godot-module-template/engine/thirdparty/jolt_physics/Jolt/Physics/Constraints/HingeConstraint.cpp
2025-04-12 18:40:44 +02:00

425 lines
15 KiB
C++

// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
// SPDX-License-Identifier: MIT
#include <Jolt/Jolt.h>
#include <Jolt/Physics/Constraints/HingeConstraint.h>
#include <Jolt/Physics/Constraints/ConstraintPart/RotationEulerConstraintPart.h>
#include <Jolt/Physics/Body/Body.h>
#include <Jolt/ObjectStream/TypeDeclarations.h>
#include <Jolt/Core/StreamIn.h>
#include <Jolt/Core/StreamOut.h>
#ifdef JPH_DEBUG_RENDERER
#include <Jolt/Renderer/DebugRenderer.h>
#endif // JPH_DEBUG_RENDERER
JPH_NAMESPACE_BEGIN
JPH_IMPLEMENT_SERIALIZABLE_VIRTUAL(HingeConstraintSettings)
{
JPH_ADD_BASE_CLASS(HingeConstraintSettings, TwoBodyConstraintSettings)
JPH_ADD_ENUM_ATTRIBUTE(HingeConstraintSettings, mSpace)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint1)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis1)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis1)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mPoint2)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mHingeAxis2)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mNormalAxis2)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMin)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsMax)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mLimitsSpringSettings)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMaxFrictionTorque)
JPH_ADD_ATTRIBUTE(HingeConstraintSettings, mMotorSettings)
}
void HingeConstraintSettings::SaveBinaryState(StreamOut &inStream) const
{
ConstraintSettings::SaveBinaryState(inStream);
inStream.Write(mSpace);
inStream.Write(mPoint1);
inStream.Write(mHingeAxis1);
inStream.Write(mNormalAxis1);
inStream.Write(mPoint2);
inStream.Write(mHingeAxis2);
inStream.Write(mNormalAxis2);
inStream.Write(mLimitsMin);
inStream.Write(mLimitsMax);
inStream.Write(mMaxFrictionTorque);
mLimitsSpringSettings.SaveBinaryState(inStream);
mMotorSettings.SaveBinaryState(inStream);
}
void HingeConstraintSettings::RestoreBinaryState(StreamIn &inStream)
{
ConstraintSettings::RestoreBinaryState(inStream);
inStream.Read(mSpace);
inStream.Read(mPoint1);
inStream.Read(mHingeAxis1);
inStream.Read(mNormalAxis1);
inStream.Read(mPoint2);
inStream.Read(mHingeAxis2);
inStream.Read(mNormalAxis2);
inStream.Read(mLimitsMin);
inStream.Read(mLimitsMax);
inStream.Read(mMaxFrictionTorque);
mLimitsSpringSettings.RestoreBinaryState(inStream);
mMotorSettings.RestoreBinaryState(inStream);}
TwoBodyConstraint *HingeConstraintSettings::Create(Body &inBody1, Body &inBody2) const
{
return new HingeConstraint(inBody1, inBody2, *this);
}
HingeConstraint::HingeConstraint(Body &inBody1, Body &inBody2, const HingeConstraintSettings &inSettings) :
TwoBodyConstraint(inBody1, inBody2, inSettings),
mMaxFrictionTorque(inSettings.mMaxFrictionTorque),
mMotorSettings(inSettings.mMotorSettings)
{
// Store limits
JPH_ASSERT(inSettings.mLimitsMin != inSettings.mLimitsMax || inSettings.mLimitsSpringSettings.mFrequency > 0.0f, "Better use a fixed constraint in this case");
SetLimits(inSettings.mLimitsMin, inSettings.mLimitsMax);
// Store inverse of initial rotation from body 1 to body 2 in body 1 space
mInvInitialOrientation = RotationEulerConstraintPart::sGetInvInitialOrientationXZ(inSettings.mNormalAxis1, inSettings.mHingeAxis1, inSettings.mNormalAxis2, inSettings.mHingeAxis2);
if (inSettings.mSpace == EConstraintSpace::WorldSpace)
{
// If all properties were specified in world space, take them to local space now
RMat44 inv_transform1 = inBody1.GetInverseCenterOfMassTransform();
mLocalSpacePosition1 = Vec3(inv_transform1 * inSettings.mPoint1);
mLocalSpaceHingeAxis1 = inv_transform1.Multiply3x3(inSettings.mHingeAxis1).Normalized();
mLocalSpaceNormalAxis1 = inv_transform1.Multiply3x3(inSettings.mNormalAxis1).Normalized();
RMat44 inv_transform2 = inBody2.GetInverseCenterOfMassTransform();
mLocalSpacePosition2 = Vec3(inv_transform2 * inSettings.mPoint2);
mLocalSpaceHingeAxis2 = inv_transform2.Multiply3x3(inSettings.mHingeAxis2).Normalized();
mLocalSpaceNormalAxis2 = inv_transform2.Multiply3x3(inSettings.mNormalAxis2).Normalized();
// Constraints were specified in world space, so we should have replaced c1 with q10^-1 c1 and c2 with q20^-1 c2
// => r0^-1 = (q20^-1 c2) (q10^-1 c1)^1 = q20^-1 (c2 c1^-1) q10
mInvInitialOrientation = inBody2.GetRotation().Conjugated() * mInvInitialOrientation * inBody1.GetRotation();
}
else
{
mLocalSpacePosition1 = Vec3(inSettings.mPoint1);
mLocalSpaceHingeAxis1 = inSettings.mHingeAxis1;
mLocalSpaceNormalAxis1 = inSettings.mNormalAxis1;
mLocalSpacePosition2 = Vec3(inSettings.mPoint2);
mLocalSpaceHingeAxis2 = inSettings.mHingeAxis2;
mLocalSpaceNormalAxis2 = inSettings.mNormalAxis2;
}
// Store spring settings
SetLimitsSpringSettings(inSettings.mLimitsSpringSettings);
}
void HingeConstraint::NotifyShapeChanged(const BodyID &inBodyID, Vec3Arg inDeltaCOM)
{
if (mBody1->GetID() == inBodyID)
mLocalSpacePosition1 -= inDeltaCOM;
else if (mBody2->GetID() == inBodyID)
mLocalSpacePosition2 -= inDeltaCOM;
}
float HingeConstraint::GetCurrentAngle() const
{
// See: CalculateA1AndTheta
Quat rotation1 = mBody1->GetRotation();
Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
return diff.GetRotationAngle(rotation1 * mLocalSpaceHingeAxis1);
}
void HingeConstraint::SetLimits(float inLimitsMin, float inLimitsMax)
{
JPH_ASSERT(inLimitsMin <= 0.0f && inLimitsMin >= -JPH_PI);
JPH_ASSERT(inLimitsMax >= 0.0f && inLimitsMax <= JPH_PI);
mLimitsMin = inLimitsMin;
mLimitsMax = inLimitsMax;
mHasLimits = mLimitsMin > -JPH_PI || mLimitsMax < JPH_PI;
}
void HingeConstraint::CalculateA1AndTheta()
{
if (mHasLimits || mMotorState != EMotorState::Off || mMaxFrictionTorque > 0.0f)
{
Quat rotation1 = mBody1->GetRotation();
// Calculate relative rotation in world space
//
// The rest rotation is:
//
// q2 = q1 r0
//
// But the actual rotation is
//
// q2 = diff q1 r0
// <=> diff = q2 r0^-1 q1^-1
//
// Where:
// q1 = current rotation of body 1
// q2 = current rotation of body 2
// diff = relative rotation in world space
Quat diff = mBody2->GetRotation() * mInvInitialOrientation * rotation1.Conjugated();
// Calculate hinge axis in world space
mA1 = rotation1 * mLocalSpaceHingeAxis1;
// Get rotation angle around the hinge axis
mTheta = diff.GetRotationAngle(mA1);
}
}
void HingeConstraint::CalculateRotationLimitsConstraintProperties(float inDeltaTime)
{
// Apply constraint if outside of limits
if (mHasLimits && (mTheta <= mLimitsMin || mTheta >= mLimitsMax))
mRotationLimitsConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, GetSmallestAngleToLimit(), mLimitsSpringSettings);
else
mRotationLimitsConstraintPart.Deactivate();
}
void HingeConstraint::CalculateMotorConstraintProperties(float inDeltaTime)
{
switch (mMotorState)
{
case EMotorState::Off:
if (mMaxFrictionTorque > 0.0f)
mMotorConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, mA1);
else
mMotorConstraintPart.Deactivate();
break;
case EMotorState::Velocity:
mMotorConstraintPart.CalculateConstraintProperties(*mBody1, *mBody2, mA1, -mTargetAngularVelocity);
break;
case EMotorState::Position:
if (mMotorSettings.mSpringSettings.HasStiffness())
mMotorConstraintPart.CalculateConstraintPropertiesWithSettings(inDeltaTime, *mBody1, *mBody2, mA1, 0.0f, CenterAngleAroundZero(mTheta - mTargetAngle), mMotorSettings.mSpringSettings);
else
mMotorConstraintPart.Deactivate();
break;
}
}
void HingeConstraint::SetupVelocityConstraint(float inDeltaTime)
{
// Cache constraint values that are valid until the bodies move
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation());
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
mPointConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, mLocalSpacePosition1, *mBody2, rotation2, mLocalSpacePosition2);
mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
CalculateA1AndTheta();
CalculateRotationLimitsConstraintProperties(inDeltaTime);
CalculateMotorConstraintProperties(inDeltaTime);
}
void HingeConstraint::ResetWarmStart()
{
mMotorConstraintPart.Deactivate();
mPointConstraintPart.Deactivate();
mRotationConstraintPart.Deactivate();
mRotationLimitsConstraintPart.Deactivate();
}
void HingeConstraint::WarmStartVelocityConstraint(float inWarmStartImpulseRatio)
{
// Warm starting: Apply previous frame impulse
mMotorConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
mPointConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
mRotationConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
mRotationLimitsConstraintPart.WarmStart(*mBody1, *mBody2, inWarmStartImpulseRatio);
}
float HingeConstraint::GetSmallestAngleToLimit() const
{
float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
return abs(dist_to_min) < abs(dist_to_max)? dist_to_min : dist_to_max;
}
bool HingeConstraint::IsMinLimitClosest() const
{
float dist_to_min = CenterAngleAroundZero(mTheta - mLimitsMin);
float dist_to_max = CenterAngleAroundZero(mTheta - mLimitsMax);
return abs(dist_to_min) < abs(dist_to_max);
}
bool HingeConstraint::SolveVelocityConstraint(float inDeltaTime)
{
// Solve motor
bool motor = false;
if (mMotorConstraintPart.IsActive())
{
switch (mMotorState)
{
case EMotorState::Off:
{
float max_lambda = mMaxFrictionTorque * inDeltaTime;
motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, -max_lambda, max_lambda);
break;
}
case EMotorState::Velocity:
case EMotorState::Position:
motor = mMotorConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, inDeltaTime * mMotorSettings.mMinTorqueLimit, inDeltaTime * mMotorSettings.mMaxTorqueLimit);
break;
}
}
// Solve point constraint
bool pos = mPointConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
// Solve rotation constraint
bool rot = mRotationConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2);
// Solve rotation limits
bool limit = false;
if (mRotationLimitsConstraintPart.IsActive())
{
float min_lambda, max_lambda;
if (mLimitsMin == mLimitsMax)
{
min_lambda = -FLT_MAX;
max_lambda = FLT_MAX;
}
else if (IsMinLimitClosest())
{
min_lambda = 0.0f;
max_lambda = FLT_MAX;
}
else
{
min_lambda = -FLT_MAX;
max_lambda = 0.0f;
}
limit = mRotationLimitsConstraintPart.SolveVelocityConstraint(*mBody1, *mBody2, mA1, min_lambda, max_lambda);
}
return motor || pos || rot || limit;
}
bool HingeConstraint::SolvePositionConstraint(float inDeltaTime, float inBaumgarte)
{
// Motor operates on velocities only, don't call SolvePositionConstraint
// Solve point constraint
mPointConstraintPart.CalculateConstraintProperties(*mBody1, Mat44::sRotation(mBody1->GetRotation()), mLocalSpacePosition1, *mBody2, Mat44::sRotation(mBody2->GetRotation()), mLocalSpacePosition2);
bool pos = mPointConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
// Solve rotation constraint
Mat44 rotation1 = Mat44::sRotation(mBody1->GetRotation()); // Note that previous call to GetRotation() is out of date since the rotation has changed
Mat44 rotation2 = Mat44::sRotation(mBody2->GetRotation());
mRotationConstraintPart.CalculateConstraintProperties(*mBody1, rotation1, rotation1.Multiply3x3(mLocalSpaceHingeAxis1), *mBody2, rotation2, rotation2.Multiply3x3(mLocalSpaceHingeAxis2));
bool rot = mRotationConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, inBaumgarte);
// Solve rotation limits
bool limit = false;
if (mHasLimits && mLimitsSpringSettings.mFrequency <= 0.0f)
{
CalculateA1AndTheta();
CalculateRotationLimitsConstraintProperties(inDeltaTime);
if (mRotationLimitsConstraintPart.IsActive())
limit = mRotationLimitsConstraintPart.SolvePositionConstraint(*mBody1, *mBody2, GetSmallestAngleToLimit(), inBaumgarte);
}
return pos || rot || limit;
}
#ifdef JPH_DEBUG_RENDERER
void HingeConstraint::DrawConstraint(DebugRenderer *inRenderer) const
{
RMat44 transform1 = mBody1->GetCenterOfMassTransform();
RMat44 transform2 = mBody2->GetCenterOfMassTransform();
// Draw constraint
RVec3 constraint_pos1 = transform1 * mLocalSpacePosition1;
inRenderer->DrawMarker(constraint_pos1, Color::sRed, 0.1f);
inRenderer->DrawLine(constraint_pos1, transform1 * (mLocalSpacePosition1 + mDrawConstraintSize * mLocalSpaceHingeAxis1), Color::sRed);
RVec3 constraint_pos2 = transform2 * mLocalSpacePosition2;
inRenderer->DrawMarker(constraint_pos2, Color::sGreen, 0.1f);
inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceHingeAxis2), Color::sGreen);
inRenderer->DrawLine(constraint_pos2, transform2 * (mLocalSpacePosition2 + mDrawConstraintSize * mLocalSpaceNormalAxis2), Color::sWhite);
}
void HingeConstraint::DrawConstraintLimits(DebugRenderer *inRenderer) const
{
if (mHasLimits && mLimitsMax > mLimitsMin)
{
// Get constraint properties in world space
RMat44 transform1 = mBody1->GetCenterOfMassTransform();
RVec3 position1 = transform1 * mLocalSpacePosition1;
Vec3 hinge_axis1 = transform1.Multiply3x3(mLocalSpaceHingeAxis1);
Vec3 normal_axis1 = transform1.Multiply3x3(mLocalSpaceNormalAxis1);
inRenderer->DrawPie(position1, mDrawConstraintSize, hinge_axis1, normal_axis1, mLimitsMin, mLimitsMax, Color::sPurple, DebugRenderer::ECastShadow::Off);
}
}
#endif // JPH_DEBUG_RENDERER
void HingeConstraint::SaveState(StateRecorder &inStream) const
{
TwoBodyConstraint::SaveState(inStream);
mMotorConstraintPart.SaveState(inStream);
mRotationConstraintPart.SaveState(inStream);
mPointConstraintPart.SaveState(inStream);
mRotationLimitsConstraintPart.SaveState(inStream);
inStream.Write(mMotorState);
inStream.Write(mTargetAngularVelocity);
inStream.Write(mTargetAngle);
}
void HingeConstraint::RestoreState(StateRecorder &inStream)
{
TwoBodyConstraint::RestoreState(inStream);
mMotorConstraintPart.RestoreState(inStream);
mRotationConstraintPart.RestoreState(inStream);
mPointConstraintPart.RestoreState(inStream);
mRotationLimitsConstraintPart.RestoreState(inStream);
inStream.Read(mMotorState);
inStream.Read(mTargetAngularVelocity);
inStream.Read(mTargetAngle);
}
Ref<ConstraintSettings> HingeConstraint::GetConstraintSettings() const
{
HingeConstraintSettings *settings = new HingeConstraintSettings;
ToConstraintSettings(*settings);
settings->mSpace = EConstraintSpace::LocalToBodyCOM;
settings->mPoint1 = RVec3(mLocalSpacePosition1);
settings->mHingeAxis1 = mLocalSpaceHingeAxis1;
settings->mNormalAxis1 = mLocalSpaceNormalAxis1;
settings->mPoint2 = RVec3(mLocalSpacePosition2);
settings->mHingeAxis2 = mLocalSpaceHingeAxis2;
settings->mNormalAxis2 = mLocalSpaceNormalAxis2;
settings->mLimitsMin = mLimitsMin;
settings->mLimitsMax = mLimitsMax;
settings->mLimitsSpringSettings = mLimitsSpringSettings;
settings->mMaxFrictionTorque = mMaxFrictionTorque;
settings->mMotorSettings = mMotorSettings;
return settings;
}
Mat44 HingeConstraint::GetConstraintToBody1Matrix() const
{
return Mat44(Vec4(mLocalSpaceHingeAxis1, 0), Vec4(mLocalSpaceNormalAxis1, 0), Vec4(mLocalSpaceHingeAxis1.Cross(mLocalSpaceNormalAxis1), 0), Vec4(mLocalSpacePosition1, 1));
}
Mat44 HingeConstraint::GetConstraintToBody2Matrix() const
{
return Mat44(Vec4(mLocalSpaceHingeAxis2, 0), Vec4(mLocalSpaceNormalAxis2, 0), Vec4(mLocalSpaceHingeAxis2.Cross(mLocalSpaceNormalAxis2), 0), Vec4(mLocalSpacePosition2, 1));
}
JPH_NAMESPACE_END