else
|
|
{
|
|
// Clamp against range of points
|
|
if (index < 0)
|
|
{
|
|
index = 0;
|
|
t = 0.0f;
|
|
}
|
|
else if (index >= num_points - 1)
|
|
{
|
|
index = num_points - 2;
|
|
t = 1.0f;
|
|
}
|
|
}
|
|
|
|
outIndex = index;
|
|
outT = t;
|
|
}
|
|
|
|
float PathConstraintPathHermite::GetClosestPoint(Vec3Arg inPosition, float inFractionHint) const
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
int num_points = int(mPoints.size());
|
|
|
|
// Start with last point on the path, in the non-looping case we won't be visiting this point
|
|
float best_dist_sq = (mPoints[num_points - 1].mPosition - inPosition).LengthSq();
|
|
float best_t = float(num_points - 1);
|
|
|
|
// Loop over all points
|
|
for (int i = 0, max_i = IsLooping()? num_points : num_points - 1; i < max_i; ++i)
|
|
{
|
|
const Point &p1 = mPoints[i];
|
|
const Point &p2 = mPoints[(i + 1) % num_points];
|
|
|
|
// Make the curve relative to inPosition
|
|
Vec3 p1_pos = p1.mPosition - inPosition;
|
|
Vec3 p2_pos = p2.mPosition - inPosition;
|
|
|
|
// Get distance to p1
|
|
float dist_sq = p1_pos.LengthSq();
|
|
if (dist_sq < best_dist_sq)
|
|
{
|
|
best_t = float(i);
|
|
best_dist_sq = dist_sq;
|
|
}
|
|
|
|
// First find an interval for the closest point so that we can start doing Newton Raphson steps
|
|
float t_min, t_max;
|
|
sCalculateClosestPointThroughBisection(p1_pos, p1.mTangent, p2_pos, p2.mTangent, t_min, t_max);
|
|
|
|
if (t_min == t_max)
|
|
{
|
|
// If the function above returned no interval then it found the root already and we can just calculate the distance
|
|
Vec3 position, tangent;
|
|
sCalculatePositionAndTangent(p1_pos, p1.mTangent, p2_pos, p2.mTangent, t_min, position, tangent);
|
|
dist_sq = position.LengthSq();
|
|
if (dist_sq < best_dist_sq)
|
|
{
|
|
best_t = float(i) + t_min;
|
|
best_dist_sq = dist_sq;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// Get closest distance along curve segment
|
|
float t = sCalculateClosestPointThroughNewtonRaphson(p1_pos, p1.mTangent, p2_pos, p2.mTangent, t_min, t_max, dist_sq);
|
|
if (t >= 0.0f && t <= 1.0f && dist_sq < best_dist_sq)
|
|
{
|
|
best_t = float(i) + t;
|
|
best_dist_sq = dist_sq;
|
|
}
|
|
}
|
|
}
|
|
|
|
return best_t;
|
|
}
|
|
|
|
void PathConstraintPathHermite::GetPointOnPath(float inFraction, Vec3 &outPathPosition, Vec3 &outPathTangent, Vec3 &outPathNormal, Vec3 &outPathBinormal) const
|
|
{
|
|
JPH_PROFILE_FUNCTION();
|
|
|
|
// Determine which hermite spline segment we need
|
|
int index;
|
|
float t;
|
|
GetIndexAndT(inFraction, index, t);
|
|
|
|
// Get the points on the segment
|
|
const Point &p1 = mPoints[index];
|
|
const Point &p2 = mPoints[(index + 1) % int(mPoints.size())];
|
|
|
|
// Calculate the position and tangent on the path
|
|
Vec3 tangent;
|
|
sCalculatePositionAndTangent(p1.mPosition, p1.mTangent, p2.mPosition, p2.mTangent, t, outPathPosition, tangent);
|
|
outPathTangent = tangent.Normalized();
|
|
|
|
// Just linearly interpolate the normal
|
|
Vec3 normal = (1.0f - t) * p1.mNormal + t * p2.mNormal;
|
|
|
|
// Calculate binormal
|
|
outPathBinormal = normal.Cross(outPathTangent).Normalized();
|
|
|
|
// Recalculate normal so it is perpendicular to both (linear interpolation will cause it not to be)
|
|
outPathNormal = outPathTangent.Cross(outPathBinormal);
|
|
JPH_ASSERT(outPathNormal.IsNormalized());
|
|
}
|
|
|
|
void PathConstraintPathHermite::SaveBinaryState(StreamOut &inStream) const
|
|
{
|
|
PathConstraintPath::SaveBinaryState(inStream);
|
|
|
|
inStream.Write(mPoints);
|
|
}
|
|
|
|
void PathConstraintPathHermite::RestoreBinaryState(StreamIn &inStream)
|
|
{
|
|
PathConstraintPath::RestoreBinaryState(inStream);
|
|
|
|
inStream.Read(mPoints);
|
|
}
|
|
|
|
JPH_NAMESPACE_END
|